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Abstract

Numerical methods are described for determining robust, or well-
conditioned, solutlions to the problem of pole assignment by state feedback.
The solutions obtained are such that the sensitivity of the assigned
poles to perturbations in the system and galn matrices is minimized. It
is shown that for these solutions, bounds on the norm of the feedback
matrix and on the transient response are also minimized. A measure is
derived which indicates the optimal conditioning that may be expected for
a particular system with a given set of closed loop poles, and hence the

suitability of the given poles for assignment.

Key words: automatic control, multivariable system, pole assignment,

state feedback, numerical algorithm, inverse eigenvalue problem.



Acknowledgemsnts

The methods described here were developed in collaboration with
P. Van Dooren (Philips Research Lsboratory, Brussels) and
L. Fletcher (Salford University). Much of ths implementation was
completed at Stanford University Computer Science Dept. The authors
would like to thank Professor G. H. Golub, Flinders University,
Reading University, Philips Research Laboratory, Salford University and

the British Council for supporting this co-operative research.



Contents

1. Introduction

2. ,The sfate feedback pole assignment problsm

3. Numerical algorithms for robust eigenstructure assignment
3.1 Step A/0
3.2 Step F
3.3 Step X . .
3.4 Implementation

4, Applications
4.1 Numerical Examples
4,2 Discussion of numerical results

5. Conclusions

References

Appendix I - Solutions at convergence: sensitivities

Appendix II - Solutions at convergence: feedback and

system matrices

Appendix III - Improved methods for Steps A/0 and F

Appendix IV - Modifications for complex eigenvalues

.M

12

23

24

24

40

43

44

55

71

74



1.0 Introduction

The state feedback pole assignment problem in cantrol system design
is essentially an inverse eigenvalus praoblem. The solution 1s, in
general, under-determined, with many degrees of freedom. A desirable
property of any system design is that the poles should be insensitive to
perturbations in the coefficient matrices of the system equations. This
criterion may be used to restrict the degrees of freedom in the assignment

problem, and to produce a well conditioned or robust solution to the

inverse eigenproblem.

A number of constructive methods for pole assignment by state-
feedback are described in the literaturs [11, [51-[63, [101-[13], [151-[161],
{191, [22), [24]. For the single-input case, only one solution to the
pole assignment problem may‘exist, and a numerically stable technique for
computing the required feedback 1s available (131. For the multi-input
problem, héwever, the procedures which hgve so far been developed do not
generally lead to robust solutions of the problem, and frequently they are
computationally unstable.

In this paper we describe four algorithms for computing robust
solutions to the multi-input, multivariable state-feedback pole assignment
problem. Two of the methods are complementary. In all cases the feedback
matrix is obtained by assigning linearly independent eigenvectors corresponding
to the required eigenvalues (or poies],such that the matrix of eigenvectors
is as well-conditioned as possible [23], The assiéned poles are then as
insensitive to perturbations as possible and the resulting feedback matrix
is as reasonably bounded as may be expected, given the original system.

In the next section the pole assignment problem is defined in detail,
and theoretical considerations are discussed. In section 3 we describe the

numerical elgorithms, Applications and numerical results are presented in

section 4, and concluding remarks follow in section 5.



2.0 The state-feedback pols assignment problem
We consider the completely controllable, time-invariant, linear,

multivariable system with dynamic state equation
X = Ax + Bu , (1)

where x, U are n- and m- dimensional vectors, respectively, and
A, B are real, constant matrices of compatible orders. Matrix B is
assu&ed to be of full rank. The behaviour of system (1) is governed
by the poles of the system, that is, by the eigenvalues of matrix A.
It is often desirable to modify the poles of the system in order to
obtain certain properties, such as stability. This may be achieved

by using a state-feedback control
us=Fx+y,

where F, called the feedback or gain matrix, is chosen such that

the modified dynamic system

X = (A+BF) x + Bv , (2)

now with input v, has the desired poles.
The state-feedback pole assignment problem for system (1) is

formulated precisely as follows.

Problem 1. Given real matrices(A,B), of orders (nxn, nxm) respectively.
and a set of n complex numbers, A = {Aq,kz,..kn}, closed under complex
conjugation, find a real mxn matrix F such that the eigenvalues of
A + BF are Aj' J=1,2,..n.

| .Gonditions for the existence of solutions to Problem 1 are well-

known and the following theorem is well-established [24].



Theore@_l. A solution F to Problem 1 exdsts for evary set

salf-conjugate complex numbers if and only if the pair (A,B) 1is

completely controllable, that 1s, 1f and only if:

ETA = U_E_‘!_T and _E_’s_TB = _9_ <=> ET = 9— :

Indeed, if (A,B) is not controllable, i.e. there exists ET z 0
T T T

such

that s A =wus and s B =0, then sT (A+BF) = ugT for all F .

Thus u 1is an eigenvalue of A+BF for all F and must belong to

any set

A of poles to be assigned. The pole u 1s sald to be uncontrollable,

and it cannot be modified by any feedback control.

4

In the single-input case (m=1) the solution to Problem 1, when

it exists, can be shown to be unique [12], This result does not

in general, In the case .m=n, solutions always exist, since

hold

rank (B) = n then implies that the left null space of B contains only

the trivial solution, and the pair (A,B) 1is always completely

controllable.

If we restrict the choice of feedback matrices such that the resulting

system matrix A+BF is non-defective (diagonalizable), then Problem 1

is equivalent to

Problem 1': Given (A,B) and A (as in Problem 1), find real

matrix F such that
(A+BF)X = XA
for some non-singular X, where

A = diag {11.7\ X ).

2,---.n

We note that system matrices which are defective are necessarily less

robust than those which are non-defective, and that this restriction of

the problem simply implies that eigenvalues of multiplicity greater than

m cannot be assigned.

(3)



From (3) 1t is clear that the columns y J=1.2,...n, of

Xy

matrix X are the right eigenvectors of A+BF corresponding to the

assigned eigenvalues A T. J=1,2,...n, of

5 %3
matrix YT = X-1 are the corresponding left elgenvectors. It has been

Similarly, the rows

shown [237 that the sensitivity of the elgenvalue AJ to perturbations

in the components of A, B and F depends upon the magnitude of 1/Cj’

where

= 1,7 .
oy = lyy x50 7 Byl 5 gl < 0.

{For real X,, c

NN

left eigenvectors corresponding to X,.) In the case m=1, 1if F

J

exists, X 1is uniquely determined (up to scaling), and the sensitivities

is just the cosine of the angle between the right and

1/0j cannot be controlledT In the case m=n, X may always be chosen
to be orthogonal (X = I suffices) and hence to be sgch that cj = 1,
Vj' For.a general multi-input system (1 < m < n) we may control the
sensitivities of the assigned poles to a restricted extent by an appropriate
choice of the eigenvectors comprising X . We are interested, therefore,
not onlyzin elgenvalue assignment, but in assignment of the entire
eigenstructure of the system.

Necessary and sufficlent conditions for specific eigenstructure
assignment are given by the authors for the more general output feedback
problem elsewhere [ 71, [ 9], 1In this report we are concerned with

methods for determining an eigenstructure which is as well-conditioned as

possible, that is, such that the sensitivities 1/cj of the assigned

elgenvalues are as small as possible. A general measure and upper bound

Xl X7,

of the matrix X of eigenvectors [23]. We observae that 1f a matrix V

for the sensitivities is given by the condition number KZ(X]

exists such that FX=V, then equation (3] may be rearranged in the form
AX - XA = -BY, (4)

and we may formulate the robust eigenstructure assignment problem as follows:



Problem 2: Given (A,B) and A (as in Problem 1), find real
matrices V and X (non-singular) satisfying (4) and minimising KZ(X).

‘The solution F 1s then glven by F = VX-1, and since X 1is well-

conditioned, the matrix F can be computed accurately by a stable numerical
process [41, [23].
The matrices V and X satisfy (4) if and only 1f their respective

columns Vv ahd X j=1,2,...n, are such that

=J =3’

€ N([BlA-AJI]) , A b,

=]

where N(*) denotes null space. We observe that N([BlA—AjI]) is of

dimension m, since complete controllability of the pair (A,B)} implies

-

rank[B|A-AI] = n, ¥Ae C . If V,, S, are mxm and nxm matrices,

s R
respectively, such that
v
(| 3 = WUBJA-AID, A ed, § = 1,2,
s, J

where R(¢) denotes range, then Problem 2 reduces to the problem of

selecting vectors x, from the m-dimensional subspaces S, = R(S,]),

=J 3 J

j=1,2,...,n, such that X = [54, 52,...§ﬂ] is as well-conditioned as

possible. If the vectors » 3 =1,2,...n, can be chosen to form an

X

orthonormal basis f0r~'kn, then matrix X 1s perfectly conditioned with
K2[X] = 1, In essence, then, the general solution of Problem 2 is

obtained by selecting vectors x, € S, such that “ Ed” 5 1, V and

=J J ¥’

fj' j=12,...n, are as "orthogonal" as possible to each other,
For any given set A = {A1.A2,..Xn}, the minimal conditioning that

can be achieved is limited. We let Sj be a matrix such that the columns

of S, form an orthonormal basis for SJ and we let VJ be a corresponding

N

matrix such that



It = R

If we define S = [81,8 ..Sn], then clearly rank S = n 1is a necsssary

27"
condition fer a non-singular solution X to exist. It can be shown
(see [211), furthermore, that a lower bound on the achievable value of

KZ(X) is given by K2(S]//n, where KZ(S) is defined as the ratio of

the largest singular value of S to the smallest-[23]. The

conditioning of S thus gives a measure of the suitability of the set of
poles & for assignment. The lower bound given by KZ(S)//n cannot
necessarily be reallsed, however. In particular, if the augmented matrix
composed af any k of ths submatrices SJ (k > m) has rank less than k ,
a non-singular solution X does not exist; and if this augmented matrix
has numerical rank less than k, or in other words, if it has a large
condition number, then the solution X must, of necessity, be badly
conditioned.

Bounds on the components of the feedback matrix F can also be derived
in terms of the condition number of X and the given data of the problem.

In particular, the authors have shown elsewhere [ 9] that

e L, s Qhall, + max Og3exy (X220 (B, (5)

where cm(B) is the smallest, non-zero singular value of matrix B. Hence,
minimising the conditioning of the assigned eigenstructure also has the
effect of minimising a bound on the feedback géins for the given system (in

the sense of the &, - norm). Furthermore, it is easy to see that the transient

response of the modified system (2}, where x({0) = Xq» is given by

x(t) = 8(A+BF)t50 - xa™ Xy

and therefore the transient response 1s bounded by

|I§0 | o (63

Ixe) |, < Ko (X)e mix | e*3%] -



Thus, optimising the conditloning of X also minimises a bound on the
magnitude of the transient response (in the £7 -sanse) for any gilven

initial condition.
In the next section we describe several stable numerical algorithms

for determining well-conditioned, or robust, sclutions to the state-

feedback pole assignment problem.



