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0O Abstract

A steady channel flow is considered in which the fluid discharges from the chan-
nel at a rate dependent on its local depth and attains a prescribed state at the
downstream end. Practical examples of such flows are provided by side-weirs and
racks. Using the standard assumptions of hydraulic theory, overall properties of
the flow are determined for a general discharge law. The additional quantitative
detail available for a specific law, including a classification diagram which sum-
marises the available flow types, is illustrated for the side-weir. The analysis is
supplemented by a robust, and accurate, numerical method capable of performing
the required backwater calculations for sub-, super- and transcritical flows. The

numerical technique can extend the applications to include tapering channels and

friction effects.



1 Introduction

The purpose of this paper is to describe an investigation of the steady flow of
water in straight channels with a decreasing discharge. The situation envisaged
can be achieved in practice, for example, by a side-weir, consisting of a low sill
on one or both sides of the channel, or a grating or rack in the channel bed.

Background information regarding these particular practical applications can be

found in Chow [2] and Henderson [4].

Using the standard assumptions of channel flow and measuring the

coordinate z along the channel, the rate of change of the water depth y(z) satisfies

So— Sy — aQQ1/gA* + aF*yBI/B

yl = (1 —an) (11)

Chow [2] gives this formula in the case where the breadth, B(z), of the channel
is a constant. Here Sy and Sy respectively denote the bed-slope and the friction
slope and A = By is the cross-sectional wetted area; ¢ is the acceleration due
to gravity. We shall assume that flow takes place in the positive z direction, so
that the components of velocity and massflow in that direction, v and Q = uA re-

spectively, take non-negative values. The Froude number F' = u/, /gy in this case.

The parameter a > 0 is used to model energy loss. For the purposes
of analysing the flow we shall take a = 1, but this does not represent a restriction
on the theoretical approach or on the numerical method to be presented later.

The friction slope is typified by Manning’s formula,



S; = ATYPQM2(2y + B)/3, (1.2)

where n is a given constant. It is generally considered that friction is not too
important in the present context because of the short scale of the channels. Ac-
cordingly, we shall set Sy = 0 when establishing the theoretical properties of the
flow, but the numerical scheme can easily accomodate (1.2), or indeed any other

friction law that may be preferred by hydraulic engineers in a practical situation.

The principle assumptions leading to (1.1) are that the pressure is
hydrostatic, so that the provisions of shallow water theory apply, and that the
channel] breadth is slowly-varying, allowing the quasi-one-dimensional model to
be used. These assumptions are not invalidated by the discharge ( see, for exam-

ple, Chow [2]). We suppose that the discharge law has the form

Q=—fly—s), (1.3)

where s = s(z) is some assigned control level and

f(y) = H(y)g(y), (1.4)

where g(y) is a non-negative increasing function and H(y) is the Heaviside func-

tion defined by



=1 (y>0).

The discharge laws for the two applications alluded to earlier may

be found in Chow [2]. For a side-weir,

9(y) = cyy\/2gy, (1.5)

¢ > 0 being the weir-coefficient; in this case s represents the height of the sill
above the bed-level. For discharge through a rack, the standard laws have s = 0

and

9(y) = ecBy/2gy + u?, (1.6)

if the flow through the rack is vertical and

9(y) = ecBy/2gy, (1.7)

if the discharge is inclined to the rack. In both these expressions c is the coefficient
of discharge through the openings of the rack and € is the ratio of the opening
area to the total area of the rack. The vertical discharge law, (1.6), assumes

a =1 and a horizontal channel.

Note that (1.1) can be written as

(v + Q*/294%) 1 = So - 54, (1.8)

having set a = 1. It is convenient, for the theoretical discussion, to replace Q

by the massflow per unit breadth of the channel, Q = Q/B = uy and write (1.8) as



(y+u2/2g)’= —br, (1.9)
in the absence of friction. Here b(z) is the elevation of the bed above some datum

level so that &7 = —S,. The discharge equation (1.3) is correspondingly altered

to (BQ) = — f(y — s) which we may use in the form

Q=—f(y—s), (1.10)
for channels of constant breadth, with the parameter ¢ in each of (1.5), (1.6) and

(1.7) reinterpreted as the discharge coefficient per unit breadth of the channel.

The theoretical investigation will be based on the shallow water
momentum and mass balance equations (1.9) and (1.10) and their counterparts

at a stationary hydraulic jump, namely

ll
W'y + 59y =0, [wy] =0. (1.11)
These jump conditions are derived in, for example, Stoker [9], the notation being

that [¢] = ¢, — #_, where ¢, is the value of ¢ on the downstream side of the

jump and ¢_ is its upstream value. Stoker also establishes that

[y + u?/2g] < 0, (1.12)

expressing energy loss across the jump.

