THE UNIVERSITY OF READING

Grid Adaptation for 1-D Unsteady Problems
by

P. Garcia-Navarro

Numerical Analysis Report 9/95

DEPARTMENT OF MATHEMATICS



Grid adaptation for 1D unsteady problems

P. Garcia-Navarro



Abstract

One way to improve the results of the discretization of time-dependent
partial differential equations is the redistribution of the grid according to the solution
as it evolves. Three criteria are used to produce adapted grids in this report, and
two different approaches are presented for the combining of the grid adaption and the

solution of the differential equation. Only one dimensional scalar cases are considered.



1 Introduction

The work reported here was carried out with the purpose of obtaining a reliable grid
adaptation method for unsteady problems involving sharp gradients. The aim of the
work is the local refinement of a given grid by redistribution of the initial nodes
according to a given criterion. Some work has been done in the past concerning re-
gridding in steady problems or in unsteady problems tending to the steady state. The
requirement of a grid adaptation in an advection problem, that is, to be a different
shape every time step, imposes a new difficulty. In order to reduce the complexity of
the calculation, only one-dimensional cases are considered and, to focus the attention

on the basic ideas, the techniques are applied to scalar equations.

Two main types of grid adaptation algorithms can be distinguished
depending on the use or not of a grid celerity in the process of resolution. The first

group can be described as formed every time step by a sequence of

1. Updating the solution over At using a suitable numerical scheme.

2. Nodal displacement calculation according to a given criterion of equidistri-

bution.
3. Grid updating

4. Redefinition of the solution on the new grid by means of a spatial interpo-

lation.

This procedure has already proved to work well for applications involv-
ing the solution of time dependent equations for problems of evolution to the steady
state. There are nevertheless doubts about, first, the convenience of using any inter-
polation, due to the risk of losing conservation, and second, the quality of the results
obtained when using linear interpolation. The description interpolation methods will

be used in what follows.

A second family of techniques is characterized by the explicit appearence
of the grid celerity in the mathematical formulation. Interpolation is avoided by solv-

ing again on the unmodified grid with advection velocities corrected by the value of



the grid celerity, that is, solving the problem relative to a grid which is not static.

The basic algorithm every time step can be itemized as

1. Updating of the solution over At using a suitable numerical scheme giving

predicted values.

2. Nodal displacement calculation according to a given criterion of equidistri-

bution from the predicted values of the variable.
3. Grid celerity estimation &
4. Recalculation of the solution over At using the celerity relative to the grid.

5. Grid updating.

These methods will be called zdot methods. The present report is con-
cerned with the application and performance of the latter non interpolative procedure.
There is freedom in the choice of the numerical scheme as well as in the node adap-
tation criterion. Several equidistribution algorithms will be presented. Explicit and
implicit approaches will be implemented both for the numerical advection scheme and
for the displacement calculation. The particular cases considered will be described

and the results obtained will be shown and discussed in the next sections.

1.1 Test Problems

Two scalar equations have been chosen to test the performance of the grid adaptation

techniques, the linear advection equation

ou ou B

S —~ =0 1.1
ot “ou (L)
and the non linear Burgers’ equation
ou ou
— —=0 1.2
ot * Yor ~ (12)
with the initial condition given by the curve
u(z) = Uy + ugtanh(a(z. — x)) (1.3)

U = 0.5(uy + uy)



Ug = 0.5(11,[ . ur)

where u; and u, are respectively the left and right values of the monoclinal curve.
The value of o determines the steepness of the slope and z. fixes the initial position

of the point with ordinate u,,.

2 Grid adaptation criteria

Three criteria have been used to determine the grid movement. These are based on
equidistribution of the function arclenght (EAL), the function first derivative (EF)

and the function second derivative (E2D).

2.1 EAL distribution

With reference to Fig.1, given a grid {z;,7 = 1,imax} and the discrete definition of a

function {u;}, two angles 0g, 61, can be associated to every internal node i, satisfying

T; = Tl Tl o= T
Ti %l . cosfpEaELIS

coslr, =
ASL k ASR

where

Asy = \/(xi = %i1)? + (us — Ui)?

Asg = \/($i+1 — ;)% + (Uig1 — u;)?

are the left and right function arclength increments.