3.0 Numerical alporithms for robust eigenstructure assignment

We now consider the practical implementation of the thesoretical
results discussed in Section 2. We describe four numerical methods for
obtaining approximate solutions to Problem” 2. The methods all make use
of standard library software for obtaining the QR and SVD (singular value)
decompositions of matrices and for solving systems of linear equations

ra7l. The procedures all consist of three basic steps:

Step A/0: Construct a basis, comprised of the columns of tha
(m+n)}xm matrix [ Vj , for N([B|A—AJI]), kJeA, j=1,2,...,n,
S
J

T
such that S.,5, = 1 .
J 3

Step X: Select vectors x, = S.w, € S, with

23 =3 3 " -X—J “2= 1 and set

X = [X00 XpowenX 1o

Step F: Compute F, the solution of FX = [V1ﬂ4, VZEQ""VnEn]'

The first and third steps, Steps A/0 and F, are identical for all
four methods. The key step is Step X. Here the vectors zj, j=1.2,...n,
must be chosen to minimise the conditioning of X, or more specifically
to minimise the sensitivities, 1/cj, of the assigneq eigenvalues Aj
The methods described here do not produce an exact optimal, but produce
good approximations to the solution of Problem 2. Methods 1 and 2/3
minimise another measure of conditioning, which generally gives good
approximations for the optimal sensitivities, and Method 0 leads
asymptotically to a solution which approximates the optimal KZ(X)

We first discuss the two basic steps common to all four methods.



3.1 Step A/O

The basis for each space N ([B|A—AjI]) is constructed in two steps,

Step A and Step 0, each of which may be implemented using either the SvD

procedure (Case 1) or the QR procedure (Case 21. In general, the SVD
procedure is considerably more expensive than the QR method, but the SVD
method gives useful additional 1nformation for evaluat;ng the suitability
of the set A of elgenvalues to be assigned, and for estimating bounds
on the optimally attainable feedback matrix.

3.1.1 Step A: We first construct a basis, comprised of the columns of

-~

the (m*+nlxn matrix Yj , for the space N [BIA—AJI]] for each
S
J

distinct ljeA .

Case 1 (8VD): We find the singular value decomposition of [BIA—AjI]

and partition the components in the form:

A A GJ.T
(Bla-A,I] = u,IT.,01 | V "
AT = Uyt e
L J
Then the column vectors comprising ] form a set of m orthonormal
S
J

vectors which clearly span the m-dimensional null space of [BIA—AjI] .

Case 2 (QR): 1In thils case, we find the QR decomposition of [B|A-A I]T

J
which we partition in the form:
A
A :
a1 = (o, [ Yl [ R ] .



The required orthonormal basis for the null space is agailn given by the

1

column vectors comprising

[}
[

93]

3.1.2 Step D: We now construct an orthogonal basls, comprised of the

columns of matrix SJ' for the space Sj = R(SJ]. We. require also a
A - -
basis, given by the columns of Sj' for the complement of Sj and a

Y
J

matrix V corresponding to S such that the columns aof are

3 3 A
3

also a basis for

<

R N = FUBIAAID .

me

Case 1 (SVD): We determine the singular value decomposition of SJ

in the form

- A Zj
Sj = [Sj | Sj] 0 Zj
A

oM Then matrices S S and V have the

and set Vj = V,Z j i’ j j

required properties.
Case 2 (QR): We form the QR decomposition of SJ partitioned as
= A
s, =[S, | s,] Rj
i LA L I
_1 A

V = L] F] » S
and set j VjRj Again SJ j and VJ satisfy the required

conditions.

- 10 -



3,2 Step F
Given elpenvectors Ed € SJ' expressed as a linear combination of
thé orthonormal basis, 5ﬂ = Sjﬁj' we determine F satisfying (3).
If we define v, = V.,w, then
—J =3
L
« sN([BlA—AJI]] .
=
and v,, X satisf
Yyr X y
Ax, - A,x, = -Bv 5
—J J=3 =]

Hence matrices X = [54, Xo ...§ﬂ] and V = [X4, Voo ...xn] satisfy (4)

and F is given by F = vx™1. Ve construct F by solving the equation

XTFT = VT for FT using a direct LU-decomposition (or, equivalently,

Gaussian elimination) method, designed for use with multiple right-hand

sides [41] .

- 11
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3.3 Step X

We describe four methods for accomplishlng the main step, Step X,
in the basic algorithm. Each is based on a different principle, although
two éf the methods (Methods 2/3) are complementary to each other. For
well-posed problems the results of all the methods are, in general, very
similar; we have found, however, that in certain cases, one or another of
the methods does produce significantly better solutions than the other
techniques. The comparative efficiency of the procedures also varies
from example to example, although, in general, Methods 2/3 require fewer
operations than Method 0, and Method 1 requires more work than any of the
other processes. The methods are presented in order of general efficiency.
We describe the techniques only for the case where the eigenvectors are
all required to be real. Modifications for the case of complex eigeﬁvectors

are described in an appendix.

3.3.1 Methods 2/3: The basic objective here is to determine an orthonormal

set of vectors gj’ J=1,2,...n, such that some measure of the distance

between the vectors gj and the subspaces Sj is minimized; then the

required eigenvectors zj, j=1,2,...n, are taken as the normalised projection

of x. into Sj. The resulting 5j are then approximately orthogonal to

each other and the conditioning of X = [54.5

2"'5n] is expected to be

reasonably close to unity. The complementary objective is to choose an

orthonormal set of vectors 2, such that a measure of the distance between
A
the vectors and the complements, Sj‘ of subspaces S, 1is maximized, and

J

then to project gﬂ

The measure of distance used here 1s essentially a weighted sum of

into S..
J

the angles between the vectors and the subspaces. The angle between a

vector and a subspace 1s defined as the minimum angle between the given vector



and any vector in the subspace. The sine of this angle 1s precisely
equal to the distance between the given vector, assumlng it 1s of unit

length, and its projectlon 1nto the subspace.

-~

In particular, for vector ij‘ of unit length, and subspace Sj’ it
can be shown [ 4 ] that the projection Ej of Ed into SJ’ which
~ & T-
minimises X, - ov 11 e §5,, 1is given b = 5, 5.x and
ninises Ix; - pll; overall pe 8y, s given by py = 55X

-~

the distance between fj and 1ts projection is given by

~ A
. -
Ix; =By ly = I5yx h, .

By definition, then, the angle «a between vector x, and subspace §

J -] J
Ap o
satisfies sin aj = "SJ Eﬂ “2 Similarly, the angle Bj between
- ' A T - .
vector Ed and the complement SJ satisfies sin Bj = HSJ 5j H2 + The

precise objective of Method 2 is then to choose orthonormal vectors

5j' j =1,2,..n, such that for given weights wj > 0, the measure k
A A
T 2
Vv = w S, x
oy 5] X I

is a minimum; and the complementary objective of Method 3 1s to choose

X 3y =1,2,..n, such that for given w©, > 0, the measure

=3’ hj
T3 2
v = g wy "Sj X “2

is a maximum,

Since the projection of 5j into SJ is orthogonal to its projeétion

A A
into S,, we have B, = /2 - « and, therefore, v = K-v, whers K = 2 w

J J J 3’

.

for any choice of x

JD

J=1.2,...0. For the same choice of weilghts wJ,
A
the measures v and v are therefore optimised by the same selection of

vectors ; > J = 1.2,...6. The amount of work involved in the calculation

=J



A
of v 1is proportiaonal to n-m, however, and the work ln computing v

is proportional to m. We therefore expect Method 2 to be more
efficient than Method 3 in the case whers n-m < m, and conversely
where n-m > m.

For Methods 2/3, Step X thus consists of two parts:

Step X(1), in which a set of vectors id optimizing C or v, 1is
determined; and

Step X(i1), in which the normalized projection

_ T T°
xy = Sy = 853y xy/l Sy x4

-~

of 51 into Sj is computed for j = 1,2,...n.

Step X(i) is accomplished by applying a sequence of rotations (or
other unitary transformations) to some initial set of orthonormal vectors
in such a way that each rotation reduces the sums of squares of the

angles between the vectors and the given subspaces. Explicitly, we

= - - A A A A
start with x©) = @ 3@y 1 ang w0 -sT=gs,,5,..8 1,
21 Zn 1772 n
(or H(O] =8 [81,82,...Sn]T ), and generate sequences
() gty ) k1)
k k
where H(k) is partitioned in the form
(k) (k) (k) |
a4 2 . vy,
(k) (k) (k)
ho1 ha2 . . SR
H(k) =
h(k) h(k) . . ) h(k]
-1 —Nn2 - —n
A A A
and the rotations PK are chosen to minimise Avk = Ve T Ve <0,

where



A
(k) MM OCK) g 2
\)K " g(x) ” h ”2 = "wi” Si .)_(_l‘ " 5

Av > 0,

(or to maximise K

= VK = VK—1
where ~(Kk)

(K]
‘) i"h 2 }‘ “S X4

A T

We note that vk (or vkl can be written as trace(H(K) H[k]].

I, .

The

rotations are applied in natural order in sweeps through the matrix,

sach sweep comprising  in(n-1) rotations. Each rotatlon is

? A
performed only if the value of IAvk| {or lAvli obtained 1s greater

than a given tolerance, and the sweeps are repeated as long as the
measure 1s improved by more than the tolerance given,

The angle of rotation ¢ to be applied to the pair of columns

(1, j) 1in H(k—1) is determined as follows. We write a = Dii[k-1)‘
(k-1) (k-1) (k-1
b=h,. , c=~h nd d=nh v Then the transformed
=" =7 o1 N
(k) (k) (k=-1)
trix H has components h = h , Yp,g=#1i, Jj, nd
matri as compon L hoq P,q h| a
(k) _ = _ _ ' (kY - = _ . _
Eii Za=acos ¢ -bsin ¢, h B =d=csin ¢ - d cos ¢,
(k) - ~ _ (kY _ = _ _
Dij =b=asin¢ + bcos ¢, hji =c=ccos ¢ -dsing¢ .
It can be shown further that
ala=itala+bb+plaa-bb) - 20
d'd=i@d+cle +oldd-clo) s 208'0),
where p = coS 2¢ and o = sin 2¢. For Method 2 we choose angle ¢ to
minimise
A A A
- _ - L | ST
Ave 2 v - v, = laa-aal) ¢ wj(g_g_g_g)

The optimal choilce of ¢

sin ¢ = Im(zg),

where

g = ((p+ic)/[p+io[)£

is deduced to be such that cos ¢ = Rel(g),

and p,o0 take the values

p = ~lug(ala-b'b) + u,(d'd-c"e) )y

T
o = (wi b - w1d c)/Y .



with

: 2 2
Y= [(mi(ETg;QTE) + wJ(ng;ETE)) + 4(wing—mngE) ]g

For Method 3 we choose angle ¢ to maximise

T T MR
A\)K = vk " Vg = wi[g_ a-a a) + wjfgg_g_g) .