The discharging channel is assumed to occupy the interval [z;, z,],
the practical applications requiring that the flow is specified at the outlet position

]



z,. A so-called backwater analysis of the governing equations is therefore required
to establish, for instance, whether a flow is possible for given outlet conditions

and an assigned inlet position z;.

In section 2 we shall determine the overall characteristics of dis-
charge flows in general, irrespective of the particular form of the discharge law.
This generality is achieved, in effect, by regarding @) as an independent variable.
Many of the known properties of side-weir flows are deduced here for a general
discharge law, without recourse to detailed analysis involving a specific law. To
obtain more specific results for a particular type of discharge we need to deter-
mine the mapping between ) and z, and illustrate this in section 3 with particular
reference to the side-weir case for which we give a classification diagram showing

the type of flow for given outlet conditions and channel length.

Finally, in section 4, a novel numerical approach, based on the
trapezium rule, will be presented that can perform approximate backwater anal-
yses for not just subcritical flow, as is usually the case, but also for supercritical
flow. Physical solutions to transcritical flows can also be found as the method
does not blow up as the solution passes through the critical point F = 1. The
method will be shown to be second order accurate for smooth flows. This nu-
merical integration approach can clearly apply in situations where the analytic
methods are not tractable and can be used to both confirm and extend the derived

analytic properties.



2 Properties of Flows with Decreasing Discharges

To obtain a qualitative description of general flows with decreasing discharges, it

is convenient to introduce two new variables and work with

2

1 U
Q=uy, P=uy+ §gy2g e=y+ 29’ (2.1)

which are the massflow (per unit channel breadth), the specific momentum and
the specific energy, respectively. The quantity P has the values of p 4+ Qu, where
p= %gy2 is the vertically averaged hydrostatic pressure, and is also referred to as
the flow stress ( in, for example, Sewell and Porter [8]). The energy A = ge can
be called the total enthalpy, by virtue of the gas dynamics-shallow water theory
analogy. We note that @, P and e take non-negative values because y > 0 on

physical grounds and u > 0 by assumption.

The variables @, P and e provide a concise description of the dy-

namical equations, for (1.9) and (1.10) can be written as

o= b, Qr=—fly-s), (2.2)

and at a stationary hydraulic jump, we see from (1.11) and (1.12) that the ap-

propriate conditions are

Q) =0, [P)=0, [¢]<0. (2.3)

Further, boundary conditions may be provided directly in terms of the massflow

and specific energy or may be converted into these quantities if given in terms



of w and y. It should be noted that, for the purpose of this discussion, we are

considering only channels of constant breadth.

An informative geometrical description of the flows governed by
(2.2) and (2.3) can be derived by observing that the equations (2.1) define a sur-
face in @, P, e space obtained by regarding u and y as parameters. Corresponding
to any point in a steady shallow flow, specified by particular values of u and y,
there is a point on the surface so defined. A complete flow can therefore be rep-
resented by a track on this surface, traced out as v and y vary through the flow
from inlet to outlet, or from outlet to inlet in the case of a backwater analysis. At
a hydraulic jump the track will transfer from one point on the surface to another

point on the surface, in accordance with (2.3).

This notion, of representing flows by tracks on what may be called
constitutive surfaces was introduced by Sewell and Porter [8] for gas dynamics and
shallow water theory. In this previous work a more general setting is envisaged
than we need here: the flows may be unsteady and rotational and the motion of
individual fluid particles can then be represented by tracks. Other constitutive
surfaces spanned by different variables can be considered, but these are ultimately
less useful than the surface generated by (2.1), because of the simplicity of the

dynamical conditions when expressed in terms of the variables @), P and e.

The shape of the surface spanned by @), P and h = ge has been

determined (Sewell and Porter [8]) and only the salient features need be given



here; the scaling introduced by using e in place of h is easy to accommodate.
The surface has the swallowtail shape familiar in catastrophe theory and Figure
1 displays part of the surface in the octant of physical interest. The lower part of
the surface corresponds to supercritical flows (F > 1), the upper part to subcrit-
ical flows (I < 1) and the two parts of the surface join at a cusped edge where

F = 1. Expressing the surface as P = P(Q,¢), we easily find that

JP oP
% =u, % =gy, (24)

and the second of these allows us to replace y in (2.2) by ¢g"!dP/de completing

the task of expressing the dynamical equations in terms of the three new variables.

The arrow superposed on Figure 1 is the geometrical representation
of the jump conditions (2.3). It is parallel to the e-axis and its direction indicates
the sense of the jump as imposed by the inequality in (2.3), which must, of course,

transform a supercritical flow into a subcritical flow.