The equal arclength distribution can be stated as
As L= As R

for every internal node and can be rewritten

Ti— Ti-1 _ Tit1l — Li

- 2.1
costy, cosOp (2.1)

so that the following coupled system of equations results

Ai-’Ei_l + Biilii + CiCEH.l = Dz



The matrix of the system is tridiagonal and the system can be written

(B, ¢ N[ ox ) ( D, )
Ay By Cy X, 0
A3 By Cj X3 B 0
An-1 By-1 Oy Xn-1 0

\ av By J\ xu ) \by)

The elements of the matrix are

1 1 1 1
B —

Ai=—

= |
cosfr, ’ cosl;  cosfg ' " cosfp

for the interior points {i = 2, N — 1} whereas for the boundary points,

Ay=0, By=1,

D, and D, coming from the fixed positions of the extremes.

(2.2)

The system can be solved by means of a Thomas method for instance. An iterative

procedure must be set up since the coefficients depend on the positions of the grid.

Alternatively, rather than completely solve (2.2) and iterate on cosfl, we can iterate for

the solution of (2.2) (by, say, Jacobi’s method), updating cosf at each iteration. This

is the procedure used in section 3 below. An example of the result after convergence

to a fixed profile with @ = 10 is shown in Fig.2.

2.2 EF distribution

On the other hand, the equidistribution of the first derivative tends to concentrate grid

points in the regions of strong gradient. It can be achieved starting from the previous

description and imposing instead the equality of function increments on both sides of

every internal node, i.e.

Aur, = Aug

or

U; — Uj—1 = Ui41 — U4



We then have
(ui ~— u;_1) (Uir1 — us)
(@i — xi1) (Tig1 — z4)

which makes possible the construction of a new tridiagonal system

(@i — i) = (Ti+1 — i), (2.3)

Aizi1 + Bixi + Cixipy = D;
where the coefficients are now
A; = —tanfy , B;=tanf +tanfr , C; = —tanfp
with

(us — ui—1)
(xi - wi—1)

(Ui+1 - Uz‘)
($i+1 - wi)

This criterion is less robust in the sense that it fails to converge when

tanfy, = , tanfp =

faced with steep gradients or very flat regions. The iterative solution of the system

leads to a grid redistribution like the one plotted on Fig.3 for o = 5.

2.3 E2D distribution

Now consider the third kind of equidistribution. There are several ways to formulate
a grid adaptation based on the equidistribution of the second derivative. Some of
them are presented here.

Along the lines of the two previous subsections, it can be required that
AzuL = Azu R

for every internal node. The next question is to decide the actual representation of

A?u. One possibility which presents itself is
AZ’U,L = (A2’U,z + Azui_l)

A2’U,R =

N~ N

(A2'U/i + A2Ui+1).
Then, using
A%uiy =t — 2uipy + U = (Uipe — Uipr) — (Uipr — )

Aui_y = u; — 2uimy + Uimp = (U — ui_1) — (Uiey — Uia)



a pentadiagonal system of equations can be written whose typical equation is

Aiti—2 + Bizi1 + Ci%i + DiTit1 + Eixige = F;

with
A; = tanby,
B; = —(tanfr;, + tanfy,)
C; = tanfgr — tanby,
D; = —(tanfg + tanbrgr)
E; = tanfgp.
where

(Ui—1 - Ui—2) (Ui+2 - Ui+1)
(xi—l - xi—2) ($i+2 - $i+1)

The more complicated algebraic treatment required by the pentadiagonal system sug-

tanBLL = y tan@RR =

gested seeking alternative formulations leading to tridiagonal systems.

With reference to Fig.1 again, it is possible to define a new weighting

parameter related to the second derivative of the function as

Az Az

w = =

1
As' \/(Ax)2 + (Aug)? B \/(71 + (Ugs)?

The procedure used to enforce equal arc length distribution is repeated now. For

every node the equidistribution

' !
Asy, = Asy
can be imposed, which can be rewritten

(wi - $i—1) _ (-Ti+1 - mi)
wr, WRr k

so that it is possible to again have the system
Aixiq + Bixy + Ciwipy = Dy

where the coeflicients are



Since w depends on the discrete second derivative, there is still some freedom in this

choice. We have tried two approaches. The first one defines

%((Ui+1—ui) (i —ui_g) )

(u )L _ 2 @ip—m)  (wiei—wioa)
o Ty — i1
l(Eusm—um) _ (u-.-—w-s_uj)
2\ (wipa—Tiq1) (zi—mi—1)
Ugr )R = 2.4
(e e L 2.4)

Fig.4 shows the adaptation to a shape given by this criterion.

The second, taken from Blom et al., is

(i —wiy)  (wi—u;_g)

(u )L _ (i) (mi—wioa)
Ty — Ti—1
(wiga—u;) _ (wig1—ui_1)
(umm)R = (zi4s i) (s oic) (25)

Tit1 — Ty

Fig.5 is the result of the adaptation based on this second approach.