The optimal ¢ 1s found to satisfy the same expressions, but with ¢

1
now given by ¢ = ((-p-io)/|p+ic|)? . : -
A A
> < St
Clearly, then, vy vopt 20 (vk -+ vopt < K), and Step X(i) of

;(O]

Methods 2/3 is convergent. Since the initial vectors = 1 are orthonopmal

and the rotations PK are also orthogonal, we conclude that the columns
A

Pk are orthonormal and give a minimum to v (or a

x, of X =
X o

maximum to

< x=

) within some tolerance. We note that the matrix X,
obtained in Step X(il) by projecting the columns of i into the required
subspaces, does not necessarily have the minimum attainable condition
number, It is found, however, that KZ(X] is close to unity if the

columns of X are close to the required subspaces.

3.3.2 Method 0: The objective here is to choose vectors x, € S;, j = 1,2,...0n,

—=J J

such that each vector is as orthogonal as possible to the space spanned
by the remaining vectors; that is, such that the angle between vector
fj € Sj and the space Xj = <Xy i # j> is maximized Vj. Equivalently,

for j = 1,2,...n, we choose fj € S, to minimise the angle between x

J =]
and the normalized vector Xj orthogonal to the space Xj'
A global solution is not attempted. Instead, an iterative method

550) € Sj . At each

sweep of the iteration, for j = 1,2,...n, the vector EFK]

3

by a new vector 5§k+1) with maximum angle to the space X

is used, starting with some set of initial vectors

is replaced

(k+1)
J

(k+1)

= R(X
] .

),



- 17 -

CO I (S DI (S DI (VS P (S IR O

where XJ X9 . Xy reneXy g e XyeqeecXy

1. The

iterations are continued for increasing Kk as long as - KZ(X(K])

decreases, where X(K] = [x(k], x(k],...x(k]].
-1 =2 —N
(k+1) : )
The new vector fﬁ may be obtailned by using either an SVO
(Case 1) or QR (Case 2) procedure. In Case 1 an orthonormal basis
A . .
'X(K+1) for X[k+1) is first obtained. This may be determined from
3 J . -
X;k+1) by a Gram-Schmidt procedure, or by using an SVD or QR technique.
{k+1) 4
Then the new vector zj is chosen to be the image in SJ of the
singular vector which corresponds to the smallest singular value
A
T 2 (k+1)
o of Sj XJ ; that is, we form the decomposition
A A A A
ST X(k+1) U %V T
J 3 J 3
A
and choose x¥k+1] =Sw, =S, U, e, Then
- = jJ J-m
A T A A
(k+1) (k+1) _ T, T T ,k+1) _
“ Xj _’ij ” 2 " " Em Uj Sj Xj “ 2 O'm,
(k+1) (k+1) s
and the angle between zd and Xj is maximised over all vectors
. (k+1) : 9
in Sj; equivalently, the angle between 5ﬂ and the (one-dimensional)
(k+1)
complement of Xj is minimised.

~In Case 2 an equivalent solution is obtained by a simpler and less

expensive QR method. We form the decomposition
A A
T A A
(k+1)
X = (Q,, ) R
] RU R B
0

in order to find Xﬁ orthogonal to X§k+1). Then the projection of Xj



into Sj ig the vector in SJ which has minimum angle to Xd’ that is,
(k+1) _ o ol

X = W .

5 ML TR RS I

determined in Case 1.

= S /| st [, - (This vector is identical to that

b
In effect, at each stage of the lteration this mathod choosss the vector
in SJ which minimises the sensitivity of the elgenvalue AJ with respect

to the other given vectors. The vector !g is just the normalized left

elpgenvector corresponding to AJ and therefore the sensitivity

’l/cJ = 1/ IX; 55k+1]| is minimised by the choice of §5K+1). However, the
conditioning of the remaininp eigenvalues xi; i = j is disturbed when
x!k] is replaced by X(K+1) and the over-all condition number is not

. = '

necessarily improved at sach stage.

The iteration is continued until the reduction in KZ(X] is less than
some positive tolerance. The process does not necessarily converge, and a
fixed point of the iteration may or may not be reached before the process is
stopped. The solution obtained depends directly on the choice of the initial
vectors. Since the procedure requires n OR decompositions at each iteration,
it is also much more expensive per sweep than Methods 2/3. However, Method O
does appear to perform well, starting from an arbitrary initial choice of
vectors, and it can lead to more robust solutions than Methods 2/3. In the
case where orthogonal solutions X with optimal conditioning KZ[X) = 1 exist,

it can perform particularly efficiently if appropriate initial vectors are given.

The original S.V.D. (Case 1) version of this method is due to P. Van Dooren.

3.3.3 Method 1: The objective of this method is to choose linear combinations of

the basis vectors of S,, j = 1,2,...n, such that the resulting linear

J

combinations are as "orthogonal” as possible; that is, we require m-dimensional

vectors w such that x

= S.w
~J =5 = =3
js= 1,2,...n . If we write X = SW, where W 1s the block nm x n

are as nearly orthogonal as possible for

"diagonal” matrix W = diag_ {54‘32""En}‘ then wse



requira W suc

nm x n matrix

that X = SW 1is

ia as close to
| w - diagm[W]
Here'diagm(W)

W ¥
=33
The error

We have XTX—I

and noting that

and
we find

where € d1s mi

h that XTX & T, To determine W, we look for a block

W = {ﬂij} (with components of dimension m x 1) such
s orthogonal, i.e. XTX = WS1QW a I, and such that W

block diagonal as possible, that 1s, such that
"F is minimized. Then we choose W = diag (W).

denotes the block diagonal matrix with diagonal components

}=1,2,...n

” XTX—I "F can then be bounded in terms of e = H Q—WH £

= XTXXTX = (W-2)'STSW + WS'S(W-W). Therefore

] .
| xT-1 o< el sTs g thw fee il

T 2 T
||ss||Fs\| s||F=tr(SSJ = nm
” W “F . “ WHW-W ” s u W "F t e,

2
| XT%-1 | < 2emm || Wl + 0te™)

nimal.

An appropriate general form for W 1is easily obtained by using the

singular value

s = u(z,0) (V1

,V2]T , and take W

[51, Spsee

V12—1P + VZZ where P 1is any

decomposition of S .Sn]. We form

T -1
1

orthogonal matrix and Z is arbitrary. Then SW = UZIV (V1Z P+V22] =

which 1s clearly orthogonal. The objective of Method 1, then, is to

choose P and

is minimized.

Z such that ) )
W - atep, () |l = 1XJ I wyy

12

up

4 -

i



For a given matrix P, Z 15 determined as tha best least-square

T
solution of a linear system. If we write V. = [V21,V22,...V2n] and

Z = [Z4. z.""Z“]' then Z 1is the best least-square solution of the

equations
T _. T
ct VaaZo - o Vaik,
T
V22_z_1 0 i . .
VZZ . diangVZZ] £ = K,
T T
VanZs VanZa : : £

where K = diag (V £ Py - v.z P,  We observe that we obtain nm-m
m 1 1

equations for determining the nm-n dimensional vectors Zj’ for each

j=1,2,...n, These equations may be wriltten, in the case P = I, 1in
the form

J — =

Vs z Koo h| 1,2,¢4.0,
2 — —i
J
T ' .

where V2 [V21,V22,...V2.J_1,V2'j+1,...V2n], 5i is the 1i,-th

j J
-1 th '
column of —V1Z with the J block of m components deleted, and

ij = jJ. For any permutation matrix P, the equations are of the same

form, with the integers :LJ given by the corresponding permutation of

the integers {1,2,...n}.
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The best least-squaras solutions 2z are found using slngular value

=
or QR decompositions of the matrices Vg, J = 1,2,...0. To determine a
best chaioe of P amongst all permutation matrices, we compute the
residuals 53 = V% z, - bd' for a1l 1, 3 = 1,2,...n. The

residuals are given explicitly 1in terms of the decompositions. If we

2
define matrix NT = | E; "2}, then for a gilven permutation
- = _— 7
I w-diagm(W] le = } \l;_j i, = trace (NP .

Hence we simply form matrix N and apply a sequence of interchanges which
reduce the trace at each step. The optimal permutation P is then given

by the product of the elementary interchanges.

Explicit expressions for =z ri and w, are obtained from the

] J
singular value decomposition of V%, which we write as
AT
J_qd J J
V2-—U2(E2 z .
0
Then the residuals are given by
T
i_ J { s o=
o = [O,In_m)U2 LP vV i,j=1,2,...n,

and for the chosen permutation, the solutions Ej of the least-square

problem take the form

A T
. 73 g3yt 3 : -
zg= g (I, 03Uy Ky 3= 2,
J

where the values iJ are determined by the permutation. Finally, the
required vectors Hﬂ ars computed from

= A

k

By E gyt V2,5 BT A

A
where 5_ is the j-th m-dimensional block of the iJ-th column of
J

'V12;1 . Similar explicit expressions are obtained from the QR

decomposition of the matrix V% . Then we have

- 21 -



where A
Yo 1id J
e [ [y

Since P 1is selected only amongst all perhutation matrices,
rather than from amongst the more general class of all orthogonal
matrices, this procedure does not compute the optimal choice possible
for &. The method could be modified to generalise further the selection
of Q, but at the expense of considerable complication. The method
already requires a relatively large number of operations due to the
number of matrix decompositions employed, and for problems in which
well-conditioned results are expected, it obtains good solutions even in

its present restricted form.



3.4 Implementation

The three steps, Step A/0, Step X and Step F, of the numerical

methods described in Sectlons 3.1-3.3 have been implemented using tha
systam MATLAB 14]. This system makes use of standard library routines
from the software packages LINPACK[ 4 1 and EISPACK[20]. For
experimental purposes, we have developed a set of executive files for
use with MATLAB to carry out the various steps of the pole assignment
procedures. These files have been incorporated in a small package,
together with a number of test examples. A detalled description of

the package, with listings, and instructions for its use are available
in another document [ B81]. The test examples are given in the next
section of thils paper, and the results of numerical experiments with

the pole assignment methods are reported.

Recently we have developed new, more efficient procedures to replace
the techniques used in Steps A/0 and F. These procedures are based on
theory for eigenstructure assignment derived elsewhere by the authors [7]
{al. Executive flles for implementing the new steps with MATLAB
have been written, and a brief description of the revised methods is

given here in an appendix.