To add some more detail to the swallowtail surface it turns out to
be sufficient to consider its cross-section e = constant, which is given in Figure 2

for e = 1. The value of ) corresponding to the critical value F =1 is

NI

Qc(e) = g% (26/3) ) (2'5)

the greatest value of the massflow possible at a fixed specific energy level. The
corresponding value of P is P.(e) = 2ge?/3 and the slope of both branches of

the curve at the cusp is the critical speed uc(e) = (2ge/3)1/2. By virtue of (2.4),



this slope is the minimum speed of the supercritical flow and the maximum speed
of the subcritical flow, with specific energy e. It follows that the critical depth
ye(e) = Qc(e)/uc(e) = 2¢/3 is the maximum depth of the supercritical flow and
the minimum depth of the subcritical flow. The slopes of the upper and lower
branches at @ = 0 are 0 and (2ge)'/? respectively; these are the minimum and

maximum values of u, at the given e.

We now superimpose the dynamical equations on these geometrical
properties to determine a qualitative description of the flow. The outlet position
T, can be regarded as fixed and the values @, = Q(z,) and e, = e(z,) as assigned.
The first objective is to determine whether a flow can exist for the given values of
@, and e, and a chosen inlet position z;. If a flow is possible, @, e, u and y are to be
calculated for z; < x < w,; of particular interest are the inlet values Q; = Q(zy),
e; = e(x;), u; = u(z;) and y; = y(z;). For the present we shall tacitly assume that

this calculation can be carried out, postponing details until the following sections.

For a flow to be possible, it is necessary that @, < Q,(e,), that is,

0w

Qo < 97 (26,/3)7,

and we shall assume that this condition is met. It is automatically satisfied if u,

and y, are given and (2.1) is used to find @, and e,.

From (2.2) and the assumed properties of f we deduce that Q is a

non-increasing function of z. More specifically, ) decreases as z increases if the

10



free surface is above the given control level s and @) is constant if the free surface

is below this level. In both cases @, is the minimum value which @ can take in

the flow.

2.1 Horizontal bed

To fix ideas, suppose that the channel is horizontal; non-zero bed slopes can easily
be accommodated later, as we shall indicate. In this case, e = constant, wherever

(2.2) applies. Assuming first that a continuous flow exists for z; < z < z,, then

and, in particular, e; = e,. This focuses attention on the swallowtail cross-section,

typified by Figure 2, but with e = e,

If we further suppose that s is a constant we need only consider
situations in which y, > s, for otherwise there is a trivial solution consisting of
a uniform flow at, or below, the control level. Therefore, ) decreases through
at least part of the flow and @; > @,. For the assumed continuous flow to be

possible it is necessary that

Qi S Qc(eo)- (26)

Figure 3 illustrates (for ¢, = 1) the two possible solution tracks for a continuous
flow, assuming (2.6) is met; the sense of the arrows is from inlet to outlet. If

@, and e, are given at outlet, both sub- and supercritical flows are available.

11



Assigning u, and/or y, selects between these flows.

Note that, by (2.4), the change in u in the flow is equal to the
change in slope of the solution track. Therefore, for F, < 1 (F, > 1), u decreases
(increases) as the flow proceeds down the channel. Since e is constant, (2.1) shows
that y increases (decreases) through the flow. It follows that, for a supercritical

flow, y 2 y, > s (z; < 2 < z,) and the channel is therefore terminated by (2.6).

In the case of a subcritical flow, however, y < y, (z; < z < z,),
introducing the possibility that the flow level coincides with the control level s at
some point z; € (z;,x,). The solution may then consist of a uniform critical or
subcritical flow in which y = s, for z; < z < z, joining at £ = z, the subcritical
flow which raises the fluid to the required depth at outlet. This two part solution
is acceptable for present purposes if all of the variables are continuous and have
continuous derivatives at z = z,. Whether the required continuity is available

depends upon the discharge law.

The subcritical case is not difficult to quantify. Note first that
€ >y 2 8, by assumption, and that the minimum depth is y.(e,) = 2e,/3.
Therefore, if s < 2¢,/3, y > s throughout the flow. If, however, 2¢,/3 < s,y = s

will be attained if the massflow is equal to Q,(e,) = s1/2g(e, — s) within the flow.

With s = 2¢,/3, y = s occurs at critical flow and Q,(e,) = Q.(e,).

We now see that the condition (2.6) is both necessary and sufficient

12



for the continuous flow to exist in the two cases specified by the outlet conditions

(a) F,>1,
(2.7)
(b)y F,<1, e,>3s/2

As Q(z) is completely determined by (2.2) and the outlet conditions, assumed
fixed, (2.6) is effectively a restriction on the channel length in these two cases.
Flow is possible for all channels up to a maximum length z, — z; determined by

Qi = Q.(e,), and is not possible for longer channels.