Better solutions, in the sense of more flexible algorithms, are obtained
by means of a combination of the arc length and second derivative weightings. In

practice the weight

Az
\/(A$)2 + B1(Au)? + B2(Aug)?

Wy, =

has been used, whre 3; and (3, are parameters to be chosen. Figs. 6 and 7 result from
this approach, with the discrete second derivative (2.4) and parameters 8; = 1,3 =
0.2 and B; = 0.2, B2 = 1, respectively.

Similarly, Figs. 8 and 9 are plots of the combinations 8; = 1, 8 = 0.2
and 3; = 0.2, B2 = 1 when using the discretization (2.5) for the term uz.

3 Explicit approach

We now combine the grid adaptation with the solution of the test equations. The up-
dating numerical scheme used in this case was the first order upwind explicit scheme.
For the nodal displacements, two criteria have been applied, the equidistribution of

arclength (EAL) and the equidistribution of the first derivative of the variable (EF).
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The celerity of the grid in this case has been explicitly defined from the value of the
nodal displacement divided by the elapsed time. The value of every node displacement

is explicitly calculated as
Azsi

A A
2ex t 2cn)

xI; =

in the case of equal arc length distribution, and as

A2u,~

A=
¢ 2(tanbg + tanby)

in the case of equidistribution of the first derivative (see Baines). In the limit of
iterations, i.e. after repeated use of these expressions to convergence, this two explicit
expressions give the same result as the implicit equations previously presented in
(2.1) and (2.3). The algorithm used is essentially the sequence suggested for the xdot
methods in the Introduction.

A first result is presented corresponding to z. = L/2, o = 10, w3 =1
and u, = —1 in Burgers’ equation. It is an example of pure compression and no
advection. From the smooth initial curve, the solution steepens tending to a step like
discontinuity between the left and right values in the initial position. Figs. 10 to 13
show the comparison of the results given by the interpolation and zdot methods using
EAL and EF respectively.

The second test was made with the linear advection equation in order to
explore the behaviour of the grid adaptation techniques in a pure advection situation.
In this case, the numerical values are z. = L/4, o = 10, w; = 2 and u, = 1. Figs. 14
to 17 show the results. The curves in every plot represent the solution on the adaptive
grid (moving) and the simply advected solution on a fixed grid (fixed).

A few tests were also done to show the convenience of iterating in the
zdot method. The iteration involves repeating steps 2-4 in order to get a better fitting
of the grid to the solution corresponding to the current time step. The results are not
encouraging. Some of them are shown in Fig. 18 for the same test case as in Figs.
14-17. The equidistribution of arclength was carried out with iterations up to 20.

A third case is represented in Figs. 19 and 20. It is the nonlinear
Burgers’ equation with parameters z, = L/4, a = 10, w; = 2 and u, = 1. Comparison
of the performances of the interpolation and the zdot methods can be seen on them.

The zdot methods seem to work better for pure compression problems,



that is, for time dependent problems with no advection. In order to exploit the
possible advantages offered by each technique, a special strategy was tested. It consists
of solving a general advection equation in two steps, splitting the advection from the

compression. For an equation like

ou Of

at T o =0 b
which can be written

ou ou

with a = f, not constant in general, and initial conditions of the type (1.3) involving

two states u; and w,, the following sequence is followed:

1. Definition of a constant average advection speed a.

__ f(L) - f(R)
6= w(D) —u(R) (3.3)

2. Updating over one At of the linear advection equation

% + ag—z =0 (3.4)
by semi-lagrangian advection. In the first time step, it is possible to use the
exact solution of (1.7). In the subsequent time steps, spatial interpolation
is necesary. Linear interpolation and Euler time integration were used in

the present report.

3. Application of the xdot method with equidistribution of the arclength to

the equation

Ou ou

E"‘(a—a)a—x = 0. (3'5)

Results of this approach are shown in Fig. 21. It shows the performance of the
method for a slope o = 5 of the initial profile. It is possible to introduce an iterative
regridding step between 2 and 3 so that a better fitted grid is adapted to the advected
solution is found before going to the xdot part. However, the method has turned out

to be too diffusive as the plots make clear.
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4 Implicit adaptation to advection

An implicit treatment of the problem can be made by coupling the implicit require-
ment of equidistribution of a property with an implicit discretization of the advection

in a moving frame. This can be posed as the sequence

1. Adaptation of the grid to the initial conditions given a criterion of equidis-

tribution using the implicit approach of section 2.