4,0 Applications

The four procedurss descrilbed in sectlon 3 have been applied to a
number of examples collected from the literature. In some cases, the
given control system 1s unstable, and a feeaback matrix which
stabilizes the system is to be assigned. In other cases, the system is
already stable, and the objective of the pole assignment is then to
move some of the smaller eigenvalues further into ‘the left half-plans,
away from the imaginary axis,and also to improve the conditioning of
the system, We first describe each of the test examples, and give the
results of numerical experiments. Then a summary and general discussion

is presented.

4.1 Numerical Examples

For each example we give the type of system and source of the
problem, followed by the order (n, m) of the system, the coefficient

matrices A, B, and the poles of the original system, EIG(A).

Example 1 (EX4)  TEST {(Barnett, [11]).

n=3 m= 2
[ o 1 0 ]
A = ) 0 1
| 6 -11 6
1 0 1 ]
B =
LD 1 1_

EIG(A) = 1.0, 2.0, 3.0.

We first assign the eipenvalue set A = {1, 1, 3} as in [1]. The
condition of S 1is KZ[S] « 8,32, and thersfore we expect to be able to

obtain a reasonably well-conditioned solution. After two sweeps with



2

Method 2, (taking approximately 743 flops) we obtain the solution

-1.6053 3.0941 -1.4887

-2.0941 4,2307 ~-2.1966

Here the condition of X 1is KZ(XJ = 7.8098 and the sensitivities of

the assipgned elgenvalues are {3.92, 1.40, 3,951}, With tolerance lavel

10—5, no change is made in the third sweep and ths iteration is halted.
Using two sweeps of Method O (Case 2) (approximately 1278 flops) we

obtain almost the same solution

-1.6073 3.0872 -1.4838

-2.0872. 4,2955 -2.1984

with KZ[X) = 7.7772. The eigenvalue sensitivities are here {3.04,

2.72, 3.85}, The iteration stops after two sweeps with tolerance 10_5.
From Method 1 (approximately 3443 ?lops) we obtain the identical

solution F, to 5-figures, as that of Method 0, but with a different set

of corresponding eigenvectors. The condition of X 1is still

KZ(X) = 7.7772, but the eigenvalue sensitivities are {1.00, 3.95, 3.95}.

These solutions all compare favourably with the solution

3 4 -1

-3 S 4 -1
derived in [ 11, which has very poor conditioning. If errors + 0.001
are introduced into the resulting feedback system matrix A + BF,
perturbations of up to 13.8% occur in the assigned poles. Introducing
the same errors into the system matrices obtained by Methods 2, O and 1

leads to errors of at most 0.2% in the assigned elgenvalues.



We have also assigned the eigenvalue set A = {-0.2, -0.2, -10.0},
which produces a stable system. The conditioning of S, KZ(S] = 3,65
is again satilsfactory. With two sweeps of each method and tolerance
level 10—5, very similar results are obtailned. For Method 2,

K2(X] = 3,2827,

[F|, = 16.541 and the sensitivities of the eigenvalues
are {1.57, 1.43, 1.79}. For Method 0, x,(X) = 3.2732, IFll, = 16.461
and thé sensitivities are {1.34, 1.55, 1.79}; and for Method 1 we have
again k,(X) = 3.2732, [F||, = 16.461, but with sensitivities

{1.00, 1.78, 1.79} . Method 2 converges in four sweeps with minor

improvements on these results and Method O halts after two sweeps.

Example 2 (EX1) AIRCRAFT CONTROL {Okada, Kihara, Kobéyaski, [181)

n =4 m= 3
[ 0 1 0 0 7]
0.000140 -2.04 -1.95 0.0133
A =
-0.000251 1 -1.32 -0.0238
| -0.561 0 0.358 -0.279
[ o -5.33 -0.160 0
B = 0 0.00645 -0.0116 0.106
L_ 0 -0.267" -0.251 0.0862
EIG(A) = -3.12,,-2, -2.46,,-1, -1.68 + 1.351.

We assign the eigenvalue set A = {-1, -2, -3, -4}, The condition
of S is K2(S] = 4,9040 and we may expect to find robust solutions to the
problem. After two sweeps with Method 2 (approximately 1503 flops) we

obtain a result with «,(X) = 3.6103, [|F|, = 28.255 and eigenvalue

sensitivities {1.94, 1.00, 1.00, 1.94}., The corresponding system
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matrix A + OBF 1s

0.0000 1.0000 0.0000 0.0000
-4.0000 ~5.0000 0.0000 0.0000

A+ BF = :
0.0000 - 0.0000 -2.0000 0.0000
0.0000 0.0000 0.0000 -3.0000 |

which is as decoupled as it may he for the given matrix B, With
tolerance 10—5 no changes are made on the third sweep and the iteration
is stopped.

With Method 0,in Case 2, after two sweeps (approximately 2830 flops)

the solution is such that K (X) = 3.6690, |Fl, = 26.578 and the
sensitivities are {1.97, 1.01, 1.00, 1.97}. With Method O, in Case 1,
after two sweeps (approximately 5024 flops) a solution is obtainedl

with KZ[X] = 3,7361, ”F"2 = 25,931, and eigenvalue sensitivities
{1.988, 1.02, 1.00, 2.00}. In both cases, after ten sweeps, Method O
converges with tolerance 10—5 to a solution with KZ[X] = 3.6103

and the same sensitivities as the solution obtained by Method 2, but

with different gain matrices F; in Case 2,

|[Fll, = 26.540 and in
Case 1, ”F“2 = 25,543, The system matrices A + BF obtained by
Method O are not decoupled, however, as is the result of Method 2.

With Method 1 (taking approximately 19,371 flops) the system matrix
obtained is partially decoupled. The conditioning is KZ(X) = 6.1623,
and |F|, = 30.294; the sensitivities are {3.16, 3.16, 1.00, 1.00} and

the system matrix is

0.0000 1.0000 0.0000 0.0000
A+ BF = -2.0000 -3.0000 0.0000 0.0000 | .

0.0000 0.0000 -3.6280 0.48334

0.0000 0.0000 0.48334  -3.3720 _




Rounding the gain matrix F  obtalined by these methods to thres figures
of accuracy corresponds to introducing maximum absolute errors of

* 51D~4 max {[HF)ij} into the system matrices. For robust solutions such
i.] o

perturbations should only cause errors of the same order of magniltude
(x n) in the poles of the feedback system. For this example, rounding
the galn matrix F obtained by Mgthod 2 introduces a maximum absolute .
error of + 0.004 into the eigenvalues of the system matrix A + BF, or
a maximum relative error of 0.13%. Similarly, rounding the matrix F
constructed by Method 0O gives maximum errors of :_O.UDB, or 0.17%, in
the poles in Case 2, and maximum errors of + 0.008, or 0.28%, in
Case 1. For Method 1, rounding matrix F gives a maximum absolute error
13004 and a maximum relative error 0.27%. The maximum percentage error
in Method 1 occurs in the eigenvalue of smallest modulus, however, while
for Methods 2 and O this eigenvalue is only in error to 0.03-0.05%.
Experiments have also been carried out using Method 2 with a
weighted measure in order to obtain solutions in which the eigenvalues
of smallest modulus have the best conditioning. It is clear that the
eigenvalues nearest the imaginary axis should be léast sensitive to
perturbations in the system, since these are the modes most likely to

become unstable. It is found that with weights w, = 5, w

1 =25, w, = 5

2 3

and W, = 1, a solution is obtained with eigenvalue sensitivities
{1.00, 1.00, 13.04, 13.04}. The overall conditioning KZ(X) = 26.038 is
considerably worse than in the unweighted solution, but “FH2 is reduced

to .||F||2 = 12.584 and the conditioning of the first eigenvalue is

clearly improved. The system matrix obtained is

[ 0.0000 1.0000 0.0000 0.0000 |
-12.000 -7.0000 0,0000 0.0000
A+ B =
0.0000 0.0000 -2.0000 0.0000
_ 0.0000 0.0000 0.0000 -1.0000 _|
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which is still decoupled. The errors Introduced by rounding matrix F

are more uniform, the maximum absolute error being + 0.0015 and the
maximum relative error being 0.06%. Tha error introduced into the
eipenvalue of least modulus by the rounding procedure is, however, reduced

only slightly, but this error is already very small.

Exampie 3 (EX13) CHEMICAL REACTOR (Munra, [171).

n=4 m= 2
[~ 1.380 -0,2077 6.715 -5,676

-0.5814 -4,290 0 0.6750

A =
1.067 4,273 -6.654 5.893
0.0480. 4,273 1.343 -2.104 |
0 5,679 1.136 1.136

T _

B =

0 0 -3.146 0

EIG(A) = 1.991, 6,351 -5,057, -8.666.

1072

This system is unstable and a feedback matrix is required to
stabilize the system, We therefore move the two positive real modes
into the left-half plane, keeping the original stable modes. We assign
the set A = {-0.2, -0.5, -5.0566..., -8.6659...}. The condition of S
is KZ(S] = 3,761 and a feedback system with good'conditioning is
expected. After two sweeps of Method 2 (approximately 3472 flops) a
solution with «,(X) = 4.5569, "FH2 - 1.1553 and eigenvalue sensitivities
{2.36, 1.19, 2.36, 1.11} is obtained. The process converges with
tolerance 10‘5 in six sweeps with slightly improved conditioning:

KZ(X] = 4.5355 and sensitivitles {2.37, 1.07, 2.34, 1.09}, but with

slightly increased "FHZ "= 1.1B656.
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With Mathod 0, in Case 2, the best result 1s obtalnaed from the first
sweep with «,(X) = 3.5834, [Fl, = 1.4117 and sensitivities ({1.67, 1.41,
1.52, 1.72}. On the next sweep the value of KZ(X] lncreases and 1f
the’iteration is allowed to proceed, the copditioning continues to 1lncrease.
After B0 sweeps a condition number K2[X) = 4,1301 1is obtained, and there
is no indicatlion of convergence. With Method 0O, in Case 1, the best
result 'is obtained after eleven sweeps and is such thaf
k,(X) = 3.2811, |F|, = 1.3292 and the pole sensitivities are {1.69, 1.53,
1.49, 1.75}. Further sweeps increase the conditioning K2(X] of the
solution and the process does not show convergence. We observe also that
if the solution obtained by Method 2 is used as a starting approkimation for
Method O, the conditioning is made worse by applying this process.

For this example Method 1 alsc produces a good result (taking
approximately 8548 flops). The solution has k,(X) = 3.4391, IF], = 1.5408
and sensitivities {1.42, 1.84, 1.41, 1.84}.

Examination of the augmented matrix S = [81, 82, 83, 84] suggests
that the space SS is unduly constraining the choice of eigenvectors, and
that moving the pcle AB = -5,0566... may improve the results. Therefore
we also assign the set A = {-D.2, -0.5, -8.6659..., -8.6659...}, with a
double pole at the position of the eigenvalue of largest modulus in the
original system. The overall condition of S is now KZ(S) = 3.2934,
giving an improvement.