For subcritical flows with s < e, < 3s/2, (2.6) is automatically
satisfied and and does not act as a restriction on channel length. If the inlet
position z; is such that @; < @,(e,), the continuous flow exists with the water
level wholly above the level s. For a sufficiently long channel the massflow @, will
be attained in the channel and the two part solution is possible with Q; = Q,; the
length of the channel over which the uniform flow takes place is clearly a matter
of indifference. If the two part solution is not acceptable, the channel length is

limited by the condition @Q; = Q,.

Suppose now that, for given outlet conditions in the categories
(2.7), no continuous flow is possible. As we have indicated, this will be the case
for all channels whose length exceeds a certain value. A discontinuous flow may
nevertheless exist in which two continuous flows are connected across a hydraulic
jump. Since the flow crossing a jump is necessarily subcritical on the downstream
side, there can be no such solution in the case (2.7)(a) and our attention is re-
stricted to (2.7)(b).

13



In the situation envisaged, (2.2) now implies that

e=¢e, (z;<z<a,),

(2.8)
=ty sl sdnl)

where the subscript j is used to denote the values of variables at the jump. The

inlet value e; is not known at this stage, but is such that e; > e,, by virtue of (2.3).

The proposed solution can be depicted on the swallowtail surface of
Figure 1, the arrow there indicating the jump of the solution track at the discon-
tinuity. It is easier to visualise the situation, however, by superimposing the two
cross-sections e = e, and e = ¢; in the same diagram, as in Figure 4, where we
have chosen e, = 1 and e; = 0.85 for demonstration purposes. The solution track
is continuous and transfers from the supercritical branch of the e = e; section
to the subcritical branch of the e = e, section where the massflow is Q;. The
change in slope of the track exhibits directly the known properties that [u] < 0

and therefore (as [Q] = 0) [y] > 0.

It remains to set the specific energy level e;, but before this matter
can be addressed we need to establish a property which has been tacitly assumed.
We are supposing that, for the given outlet values, the channel is too long to sup-
port a continuous flow and we need to show that a discontinuous flow of the type

sought is possible over the longer channel.

Reference to (2.4) and Figure 4 shows that u increases with e, at

14



each (). Therefore y decreases as e increases, at each @, and so does y — 5. From
the discharge law @/ = — f(y — s) it now follows that |Q/| decreases as e increases.
Since Q(z,) = @, is fixed and Q7 < 0, we deduce that at each z < z,, Q(z) de-
creases as e increases. Therefore the channel length z; — z, increases with e for
a fixed interval @, < @ < @Q;. Put the other way round, the interval [Q,, Q]
decreases as e increases, if the channel length is fixed. The implied relaxation
of the constraint on the channel length is further enhanced by the fact that the
limiting massflow Q.(e) = g*/%(2¢/3)%? increases with e, and so therefore does
the maximum value of @; — @,. The desired result is now established, that a
longer channel is possible if a flow takes place wholly, or partly, at a higher spe-

cific energy level.
A lower bound for e; is supplied by the inequality

Qi S Qc(ei)a (29)

which is necessary for the supercritical inlet flow to exist. The smallest value of
¢; cousistent with (2.9) corresponds to critical inlet flow and minimum energy
loss at the jump. From Figure 4 and earlier observations about the swallowtail
cross-section, taken in conjunction with the fact that Q(z) is non-increasing, we
infer that the location of z; is uniquely fixed by e; and moves towards the outlet
as e; increases. An upper bound on e; thus emerges and it can be shown (see

section 3) that for Q; > @, (and hence z; < z,) we require

e; < yo{<1 +8Fo2)3/2+ 1 —4F3}/16F3, (2.10)

15



where the outlet Froude number £, € (0, 1), equality locating the hydraulic jump

at outlet.

The restriction (2.10) in turn limits the length of channels over
which discontinuous flows are possible, because of the need to satisfy (2.9). As
in the case of continuous flows, this limitation need not apply if part of the flow
1s at, or below, the level s, for that part of the flow is uniform and can be of
arbitrary extent. Now the maximum depth available to the incoming supercrit-
ical flow is y.(e;) = 2¢;/3. Recalling that discontinuous solutions are sought in
the case s < 2e,/3 < 2¢;/3, we see that the incoming flow level may be above,
at, or below the level s. The inlet depth 2e;/3 for minimum [e] is above this
level. Evidently, there are several possible configurations for the discontinuous
flow. The water level may be wholly above the control level s, or the incoming
flow may be uniform and below or at that level. In the latter case there is the
further possibility of a three part flow consisting of supercritical flow above the
level s at inlet and falling to that level, a uniform supercritical flow at level s (and
of arbitrary length) and a jump connecting this uniform flow to the subcritical

flow, which rises to depth y, at outlet.