2. Updating of the solution over At using the celerity relative to the grid and

a suitable implicit numerical scheme.

3. Implicit grid re-adaptation from the predicted values of the variable.

The advection part can be formulated as
M(iL‘n+1 xn un)un+1 S

and the grid adaptation as

N(u™t!, z")x"t! = s.

They are a pair of coupled systems of equations. Their solution can be achieved
through an iterative process of repetition of steps 2-3 in which, at every time step,

the solution from

M[(z" )P, 2™, u") (0" TP = (4.1)

is used to work out the coefficients of the system
N[(u")P, 2" (x" )P+ =5 (4.2)

and the solution to the latter used to improve the coefficients of the former until
convergence is achieved.

Two points must be mentioned here. First, in order to start the iteration we shall
need

n+1)0 — mn

p=0:(z

where 2" stands for the best fitted grid to the initial conditions. Second, in order to
find a converged solution the solutions to (4.1) and (4.2) are alternated, but seeking

a convergence in the grid positions first. Then, convergence on the solution to the

11



function is required on those grid positions. The grid convergence criterion is usually

more relaxed than that for (4.1).

Results from this implicit version of the grid adaptation to a pure (lin-
ear) advection problem are presented in Figs. 22, 23 and 24. In all of them the
advection with adaptation is compared both to the exact solution and to the numer-
ical solution given by the advection on the initial fixed grid. Fig. 22 displays EAL
distribution for a slope a = 10 using CF'L = 1 in this case. Fig. 23 contains results
from EF distribution for a smoother profile (o« = 5) since convergence for steeper
functions could not be achieved. Fig. 24 represents advection on a grid adapted
according to the tridiagonal version of the 2nd derivative equidistribution using the

first discretization and values §; = 1, G, = 0.1.

No results are presented from the application of the second type of
E2D discretization since they were not good. Unlike in this study, Blom et al. use in
their paper different strategies for the initial best grid adaptation and the subsequent
redistributions. That might be another idea to try in future work.

As a last example, the adaptation to an unsteady nonlinear advection
is displayed in Fig. 25. It corresponds to a test made with Burgers’ equation and
initial conditions

up,=1 if z; <z =0.5
U =4 up=0 if z; >xg=1.5

ax; +b otherwise

The coefficients in the slope are

Up — Ur Uy — UR
oa=——— , b=u, — ——x¢

T, — TR T, — TR

The exact solution is a steepening of the slope in time until a sharp
step shock is formed at t= ¢, = £z — 1 in this case.
The results in Fig. 25 compare the solution on the EAL based adapted grid to the

exact solution and to the one corresponding to a fixed grid.

12



5 Conclusions

The results of this study are not discouraging. The implicit treatment seems to be the
one to follow for further work. Among the criteria tested to determine the regridding,
the equal arc length distribution seems to be the more robust.

More work is necessary to get insight in the reasons for the weakness of the second
derivative equidistribution in order to determine the correct treatment that would
ensure convergence and avoid node overtaking.

Future work will be devoted to the extension to systems of equations in order to check

the feasibility of this kind of approach when applied to practical advection problems.
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2
Figure 10: Equal arc length distribution. Explicit xdot. Pure compression.
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Figure 19: Equal arc length distribution. Explicit xdot. Nonlinear advection.
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Figure 20: Equal arc length distribution. Interpolation. Nonlinear advection.

27



CFL=0.9 - 0 iter
! moving —o—
i ! i fixed -+--

=3
c
S
§ A
=
L

0 0.5 1 15 2

Distance x
CFL=0.9 - 20 iter
25 T
moving -o—
fixed —+-
2 et
=]
5
" 1.5
(=
=]
I
1 -
0 0.5 1.5 2

1
Distance x

Figure 21: Equal arc length distribution. Linear advection. o = 5. Upper:

iterations. Lower: 20 iterations
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Figure 22: Equal arc length distribution. Linear advection. Implicit scheme. Upper:

1 time step. Lower: 10 time steps
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Figure 23: Equal 1st derivative distribution.

Upper: 1 time step. Lower: 10 time steps
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Figure 24: Equal 2nd derivative distribution. Linear advection. Implicit scheme with

first approach. Upper: 30 time steps, cfl=1. Lower: 15 time steps cfl=2.
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Figure 25: Equal arc length distribution. Non linear problem. Implicit scheme.

Upper: Cfl=1. Lower: Cfl=2
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