Method 3 here performs much as before, giving a solution with
K2[X] = 3,2182, “Fﬂ2 = 1.3911 and sensitivities {1.73, 1.13, 1.66, 1.27}
after two sweeps (approximately 3056 flops). The procedure converges with
tolerance 10-5 after five sweeps to a solution with

k,(X) = 3.2122, |[F[, = 1.4039, and sensitivities {1.75, 1.08, 1.67, 1.27}.



For thls set A of poles, Method 0, in Case 2, obtalns a good
result on the first sweep and improves the result on the second sweep
(3160 flops), giving a solution with «,(X) = 3.1874, [F|, = 1.4035
and sensitivities {1.75, 1.08, 1.11, 1.73}. With tolerance 107> no
essential changes are made on the third sweep and the process here
converges. In Case 1, Method 0 gives a solutlon with K2[X] = 3,2552,
IF(, = 1.4013 and sensitivities {1.50, 1.45, 1.07, 1.78} after two
sweeps (4384 flops) and converges with tolerance 10-5 after 34
sweeps to a solution with KZ(X) = 3,1969, “FHZ = 1,3870, and
sensitivities {1.74, 1.09, 1.07, 1.75}. If the solution obtained by
Method 3 is used as an initial approximation in Method 0, (Case 2}, the
solution is improved furthér, and Method O converges agaln to essentially
the same result as before.

Method 1, however, fails completely to find a sensible solution for
this data. The resulting feedback syétem matrix has eigenvalue
conditioning KZ(X) = 6.8, *5 and the eigenvalue sensitivities are

10

5, 3.4, 5}

(1.5 10 10

103, 1.8103, 3.4

For this example the effect of rounding the gain matrix F,
constructed by Methods 3 and O (Case 2), to three figures of accuracy is
to introduce maximum errors of *0.003 into the assigned eigenvaiues,
or a maximum relative error of about 1% in the eigenvalue of smallest
modulus. As would be expected, rounding the solufion F obtained by
Method 1 gives a feedback system matrix with eilgenvalues

-6.58 + 10.54i, + 3.648, - 8.6642, which bear no relation to the

assigned values.
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Example 4 (EX7) NUCLEAR ROCKET ENGINE (Davison and Chow, [ 31).

n=4 ms= 2
™ -65.0 65.0 -19.5 19.5 |
0.1 0.1 0 0
A =
1.0 0 0.5 -1.0
| 0o 0 0.4 -0.4 |
85.0 0 0 0
=
B = 0 0 0 0.4

EIG (A) = -64,795, -0.60234 + 0.51872i, O0.0.

We first arbitrarily éssign the pole set A = {-1, -2, -3, -4}. For
these eigenvalues the conditioning of S is KZ[S) = 42,506 which
indicatestthat we cannot obtain a very ;obust solution to the problem.

After two sweeps of Method 3 (approximately 3448 flops) we cbtain a
solution with K,(X) = 156.03, |F|, = 137.74 and sensitivities

{1.33, 78.02, 78.02, 1.46}. With tolerance 10-5 the procedure converges
in four sweeps to a slightly improved solution with KZ(X) = 154,79,

[F[, = 133.18 and sensitivities {1.62, 77.40, 77.40, 2.36}.

After two sweeps of Method 0O, in Case 2, (approximately 2619 flops) a
rather better solution is obtained with K,(X) = 54.83, "FH2 = 108.05 and
sensitivities {20.09, 20.10, 23.01, 11.65}. The Eest result obtained
by this method is produced in three sweeps, with KZ(X] = 36.957, "F”é = 64,943
and sensitivities {16.46, 2.96, 18.48, 2.76}. The procedure does not .
converge to this solution, however, and if the iteration i1s allowed to
proceed, solutions with increasing condition numbers. KZ[X) are produced.

The 1teration does eventually converge after 26 sweeps to a solution



with o, (X) = 39,292, [F[, = 48.884 ond sensitivities {17.88, 8.93, 17.77,
8.41}. In Case 1,with Method 0, a similar pattern 1s observed, the best
result belng achieved on the third sweep, with KZ(X) = 36,804,
|Fl, = 62.675 and sensitivities {18.04, 3.35, 18.41, 3.006}. In this
case the method converges after seven sweeps to a less well-conditioned
resultf
A reasonable solution 1is also constructed by-Method 1 {approximately
7170 flops), with K,(X) = 48.982, |[F|, = 43.691 and sensitivities
{24.24, 24.31, 7.80, 7.82}. We note that with a different choice of
permutation this procedure can give an even better solution with
K,(X) = 37.088, HFH2 = 65.856 and sensitivities {18.50, 2.77, 18.51, 2.76}.
For this set of arbitrary poles, however, the resulting system.
matrices are clearly not robust and are sensitive to small perturbations
in the data. We therefore consider a more reasonable pole assignment
problem where we simply move the smallest eigenvalues away from the
imaginary axis. We assign set A = {-0.1, -1, -3, -64,593 ...}. With this data
KZ(S) = 1.7655. After two sweeps of Method 3 (approximately 3056 flops) a
reasonably good solution is obtained with «,(X) = 1.4579, |F[, = 131.31 and
sensitivities {1.00, 1.07, 1.00, 1.07}. The procedure converges with
tolerance 10_5 in seven sweeps to a slightly improved solution with
k,(X) = 1.4478, |F[, = 122.16, and sensitivities {1.00, 1.07, 1.00, 1.07}.
With Method O, in Case 2, after two sweeps (2965 slops) the solution
obtained has &, (X) = 1.5117, “FHZ = 143.26 and sensitivities
{1.00, 1.08, 1.00, 1.08}. After two sweeps (5389 flops) with Method Q,
in Case 1, a somewhat better solution 1is obtained, with KZ(X) = 1.4706,
uF”2 = 133.75 and sensitivities {1.00, 1.07, 1.00, 1.08}. In both cases,
Method O converges to a solution almost identical to that obtained by

Method 3, with the same conditioning KZ(X), the same eigenvalue sensitivities

to five fipuraes accuracy, and the same value of “F“z to three figures accuracy.



In Case 2 convergence s reached after 16 sweeps and in Case 1
after 12 sweeps.

With Method 1 (approximately 7687 flops) a reasonably good solutlon
is also obtained, althouph it 13 not as well-conditloned as the results
of Method 3 or Method 0.  The solutlon has «,(X) = 3.5436, IEfl, = 151.74
and sensitivities {1.00, 1.23, 1.82, 1.91}.

It the gain matrix F obtained'by these methods 1s rounded to three-
fipures accuracy, errors of maximum modulus 0.014—6.032 are introduced
into the assigned poles. For Method 3 the maximum relative error is 1.8%,
which occurs in the eigenvalue of smallest modulus. For Method 0, in
both cases, the maximum relative error is about 3.3%, also occurring
in the first eigenvalue. For Method 1, however, the eigenvalue of

smallest modulus has an error of only 0.07%, but the maximum relative

error is 1.6%, occurring in the second eigenvalue.

Example 5 (EX12) DRUM BOILER  (Bengtsson, [ 21)

[~ -0.128 0 0.0396 0.0250 0.0181
0.00329 O -0.778,,-4  0.122,,-3  -0.621
0.0718 0 -0.100 0.887,,-3  -3.85
A= |
0.0411 0 0 -0.0822 0
| 0.351,,-3 O 0.350,,-4  0.426,,-4 -0.0743 |
0 0 -
. 0 0.248, -4 O
- - = Y =
0.00139 0.359,,-4 -0.00989 0 0.534, -5

EIG (A} = -0.180, -0.0597 £ 0.0168i, 0.0, -0.0858.

In the form given, this problem is very badly scaled. Therefore,



before applying the pole assignment algorithms, the state and control

varlables are scaled, giving new varlables 2z = D,x and v = D u whers

- - 2—
D " = — -
4 = dlag {1.0, 10.0, 0.1, 0.1, 10.0} and D, = diag {110 1, 10 2}.
The coefficient matrices of the scaled system are then glven by A = DqA 0;1
and é B an D;1 . The scaling is symmetric and the eigenvalues of the

system matrix are unaltered.
For the scaled system with a fairly arbitrary set of assigned poles,
A = {-0.01, -0.02, -0.03, -0.04, -0.05}, the condftion of S 1s
KZ(S] = 106.89, and well-conditioned solutions are not to be expected.
After two sweeps of Method 3 (approximately 9405 flops) a solution with
k,(X) = 131.83, HFH2 = 6.3785 and sensitivities {27.18, 29.30, 60.04,
41.24, 21.17} 1is obtained. With tolerance 10_5 this procedure converges
in six sweeps with an improved result such that KZ(X] = 113.63, “F”2 = 6.1610,
and the pole sensitivities equal {26.92, 26.62, 50.55, 37.07, 22.08}.

Method 0, in Case 2, provides a solution with KZ[X] = 122.70,
ﬂFHZ = 5.5067 and sensitivities {29.67, 24.10, 52.64, 22.79, 32.22} after
two sweeps (approximately 4916 flops). The method here converges with
tolerance 10_5 after 27 iterations to a solution with
k,(X) = BB.564, "F"2 = 5.1424 and sensitivities {25.68, 26.35, 41.43,
23.91, 23.27}.

The results produced by Method 1 (13697 flops) are considerably worse
for this example than the results of Method 3 or O. The solution here has
k,(X) = 226.85, "FH2 = 10.845 and sensitivities {24.55, 92.14, 99.27,
42,99, 35,73},

With a slight modification of the assigned poles, a somewhat morao
satisfacgory solution 1s obtained. We assign A = {-0.01, -0.02, -0.03,

-0.05, -0.06} and obtain KZ(S) = 67.036, With Method 3, after two sweeps

(approximately 7848 flops) we achieve a solutlon with KZ[X] = 87,836,

[F], = 2.700 and sensttivities {20.01, 27.56, 40.73, 22.92, 10.08}.
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After seven sweeps the method 1s converpged with a tolerance of 10 ° and

produces a solution with k,(X) = 58.131, [[F[, = 2.3754, and sensitivities
{20.27, 18.19, 26.47, 19.46, 11.18},

With Method 0, two sweeps (5026 {lops) glves a solutlon with

K,(X) = 63.301, [[F|, = 4.2217 and sensitivities {23.55, 18.32, 28.22,

-0
12.03, 16.33}. The procedure converges with tolerance 10 ? after 25 sweeps

and gives an improved solution with «,(X) = 51.413, |[F|, = 2.1810, and

sensitivities {19.75, 17.40, 24.68, 16.23, 11.66}.
Method 1 (taking approximately 13930 flops) again gives rather poorer

results than elther Method 3 or 0. The solution has K2(X] = 128.12,

IFl., = 6.6842 and sensitivities {19.34, 48.84, 55.82, 18.35, 15.98}.
Example 6 (EX 5)  AIRCRAFT CONTROL PMF SYSTEM (Okada, Kihara, Kobayaski [18])
n=4 m= 2
[~ 0o 1 0 0 ]
5,32, -7 -0.418 -0.12 0.00232
A - 10
-4.62, -9 1 -0.752 -0.0239
10
-0.561 0 -0.3 -0.0174
- —1
T [: 0 -0.172 -0.0238 0
B =
0 7.45,,-6 =7478,576 * 0.00369
EIG(A) = -0.0048 + 0,07611, -0.589 + 0.3131 ,

This is a manufactured plant designed for the control of the system
described in Example 2. We asslgn the same arbitrary set of eigenvalues

A= {-1, -2, -3, -4}. The condition of S 1s here K2[S] = 24,251 and

we cannot expect such wgll-conditioned solutions as in Example 2, Using
Method 3, after two sweeps (approximately 2854 flops) we obtain a solution
with «k,(X) = 18.053, [[F[, = 817.25 and sensitivities {4.18, 9.33,

1.34, 6.77}. The method converges with tolerance 107" to a very slightly
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improved result with KZ(X) = 19.033, "Fﬁ2 = 813,79, and sensitivities
{a.10, 9.32, 1.28, B6.77}.