Clearly, a discontinuous flow is also possible in the case F, <
1,2e,/3 < s whether or not a continuous flow can exist. A discontinuous flow
is the only solution available if the subcritical outgoing flow is terminated by
@ = @, within the channel and in this case the incoming supercritical flow is

uniform and below the sill. Note that in all cases involving a hydraulic jump we

16



necessarily have F; > 1.

2.2 Sloping Bed

Wherever (2.2) applies, we have e = constant — (), and therefore, for a wholly

continuous flow, e = e(z), where

e(z) = e, + b(z,) —b(z) (z;<z<z,) (2.11)

satisfies the outflow condition e(z,) = e,. It is consistent with applications to
assume that b(z) is a decreasing function of z, and therefore e(z) is an increasing
function of z. Further, since Q(z) is a non-increasing function of = we infer that
solution tracks, if they exist, lie entirely on the upper surface or entirely on the
lower surface of the swallowtail. These tracks are no longer plane curves, but
the fact that e varies with z in a prescribed way means that the overall features

deduced for a horizontal bed remain intact.

For instance, the necessary condition (2.6) for a continuous flow to

exist 1s amended to

Qi < Qc(ei) (2.12)
where the inlet specific energy level is given by e; = ¢, + b(z,) — b(z;). Since

e; < €, (2.12) may appear to be a more stringent condition than (2.6), but this

need not be the case as Q(x) is modified by (2.11).

17



Other, similar, amendments to the earlier analysis follow, for con-
tinuous and discontinuous flows, by using local values of e and the control level s
where appropriate. The control level s(z) can be set arbitrarily and it need not

be a fixed distance above the bed.

3 Exact Solutions for Horizontal Channels

The choice of a particular discharge law allows Q(z) to be calculated, in principle.
This function relates position on a solution track, in the sense of section 2, to
physical position in the channel and determines, for that discharge law, whether

each of the flows identified earlier can be realised.

It is a good deal easier to seek y(z), rather than Q(z), the two

being related by (2.1), which implies that

Q = y\/29 (e — y). (3.1)

Therefore

_ {(2e = 3y) y/ + yet}
Y ey S

which is a version of (1.1), and for a side-weir, reference to (1.3), (1.4) and (1.5)

implies that

(2e = 3y)yl +yer = =2c(e — )2 (y —)**  (y > s). (3.3)

18



Since e(z) can be regarded as known, (3.3) determines y(z) and Q(z) is recovered

from (3.2).

Chow [2] observed that (3.3) can be solved exactly for a horizontal
channel, in which case e/ = 0 and, with e = e,,
—2c (e, —9)'"* (y — )*°

yl = (B0 —3) (y > s). (3.4)

We have excluded critical flows here to ensure that 2e, # 3y. Integration of (3.4)

is elementary, yielding

B g D - 1/2 e 1/2
cr = (35— 2e,) (e y> —3sint (e y) + constant  (y > s). (3.5)

€y —'8 y—s €, — S

We choose sin™ : (0,1] — (0, 7/2].

It is instructive to consider the special case s = 3e,/2, for which
only the subcritical flow is given by (3.5) (the supercritical flow is wholly below

the sill). We find from (3.5) that

A

y(z) = eo{l—%sin2§('y—m)}

05 (3.6)

7 = wo+3sin'3(1-) |
which satisfies y(z,) = y, and holds for z, > z > @ — 37 /2c. The corresponding

massflow Q(z) follows from (3.1) with e = ¢,. The maximum weir length, L,

which can support a continuous flow with depth profile (3.6) is

19



L=3—”—§sin-13(1—y—°),

2¢c ¢ €o
this flow being critical at the inlet. Note that y(z;) = s and hence that y/(z;) = 0,

so that we can smoothly join onto (3.6) a critical flow of arbitrary length at sill

level. This is an example of the type of two part flow mentioned after (2.7).

For values of s # 2¢,/3, the mapping (3.5) must be inverted nu-
merically. We can still infer some properties of the solution, however, without
having y(x) explicitly available. From (3.4) and (3.5) we see that, for a subcritical
flow with s > 2e,/3, y# — 04 and 2 - —oo0 as y — s;. Thus Q cannot attain
the value @, in a finite distance and the side-weir can have unlimited length in
this case. The two part solution is therefore only possible for s = 2¢,/3. Simi-
larly, with s < 2e,/3, an incoming supercritical flow can only attain the sill level
asymptotically, ruling out, for the side-weir, the three part flow mentioned at the

end of section 2.

In contrast to this situation, if the discharge law (1.7) is used in

place of (1.5), then

. —2ecB(y — s)%(e, — y)?
y= 2e, — 3y

and

[N

1
-y\z 3
(e, — 3s)sin™! (eo y)z — =(y —s)2(e, — y)% + constant

€, — 8 2

| =

ecBz =

replace (3.4) and (3.5) respectively. These show that the free surface meets the
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control level s smoothly within a finite distance of the outlet for an outgoing sub-
critical flow and within a finite distance of the inlet for an incoming supercritical
flow. While this illustrates the sensitivity of the flows to the discharge law, it is
somewhat theoretical if (1.7) is being used to model the discharge due to a rack,

where s = 0.

Returning to the side-weir case, it is possible to investigate the cur-
vature y// of the free surface by using (3.4). The calculation is straightforward
and its outcome is presented in Figure 5 which shows how the curvature changes
with the dimensionless depth y/e, and the dimensionless sill height s/e,. There
is a narrow sill height band (4v/3 — 5 < 3s/e, < 2) in which the curvature of a

subcritical flow can change twice.

We recall that, if s < 2e,/3, the channel length which can support
both sub- and supercritical continuous flow is determined by Q = Q.. Using this
condition in the form y = y. = 2¢,/3 in (3.5) we find that the maximum channel

length for the outlet values y = y,,e = ¢, is given by

1 1
. 2 >
CLmax = 3sin™! (73( = ) + 3sin~t (60 y°)2

e, — &) €o — S8

D=

2 o — 3 o — Yo
—(60—8)_1(260—33) {\/e—o+\/(e 3)(2 y)}
Yo —
This relationship is shown in Figure 6 as a function of y,/eq, for the value
s/e, = 0.4, forming the inner boundary of the regions in which continuous

flow is possible. The lower branch of this boundary tends to the value s/e,
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as Lyaxy — 00, as we have already established. It can be shown that the value

of Linax, as given above, increases with s/e, for each y,/e, # 2/3.

For discontinuous flows, the backwater analysis requires the rela-

tionship

y_=y7+{(1+8Fj>%—1}, (3.7)

which is derived from (2.8); the subscript notation was given in section 1.

If the jump location z; is prescribed, y, is given by inverting (3.5),
the constant in that equation having been determined by y, = y(z,). Since
F2? =2(e; — y4)/y4, y- is readily found from (3.7) and u_ and e_ = ¢; follow by
using (2.1) and (2.8). Alternatively, e; = e,—[y]®/4y+y_, as may be deduced from
Stoker [9] or from (2.8). Replacing e, by by e; in (3.5) and fixing the constant
afresh by y(z;) = y_, we can deduce y(z) by inversion for the supercritical flow
upstream of the jump. In practice, an iterative process based on the discontin-
uous flow calculation described is usually necessary to meet the flow condition

Q@i < Q:(2¢;/3) if the total weir length is assigned in advance.

Further detail can be added to the general structure deduced in sec-
tion 2. For instance, we can determine the longest side-weir which can support a
discontinuous flow, in the case (2.7)(b). It follows from the previous section that

the maximum weir length occurs with the jump located at z,. Therefore, from

(3.7),
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1= bu{(ivom)! 1)

and using this value together with Q_ = Q,, we find that the specific energy of

the corresponding incoming flow is

p———— {(1 +8F2)T 41— 4F02} J16F?,

a value quoted in (2.10).

If y- > s, the supercritical flow is wholly above the sill and the
required maximum length is therefore the maximum length of the continuous su-
percritical flow with y = y_ and e = ¢; at outlet. This length is given by the
existing expression for Lyax with y_ replacing y, and e; replacing e,. If y_ < s,

the incoming flow is uniform and of unlimited length.

The curve representing maximum side-weir length for a discontin-
uous flow is plotted on Figure 6, completing our illustration of that classification
diagram for s < 2¢,/3. It forms the boundary, in the subcritical regime, between
the region in which discontinuous flows are possible and the region in which no

flows are possible. As L., — 0o, the curve tends to the level

b 8 E
y_:_{4—i+\/16——3—15(i> }
€, 9 €, €0 €,
from below; this level corresponds to y_ = s. The value of L,,,, increases with
s/e, for each y,/e, > 2/3, and the upper and lower boundaries of the no-flow

region both degenerate to the straight line y, = 2¢,/3 as s — 2e,/3 from below.
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The corresponding diagram for any s > 2e,/3 is trivial as all flows have unlimited

length; we have shown, in particular, that s = 2¢,/3 gives a two part flow.

Figures 7—9 give sample results of the free surface elevation ob-
tained by using a bisection algorithm to invert (3.5). The three test problems
all consist of a 5m channel that is 1m wide. The sill height is 0.5m and the weir
coeflicient, ¢, is 0.9. Outflow depth is taken to be 0.7m, that is, 20cm above the
sill height. The three problems can now be distinguished by just specifying the
massflow at outlet. For the first (subcritical) problem we take Q = 0.01m3s™1,
for the second, supercritical, case we take Q = 6.0m3s~! and finally for the trans-
critical case @ = 1.0m®s™!, for which the incoming flow is at sill level. The exact
solutions to problems 1,2 and 3 are shown in Figures 7,8 and 9 respectively The

predicted curvature and maximum weir lengths have been confirmed for a wide

range of the parameters.