With Method 0, in Case 2, after Lwo sweeps (approximately 2794 flops)
the solution obtailned has KZ(X] = 18.606, “F“2 = 138Q.8 and sensitivities
{4.14, 9.46, 2.08, 7.23}. This result is improved by further iteration
and the solution converges with tolerance 10-5 after eleven sweeps to a

solution such that k,(X) = 18.974,

[F], = 808.64 and the sensitivities
are {4.19, 9.29, 1.02, 6.76}. “

With Method 1 similar results are obtained (taking approximately
7458 flops) with KZ(X] = 19,021, "FH2 = 934,68 apd sensitivities
{4.21, 9.32, 1.02, 6.78}.

The two following examples were both obtained by random number
generation, and have been designed such that a feedhack matrix F exists
which solves the pole assignment problem and has the property that A + BF
is symmetric and has an orthonormal set of eigenvectors, that is, A + BF

is perfectly conditioned.

Example 7 (EXSYM1) SYMMETRIC 1

[ -3.6240 4.9567 -2 -2.4564, -1 1.385310—2‘_
o 3.3486,,-1 -1.8875 ~8.1251,,-1"  -2.8102, -1
-1.9958,,-1  -1.1335 -2.2033 ~4.5523, -1
1.3784, -1 -4.7140, -1 -3.3228, -1  -4.0605
T By 2.3122,51 3.0761, -1 3.6164, -1 3.3217,4-1 i
8.8339, -1 2.1460, -1 5.6642, -1 5.0153, -1

EIG(A) = -1.0427, -2.7966, -3.6860, -4.2700



Exomple 8 (EXSYM2)
n=>5 m = 2
-1.9437
-2.801710—1
A = -1.0485
- o i
8.308410 1
| -5.888910—1
[ 2.9223, -1
BT - 10
[ -
4.826J1O 1
EIG(A}Y = -0.99653,
A = -1, -1,

SYMMETRIC 2

-7 -5 [y = -
/.54271012 5 2JJB1O 1
-2,4305 3.028410-1
-2.384910- -2,1983
3.388410-1 —1.802110—1
-3.009210-1 —8.851210—3
5 = : -
3.935110 1 8.325710 1
4.368810-1 9.184710-1
-1.2653, -1.8773, -2.7480,
-2, -2, -3.

4,8185 1

10
4.1481, -1

-3.4175

-7.,2736, -1

.5839, -1

.6278

1.280110"1

2.119010—1

Applying Method 2 to the first of these symmetric examples (Example 7),

with decreasing tolerance levels, a solution with K?(X] =

sensitivities

obtained in 23 sweeps (approximately 243831 flops).

computed system matrix

1/c, =
i

1.0000

1.0002

(to five figures), 1 =1, 2, 3, 4,

Comparing the

and

is

A + BF with the known symmetric solution we obtain

maximum component errors of * 1.7810—4 :

Using Method O to solve the same problem we obtain a solution with

KZ(X) = 1.0001

(approximately 24852 flops).

and

1/c:i =

the computed system matrix A + BF

% 1.0810—4 .

1.0000, 1 =1, 2, 3, 4

after 19 sweeps

The maximum component differences between

and the symmetric solution are now




For the second symmatric example (Example 8), Method 3 gives a solution
with K2[X] = 1,1393 after two sweeps (appraoximately 7682 flops). Using
this solution as an initial approximation fér Method 0, a solution with
KZ(X] = 11,0000 and sensitivitiles 1/01 = 1,0000, 1 = 1, 2, 3, 4, 5, is
obtalned with one sweep of the method (a total of approximately 10720 flops).
The component differences between the computed system matrix A + BF and

the known symmetric result are of maximum order 14 .

10”
For Examples 1-6 complete results of the experiments described here

are given in the Appendices. In Appendix I the conditiloning of the

converged solutions and the operation counts are summarized in tabular form.

In Appendix II the computed gain matrices, system matrices and matrices of

eigenvectors are listed for each example.



4.2, Niscussion of Numerical Results

For problems where well-conditioned solutlons may be expected, that
ls, where the conditioning of S, KZ(S), is_reasonably close to unity, ’
the methods all perform well and lead to robust solutions which are
Fenerally very similar. As shown in Table 1a), Methods 2/3 and Method O
give good results after only two sweeps 1in most cases.' Further
iteration gives some improvement, as shown in Tabie 1b). The results of
Method 1 are not, in general, as satisfactory as those of the other
methods, however, even when these procedures are applied for only two
sweeps.

Methods 2/3 do not attempt to minimize the conditioning of X , but
to minimize a measure close to K2(X]. Thus, as expected, the results
of Methods 2/3 have, in general, slightly less good over-all conditioning
than the results of Method 0. Methods 2/3, however, always converge,
and convergence is achieved very quickly, after only a small number of
sweeps.

The performance of Method Q, on the other hand, depends very
heavily on the bases selected for the spaces EB and on the initial
estimates chosen for the eigenvectors, as may be seen by comparing the
results of Method 0, Case 2, with those of Method 0O, Case 1. Method O
does not necessarily converge, and when it does it tends to require rather
a large number of sweeps to achieve the converged result. For systems
where n-m 1is small, Methods 2/3 are also more efficient per sweep than
Method 0O, although this does not appear to be the case where n 1is large

compared to m . (We note that Methods 2/3 and Method 0, Case 2, are

nearly always more efficient than Method 0, Case 1.)
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Toble 1 a) Solutlons aftor b) Solutlons at
two sweoaps. convargence No. of
Mathod K (X) lFl flops K (X) IF swaeps
EX4-A n=3 m=2 e
Al = 13.822 2 7.8098 6.4788 | 743 7.8008 6.4768 3
0 (0) = 1.0000 0(2) || 7.7772 6.4853 | 1278 7.7772 6.4859 2
k(S) = 8.3427 1 7.7772 6.4853 | 3443 7.7772 6.4859 -
EX4-8 n=3 m=2
fal = 13.922 2 3.2830 | 16.541 743 3.2827 | 16.468 4
o (B) = 1.000 0(2) || 3.2732 | 16.461. | 1580 3.2732 | 16.461 2
K(S) = 3.6506 1 3.2732 | 16.461 | 3394 3.2732 | 16.461 -
EX1 n=4 m=3
[A] = 2.9309 2 3.6103 | 28.255 | 1503 3.6103 | 28.255 2
0, (B) = 0.0948| 0(2) || 3.6690 | 25.931 1777 3.6103 | 26.540 10
k(S) = 4.9040 0(1) || 3.7361 | 25.931 5024 3.6103 | 25.543 10
1 6.1623 | 30.284 18371 6.1623 | 30.294 -
EX13-A n=4 m=2
[A} = 12.998 3 4,5589 1.1553 | 3493 4,5355 1.1656 6
o (B) = 3.0652| 0(2) || 3.5834* | 1.4093 | 2902 3.5834* | 1.4083 1*
k(S) = 3.761 o(1) || 3.41s5 1.4003 | 4992 3.2811* | 1.3282 11
1 3.4391 1.5408 | 8668 3.4391 1.5408 -
EX13-B n = 4 m= 2
fa} = 12.998 3 3.2182 1.3911 | 3056 3.2122 1.4039 5
o, (B) = 3.0652 | 0(2) || 3.1974 1.4035 | 3180 3.1974 1.4035 3
k(S) = 3,2934 0(1) || 3.2552 1.4013 | 4384 3.1969 1.3970 34
: 1 6.8,.5 164.92 | 7602 6.8,.5 164.92 -
10 . 10
EX7-A n=4 m=2
[al = 95.975 3 156.03 137.74 | 3364 154.79 133.18 4
o, (B) = 0.4000 | 0(2) || 54.702 108.05 | 2613 36,9571 | 64.943 3(26)+
k(S) = 42.506 0(1) || 46.654 94,717 | 4783 36.804t | 62.675 30 7
1 48.982 43.712 | 7242 48.882 43.712 -
EX7-B- n=4 m=2
A = 95.975 3 1.4579 131.31 | 3056 1.4478 122,18 7
o,(B) = 0.4000 | 0(2) 1.5117 143,26 | 2985 1.4477 121.44 16
k(S) = 1.7855 0(1) || 1.4706 133.75 | 5389 1.4478 121.76 12
1 3.5436 151.74 | 7687 3.5436 151.74 -
EX12-A n =5 m=2
fa} = 0.62810 3 131.83 6.3785 | 9405 113.63 6.1610 6
o, (B) = 0.024%0| 0(2) || 122.70 5.5067 | 4816 88.564 5.1424 27
k(S) = 106.89 ow1) || 137.31 6.8804 | 7844 88.564 5.1424 26
1 226.85 10.845 (13697 226.85 10.845 -
EX12-B n =5 m= 2 -
[|a] = 0.62810 3 87.836 2.700 | 7849 58.131 2.3754 7
o,(B) = 0.02430| o0(2) || 63.301 4.2217 | 5026 51.413 2.1811 25
k(S) = 67.036 0(1) || 69.499 2.6990 | 8426 51,219 2.2489
1 128,12 6.6642 (13930 128.12 6.6642 -
EX5 ne4d m=2
lal = 1.56863 3 19,053 817.25 | 2854 19.033 813.79 5
o (B) = 0.00368| 0(2) 19.686 1388.8 | 2794 18.974 808.64 1
m
k(5) = 24.251 0(1) 19.683 1386.7 | 4046 18.974 808.74 10
1 19.021 934.68 | 7458 19.021 934.68 -

* Best result - process does not canverge.