The equation (3.3) is analytically intractable for non-horizontal
channels and the numerical solution method described next is required to add
quantitative detail to the flows deduced in section 2. The development given here

acts as a useful guide, of course, to the purely numerical solutions.

4 Numerical Solutions

For the purpose of obtaining numerical solutions, it has been traditional to write

Ordinary Differential Equations (ODEs) in the form
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= 7(z,3) (1)
where 2 is the independent variable and y(z) is to be found. Solution techniques
for this type of equation are well-known and well-documented, see Henrici [5]

or Lambert [6] for example. Rather less well-known (see Fox & Mayers [3]) are

solution techniques that deal with equations of the form

G(z,y,y/) = 0 (4.2)

ooy = g(z,y,y!). (4.3)

We will refer to these solution techniques as Implicit Differential Equation Solvers,
or IDES for short. Equations in the form (4.1) have obvious advantages, but there
may be situations where it is preferable to use the form represented in (4.3). The

obvious case is when the function, G in (4.2), is just not separable due to nonlin-

earity in the term y/.

For our particular application the steady state equation (for depth)
is in the form (1.1). This form is not atypical, in shallow water theory, despite
the novel application. Problems arise, though, in computations if the Froude
number, F', passes through unity, that is the flow changes from subcritical flow to
supercritical flow, or indeed if F' just gets sufficiently close to 1, as in these cases
the right hand side of (1.1) becomes unbounded for computational purposes, with

a = 1. The division by the factor 1 — F?, or 1 — o F? more generally, is rather
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artificial and the equation naturally appears as momentum balance in the form

aQ)Q)!
gA

yl = aFQy/ + S0 — 55 — (4.4)

(In this section we will return to the more usual notation, in hydraulics litera-
ture, of using @) to represent the total massflow in the channel. However, since
we shall be taking B = 1 in the test cases () = Q) The division by 1 — aF? is

just performed to get the equation into the form of (4.1).

The shallow water equations were first solved in the form (4.4) by
Chawdhary [1] and also appeared in Samuels & Chawdhary [7], although they
were not concerned with discharge flows, @) being constant. We shall give details
of the algorithm and will show that the method is capable of giving accurate
results for backwater analyses of both subcritical and supercritical flows. The
results in [1] and [7] indicate that the method also deals with the transcritical
case. Certainly their work shows that the method does not fail as the critical
point is reached but we argue that in the cases considered here another boundary
condition is required to give the problem a unique solution. (It is possible that
the transcritical case was successfully solved in [1] because the jumps were forced
by changes in the bed-slope). The important point, though, is that IDES are
capable of solving sub- and supercritical backwater problems and will not blow

up as a critical point is approached.

We discretize the equations at certain, not necessarily equi-spaced,

points z,. The distance between z, and z,4, is denoted by Aa:n+%, which, with-
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out loss of generality, will be assumed to take a constant value Az in this work.
The approximate solution at these points is then denoted by y™. As we are solely
concerned with backwater analyses in this paper we will therefore assume that
y™*! is known and 3™ is to be found. To find y™ we perform an iteration on this
value and we will denote the k" approximation to y™ simply by y*, the value of
n being understood. The bed-slope, Sy, will be a constant for our calculations
here, but this is not a restriction of the method (see [1]). Following Chawdhary

[1] equation (1.1) is now discretised, using the trapezium rule, in the form

M = E(fpk2 +Fn+12) M
Az 2 Az

k) . (4.5)

With a little re-arrangement the scheme then becomes,

1
+ So — E(S}c + S?+l)

n+1 QQ/
+ A2

a (QQr
29 \ A?

yO = yn+1

>

n+1 a QQ/

n alAz [ QQ/
k+1 y +1+_< Q_ _A';

g A?
Az
or

k) = (Fk2 + Fn+12) {,n+1 _ k)
5 v y

—AzSo+ = (S§+S7+)  for  k=0,1,2,.. (4.6)

The condition that ensures the iteration (4.6) converges is simply

that

k+1
‘ay < L. (4.7)

dy*

In principle we could check (4.7) exactly for the iteration (4.6), but this would
be cumbersome. However, the terms we might wish to avoid are all multiplied
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by Az. Hence they can be made as small as we wish (if y # 0) by control of the
space step Ax. We shall argue later that it is beneficial for other reasons to use
what computational time is available solving on a finer mesh, rather than using
the same time on a more complex iterative scheme with a coarser mesh. The term
we cannot control in this fashion is the one involving the Froude number. Hence

for supercritical flow, or more generally when " > 1, we re-arrange (1.1) as

1 aQQ/
y!:m(y/-F gA2 —SO—{-S]’)

This equation can then be discretised in the same manner as (4.6). The Froude

number is a quantity that will need to be calculated anyway and so this approach
results in little extra computational cost. If, as is likely in practice, we are un-
able to substitute for () from equation (2.1) and have to solve (1.1) together with
(1.10) as a system then the condition (4.7) is replaced by a constraint on the norm
of the equivalent Jacobian matrix. We have never found a situation where the
extra cost of this approach was justified over the much simpler Froude number

condition.