+ Best ‘result - process converges after (.) sweeps.
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For praohlems whara KZ(S) is small, the conditioning of X
closely reflects the actual aelpenvalue sensitivities, and the condition
numbers K2[X) obtained by all the methods are near to the optimal
bound KZ(S]//H. Tn these examples the components of the gain
matrices obtaeined are also as reasonably small as may be expected, given
A, B and the choice of the assigned eigeqvalue set A.. The upper
bound given by (5) considerably over-estimates ”%"2 , and we find that
"FHZ is generally of the same order of magnitude as "A”z/om(B] , or
smaller. As expected for these problems, small perturbations in the
gain matrices then lead to proportionately small errors in the agsigned
poles.

We conclude that for problems where KZ(S] is small, Methods 2/3
are generally more reliable and efficient than the other methods,
although all the methods can be expected to give good results. For

problems where well-conditioned solutions cannot be achieved, the

methods perform more erratically, and Method O can lead to rather better

solutions than the other procedures, even though it may not be convergent.

Within the limitations of the problem, however, all the methods can
be expected to produce acceptable solutions. On the whole, Method 1
appears to be less reliable than Methods 0 or 2/3 and we recommend the

latter as being generally most satisfactory.
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o ComchiElons

The problem of pole assignment by state feedback for multivariable
control systems is essentially under-determined. We demonstrate here
that the extra degrees of freedom in the problem may be used to determine
a robust, or well-conditioned, solution such as to minimize the sensitivities
of the closed loop poles to perturbations 1in the system and gain matrices.
For such robust solutions it is shown that bounds on the (mean square)
magnitude of the closed loop transient response and on the norm of the
feedback gain matrix are also minimized. A measure of the optimal
conditioning that may be expected for a particular system with a given
set of closed loop poles is described and used to assess the suitability
of the given poles for assignment.

Four novel numerical methods are derived for constructing robust,
well-conditioned solutions to the state feedback pole placement problam.

The methods are applied to a number of practical test examples, and

numerical results are presented and discussed. The tests indicate that
the methods are stable and efficient. In cases where well-conditioned
solutions may be expected, near optimal results are obtained. Introducing

perturbations in the computed gain matrices leads only to correspondingly
small errors in the assigned poles. The methods are all formed on
different principles and exhibit different behaviour, however, and certain
of the procedures may be regarded as more reliable than others.
Generalizations of these methods for degenerate systems and for the
output feedback problem are expected to be easy to develop. Certain
necessary theoretical results have already been derived [7] and numerical
techniques are at present being explored. Extensions to techniques for
modifying the locations of the assigned closed loop poles to improve

further their insensitivity are also being considered.
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/\_I’PFN_DTX_T_ Solutiong at Convergonce : Sensitivitics
Example 1 (GX4)  TEST “/\"7 = 13,922 o, ()
Table 1A
Method 2 Method O Method 1
A1 1 1/C1 3.9202 3.0420 1,0000
A? 1 1/02 1.4030 2.7151 3.9529
Xa 3 ’I/c3 3.9529 3.9528 3.9529
k(S) 8.3427 k(X) 7.8038 7.7772 7.7772
(el 6.4788 6.4859 6.4859
flops 947 1278 3443
sweeps 3 2 =
Table 1B
.Methog_z Method O Method 1
l1 -0.2 1/C1 1.5898 1.3420 1.0000
12 -0.2 1/02 -1.4122 1.5494 1.7893
la -10 1/03 1.7883 1.7893 1.7893
r(S) 3.6506 k (X) 3.2827 3.2732- 3.2732
IF1, 16.469 16.461 16.461
flops 1273 1580 3394
sweeps 4 2 o



Example 2 (EX1) AIRCRAFT CONTROL : HA[I2 = 2.9300 ¢ _(B) = 0.09400
Table 2
" Method 2 Method O (2) Method O (1) Method 1
X1 -1 1/01 1.9437 1.8437 1.9437 3.1623
l2 -2 1/02 1.0000 1.0000 1.0000 3.1623
AB -3 1/03 1.0000 1;0000 1.0000 1.0000
14 -4 1/C4 1.9437 1.9436 1.9437 1.0000
KZ(S] 4.9040 k(X) 3.6103 3.6103 3.6103 6.1623
(it 28,255 26.540 25.543 30.294
flops 1749 12083 22714 18371
sweeps 3 10 10 -
Table 2-E
Errors
Method 2 Methoq_g (2) ﬂethod 0 (1) Method 1
M Abs. % Abs. % Abs. % Abs. %
-1 0.0004 0.04 0.0003‘ 0.03 0.0005 0.05 0.0027 0.27
-2 0.0012 0.06 0.0033 0.17 0.0023 . 0.11 0.0028 G.14
-3 0.0040 0.13 0.0000 0.00 0.0084 0.28 0.0013 0.04
-4 0.0012 0.03 0.0006 0.02 0.0008 0.02 0.0042 0.11




Table 2W  Method 2 WE = <5, 25, 5, 1>

Errors .
'l/ci Abs. %
1.0000 0.0003 0.03 K (X) 26.038
1.0000 0.0012 0.086 IF | 12.584
13.038 0.0008 0.03 flops 1500
13.038 0.0015 0.04 sweeps 2




Exampla 3 (EX13) CHEMICAL REACTOR : HARZ = 12.998 om(B] = 3,0652
Table 3A
Method 3 Mijggillﬁg] meth99_0[1] Nethoq_l

A1 -0.2 1/c1 2.,3747 1.8565 1.6904 1.4153
A2 ~0.5 1/02 1.0739 1.4242 1.5331 1.8358
AS -5,0566.. 1/C3 2.3590 1.5155 1.4918 1.4073
X4 -8,66549. 1/(% 1.0898 1.7244 1.7541 1.8440
k(S) 3.7610 k (X) 4,5355 3.5834 3.2811 3.4391

7l 1.1656 1.4083 1.3292 1.5408

flops 7587 2301 27962 8668

sweeps 6 1* 11* =

Table 3B
Method 3  Method 0(2) Method 0(1} Method 1

X1 -0.2 1/(:1 1.7515 1.7435 1.7400 1.5103
lz -0.5 1/02 1.0813 1.0802 1.0975 1.5103
Aa -8.6659.. 1/C3 1.6653 1.1128 1.0703 3.4105
l4 -8.6659,. ’I/C4 1.2675 1.7273 1.7538 3.4105
k(%) 3.2934 k (X) 3.2122 3.1974 3.1969 8.8105

Ll 1.4039 1.4035 1.3970 164.92

flops 5212 5166 61064 7602

sweeps 5 3 34 -
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-5,.05886..

-8.66549,.

-8.6659..

-8.6659,.

Method 3
Abs. %
0.0005 0.25
N0.0N12  0.24
0.0015  0.03
nN.0N28  0.03
Methoq_g
0.0019  0.95
0.0013 0.26
0.0028 0.03
0.0013 0.02

Tahle 3A-T

Errors

Mothod 0(2)
Abs. %
N.0056

0.0020 0.40
0.N002

D.0063

Table 3B-E

Errors

Methaod 0(2)

0.0020 1.0
0.0004 0.08
0.0010 0.01
0.0029 0.03

Abs .

0.0126
0.0034
0.0030

0.0064

Method O

Abs.
0.0086
0.0014
0.0017

0.0107

By

6.3

.69

0.06

0.07

(1)

o 1

0.0025

0.0034

0.0026

0.07

0.03

ﬂpthodﬁl

12.1

3.9

.0017



_1 -U

-3.0

-64.795.

Method 3
Abs.. %
0.0081 0.81
0.0080 0.40
0.0012 0.04
0.0392 0.98
Method 3
Abs. i
0.0018 1.8
0.0002 0.02
0.0253 0.84
0.002 0.003

Table 4A-E

Errors

Method 0(2] Method D(1)
Abs. % Abs. %
0.0024 0.24 0.0080 0.80
0.0180 0.90 0.0017 0.01
0.0046 0.15 D.0254 0.84
0.0308 0.77 0.0076 0.19
Table 4B-E
Errors

Method 0(2)

Method 0(1)

0.0034 3.4 0.0032 3.2

0.0002 0.02 0.0004 0.04
0.0137 0.46 0.0005 0.02
0.018 0.02 0.002 0.004

BRIk

Abs, 3

0.0411 4.1

0.0674 3.3

0.0189 0.63

0.0316 0.79

Method 1
Abs. %
+ 0.00007 0.07

0.0157 1.6
0.0092 0.31

0.0314 0.05



Fxample 4 (FX7)  NUCLEAR ROCKET FNGTNE ”A”7 = 95,975 0 (B) = 0.4
Table 4A
Method 3 Method 0(2) Method 0(1) Method 1

M -1 e, 1.6160 18.457 18.035 24,243
A, -2 /e, 77.395 2.9675 3.3544 24,307
A -3 1/0, 77 .392 18,483 18,414 7.8961
A, -4 /¢, 2.3567 2.7602 3.0060 7.8198
k(S) 42.506 | k(X) 154,79 36.957 36.904 48.982

IF 133.18 64.943 62.675 43,712

flops 4972 4955 9293 7242

sweeps 4 S ek =

Table 4B
Method 3 Method 0(2) Method 0(1) Method 1

A -0.1 e, 1.0002 1.0002 1.0002 1.0070
A -1.0 1/c, 1.0692 1.0692 1.0692 1.2279
Ay -3.0 /e, 1.0001 1.0001 1.0001 1.8163
A, -64.795 | 1/c, 1.0692 1.0692 1.0692 1.8077
k(S) 1.7655 | k(X) 1.4478 1.4477 1.4478 3.5436

e 122,16 121.44 121.76 151.74

flops 7947 21586 29036 7687

sweeps 7 16 12 -




fFxamplo

5 (EX12)

DRUM BOILER : |

Al, = 0.62810

Om(B) = 0,02490

feh e
Method 3 Mothod 0(2) Method 0(1)  Method 1

X, -0.07 1/¢, 26,917 25.603 25,683 24,553
A, -0.02 /¢, 26.617 26.346 26.346 92,136
A -0.03 /e, 50.554 41,428 41,428 99,274
A, -0.04 1/¢c, 37,070 23.911 23.811 42,388
Mg -0.05 1/c, 22.078 23,467 23.467 35.728
k(S)| 106.89 K (X) 113.63 88.564 86,564 226.85

i) 6.1610 5.1424 |  5.1424 10.845

flops 18569 61722 101822 13697

sweeps 6 ! 27 26 -

Table 12B
Method 3 Method 0(2) Method 0(1) Method 1

A, -0.01 1¢, 20,271 19,748 19.777 19.340
A, -0.02 1/c, 18.191 17.400 17.250 48,837
Ay -0.03 /¢, 26.467 24.675 24,700 55,824
A -0.05 1/¢c, 19.460 16,227 16.075 19.351
Ag -0.08 1/c, 11.189 11.664 11.755 15.978
k(S) 67,036 | Kk (X) 58.131 51.413 51.219 128,12

= 2.3754 2.181 2.2469 6.6642

flops 22025 55930 36782 13930

sweeps 7 25 5* -
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Example B (EX5)  AIRCRAFT CONTROL PMF SYSTEM :
Ial, = 1.5663 o _(B) = 0.00369
Table 5
Method 3 Method 0(2) Method 0(1) Method 1

A, -1 /¢, 4.1839 4,1875 4.1876 4,2079
A, -2 /¢, 8.3192 9,2938 9,2938 9.3212
A -3 1/c, 1.2775 1.0199 1.0193 1.0181
A, -4 e, 6.7676 6.7610 6.7609 6.7911
k(S) 24,251| k (X) 19.033 18.974 18,974 19.021

I 813.79 808.64 808.74 934.68

flops 5011 16634 22231 7534

sweeps 5 1M1 10 -
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Exanple 3 (£X.13)  CHEMICAL REACTOR
A. A = {-0.2, -0.5, -5.0566.., -8.66560..}
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Example 4 (EX.7)  NUCLEAR ROCKLT ENGINE

A. A = {“1! ”2; -'Br —4}
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Cxample 5 (EX.12)  DRUM BOILER
A A = {-0.01, -0.02, -0.03, -0.04, -D.05}
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(3. A = {-0.01, -0.02, -0.03, -0.05, -0.06)
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Example G (EX.5) AIRCRAFT CONTROL PMF SYSTEM
A = {'1; -21 -3: _4}
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APPENDIX IIT Improved Methods for Steps A/0 and F

—————

We consider here new methods for implementing Steps A/0 and F of
the numerical algorithms described in Section 3.0-3,2. The methods derive
from the following theorem [[7], [9].
Theorem A Given A = diag {XJ} and X , non-singular, then 3 F , .
a solution to (3) if and only if | ' '

T

Uy (A - XAX ') =0, (II1.1)
where
B=[U,U]|:E]VT. ; (III.2)
o 1
0
Then F 1is given explicitly by
F ey u; xax - Ay (II1.3)

It follows that if x, 1is an eigenvector of A + BF corresponding to

3

the assigned eigenvalue AJ , then, since UI(AX - XA} = 0, we must

1) X, =0, Hence x must belong to the m-dimensional

J 3 =]
\T
null space Sj = N [U1[A . AJIi] .

have UI(A - A

The basic steps of the numerical algorithm now become

Step A/O: Compute the S.V.D. of matrix B, given by (III.3), to

determine Uo’ U1, ¥ and V, and construct orthonormal bases,
A
comprised by the columns of matrices Sj’ Sj' for the space
A
Sj = N [9: (A - AJI{] and its complement Sj for AJEA, J=1,2, ..n .

Step X: As before.

Step F: Find the matrix M = A + BF by solving MX = XA and compute

F explicitly from F = vy~ UZ M - A).



A
In Step A/0 construction of the bases for S, and $. can

------- 3 3

agaln be accomplished by S.V.0. (Case 1) or QR (Case 2) decompoesitions,
as follows.
Case 1 (SV0) We determine the singular value decomposition of

UI(A - AJI] in the form

T A T
Ug(A = A1) = 2, [T, 01 IS, 8,7,

A ,
and then the columns of S,, S, give the required orthonormal bases.

J J
Case 2 (QR) We determine the QR decomposition of [UI (A - AjI]JT

partitioned as
A
T T
U,(A - 2,1 = [S,, S, R v
(o - yo)T =i, J][Dj:l
A

Then S Sj are the required matrices.

JJ
In Step F the matrix M = XAX_1 is constructed by solving the
. T.T T T ) . ;
equation X' M = (XA) for M using a direct L-U decomposition
(or Gaussian elimination) method. This process is stable for well-
conditioned matrix X . The computation of F is then achieved by

straightforward matrix multiplication.

The revised algorithm is considerably more efficient than the
, A
original. In Step A/0 the orthonormal bases for S, and S, are

J J

determined directly using only one matrix decomposition, and there is no

-~ ~

need to compute, or store, the matrices Vj’ SJ or Vj . Furthermore,
for 3 =1, 2, ..n, the decompositions are now applied to matrices
of order (n-m)x n rather than order (m*n) x n , which considerably

decreases the total work. In Step F the computational work 1s slightly

increased due to the extra matrix multiplication involved; this additional

work 1s insignificant, however, in comparison with the savings made in

Step A/0.
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Results obtained by the revised methods for the test examples of
Section 4. are essentlally the same as the results achieved by the origilnal
procedures. For Methods 2/3 and 1 the cha?ge of basis for Sj has
no significant effect. For Method O, the new basis leads to different
initial approximations and, as would be expected, to somewhat different
solutions. The overall performance of the methods remains very
satisfactory, and for systems where K2(S]‘ is small, the methods all

produce robust, well-conditioned solutions to the pole assignment

problem. Numerical results are published elsewhere [8].
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APPCNDIX VI Modiflcatlons for complex elgenvalues.

VI.1 Modificatlions The numerical methods described in Section 3.0 take

a modified form in the case whers the assigned eigenvalue set A contains
complex conjugate pailrs Aj and Xj . The baslc theory remains

essentially the same, but the subspaces S, and S, from which the

J J

corresponding eigenvectors ﬁj and Za. are chosen now have complex
bases. Using complex arithmetic the two steps Step A/0 and Step F of
the numerical algorithm remain the same. The resulting matrix F is in
complex form, then, but the imaginary pérts of the components of F are
negligible within rounding error. With slight modifications to Step F,
the gain matrix F may be calculated in real arithmetic only.

The principle modificétions occur in Step X. We have implemented such

alterations only for Methods 2/3 and Method O. For Method O the

changes are fairly straightforward and we describe these first.

VI.1.1. Method O. The number p of complex pairs of poles to be
assigned is specified, and it is assumed that, in the given set A of

eigenvalues, the complex pairs occur first. An initial set of vectors

fﬂ' J=1,2,..n, is chosen such that §2j = 52j—1 and §2j-1 [ SZj—1
for j <p, and x, e S, for >2p . We note that S., =S, ., for
e X5 €% = 25~ P25-1

j < 2p., and the basis for only one of the subspaces corresponding to a

complex eigenvalue pair needs to be computed. We denote the basis

obtained for this space by S = SR + 1 SI and we may store

231 J J
R

SJ , S§ separately for j < p . To implement Method O we simply compute’

the vector y,, , orthogenal to the current space < x., 1= 231,

Xpg-1 = < X4

as previously, and replace old vector x

X941 by thg projection of 12j—1

into the subspace and old vector x by the conjugate of this

SZJ—1 =23
projection, for j = 1,2,..p . For j = 2p+1, 2p+2,...n, the procedure
is carried on as described in Section 3.3.2. The process is repeated 1in

sweeps through the matrix X until changes in the conditioning K?(X] aras



less than the tolerance given.

VI.1.2 Methods 2/33 For these methods we also assume that the number

p of complex pairs of poles in the set A 1s specifled, and that these

A

pairs are given by Ays 4> Ap501, 3 =1,2,..p . The objective of

~

Methods 2/3 is to obtain a set of real orthonormal vectors éﬁ , 3 =12,..n,
such that the projection of these vectors 1lnto the subspaces Sj produces

a well-conditioned set of eigenvectors x corresponding to the assigned

=3

elgenvalues. In the case of complex conjugate poles it is necessary

to modify the projection procedure to produce complex conjugate eigenvectors,

-~

and also to modify the measure which 1s used to determine the set X, .

- R N I
For j < we let x,, = z, and x,, = Z, represent the real and
J==E X2j-1 7 5 X3 75 O
imaginary parts of a vector Zj , and define 52j~1 to be the projection

of z into

Z SZj—1 and

§2j = géj—1 . We require Ej to be close to
space SZj—1 for j £ p and vector gj to be close to sbace Sj for
Jj > 2p . Essentially now we rotate the vectors éﬁ so that the planes
corresponding to complex pairs and the vectors corresponding to reals
remain orthogonal to each other and close to the appropriate subspaces
(of dimensions 2m énd m , respectively). The measure 6 to be

minimized (Method 2) now takes the form

p A A n A o
A H 2 H — 2 T 2
= 3 W, S S ) L w IS, x,
v 5 - 1 i (" 2j - Z_j "2 + " 2j EJ "2) & ” ->i\] ]i 2

s=2prt 39
A AR AI
However, since S = 5, + 1S and
231 J J
A A AR A
S.,. =8 = 5, - 1S5 for < p, we may write
25 7 S23-1 T 5y T 1S I=p y

A > w™ e R OR, A imz AT RLR T
! (“523-1 2,03 + sy, gju%>= Isy 2y + sy zZls + Isy Z -8y =05

The rotations applied to x,, J = 1,2,..n are thus chosen to minimize

-]
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v >
x

a P 30 VN LT S
v Jiiw;i(“% Xa3-1 1 2y —2J”2 cl8y x40 78y 2yl5

n A
T 42
+ I e s, x
Jagpey 3 sy x4l

The complementary measure v to be maximized (Method 3) takes the

corresponding form

P R'™ oo s RY= 2)
° T g (1S Sggen + 57 3 193 sy = 5 503
n
" .2
+ I ow]ls, x| .
j=2p+1 j j_d 2

The rotations to be applied are now rather more complicated to
determine, but explicit expressions for the sines and cosines of the
optimal rotation angles have been derived, using arguments similar to

those given in Section 3.3.1. Eight different cases are distinguished.

~

For rotations between vectors 5j (i > 2p) corresponding to real

eigenvectors, the rotations remain the same as those derived in Section 3.3.1.

~ ~

No rotations are applied between the vectors 59j-1 and §2j (j < p)

corresponding to the real and imaginary parts of a complex pair of
eigenvectors. The remaining cases involve rotations between vectors

5j corresponding to reals and to the real and/or imaginary parts of

" complex pairs.

VI.2 Implementation. The procedures for the complex cases have been
implemented using MATLLAB, and executive flles for carrying out the

modified steps of the algorithm are availlable.
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VI.3 Numerical Results. The methods perform very much as in the casae

of real eigenvalus assignment., Method 0 does not necessarily converge,
and the results depend heavlily upon the initisal vectors chosen. The
condition numbers KZ(X) tend to oscillate from sweep to sweep, but for
examples whers KZ(S] is small,good results are generally obtained. The
amount ‘of work per sweep is considerably increased, however, since all

the decompositions required must be computed in cdmplex arithmetic.

For Methods 2/3 the majority of the computation is carried out in
real arithmetic and, although some more complicated logical decisions are
required, the methods perform satisfactorily without a large increase in
work. These methods are always convergent, and for examples where
KZ[S] is small the methods produce well-conditioned solutions to the

pole assignment problem.