First we apply our scheme to the one-equation model, (3.4), where
@ and @/ have been substituted for. The three problems discussed earlier, whose
analytic solutions are shown in Figures 7—9, were solved by the numerical ap-
proach and the solutions are shown in Figures 10—12 for 64 grid points. A
summary of the results from running the scheme on various meshes can be seen
in Tables i—iii, giving the error in inlet values. All these results were obtained

using a large number, 256, of iterations to try and eliminate this source of error.
o b b
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We see that for the smooth solutions second order accuracy is achieved, whilst in
the discontinuous case the scheme reduces to first order as we would expect from.
approximation theory. Generally speaking, more points are therefore needed to
resolve this case. In the case of transcritical flow an iterative procedure was used,
as alluded to in the previous section, to find the smallest jump giving a physical
inlet value. The numerical backwater analysis, for this case, involves calculating a
subcritical flow from outlet until the critical depth is reached. A jump must then
be fitted from the subcritical solution and we try to reach inlet with the resulting
supercritical flow. If this fails we position progressively stronger jumps nearer the
outlet until a supercritical flow results that can reach inlet. If this is achieved, any
jump nearer outlet will also produce a physical flow; an inlet boundary condition,
like the one given above for example, selects a unique solution in this case. No

flow exists if the jump reaches the outlet before such a supercritical flow is found.

We now look at the convergence rate of the iteration. For this we
consider the harder of the two continuous problems, Problem 2, with 64 points
and varying numbers of iterations. Table iv shows the errors and convergence
of the sequence of solutions. From these results it is very difficult to give any
firm conclusions as to the order of the iteration. It does, however, seem to start
as a low order convergence and then rapidly accelerates as the exact answer is
approached. The precise nature of the convergence of this iteration is the subject

of further work.

We have established in numerous numerical experiments that the
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IDES technique can solve side-weir problems governed by (3.4) for all flow regimes.
Of course, the real point of a numerical method is to be able to solve problems
that cannot successfully be treated analytically, in particular, because a non-zero
friction implies that the energy is not known. This means that we will need to
solve equations (1.1) and (1.3) as a system . Equation (1.1) is discretised as
before. At the same time we discretise (1.3) using the trapezium rule with the
implicit terms on the right-hand side again lagged, that is, using the previous
iteration value, to give an explicit expression for the new value Q*+!. We update
from (1.3) first and then use the latest value of Q**!' to update y**! from the
discretisation of (1.1). This choice seems to have no effect on the scheme. To vali-
date this approach Problem 2 is again solved but this time with the two-equation
model, that is without assuming constant energy. Errors, arranged as before,
are shown in Table v. The order of the scheme is again definitely shown to be 2.
Comparing with the results in Table ii we see that the errors are very comparable,
being slightly better for the depth and slightly worse for the massflow. Although
it does not show up clearly in plots of the solution, as the error is very small, the
energy is no longer constant, as we would expect since this property is no longer
enforced. Also, we are not able to calculate a solution on some of the coarser

meshes.

We have also successfully solved problems with tapering, sloping
channels, with friction and with values of @ # 1. It has also been reported to
us by Wixcey [10], that, using the same technique as presented here, similar

problems have been solved in channels of non-rectangular cross-sections.
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No. of points

Error in depth

Error in massflow

Order of convergence

1 0.076134 0.153676 —
2 0.020284 0.026666 1.91
4 3.634x1073 4.146x1073 2.48
8 8.358x10~* 9.308x 10~ 2.12
16 2.053x1074 2.28x107* 2.03
32 5.1x107° 5.66x1075 2.01
64 1.2x107° 1.41x107° 2.09
128 3x10°° 3.5%x107° 2.0
256 1x107° 1x107¢ 1.58

Table 1: Errors for Problem 1 using the one equation model.

No. of points

Error in depth

FError in massflow

Order of convergence

1 Iteration diverged —
2 0.216205 0.792889 —
4 0.536265 1.17698 —
8 0.69783 1.27619 =
16 0.096055 0.297298 2.86
32 0.02091 0.06769 2.19
64 5.08x1073 0.016597 2.04
128 1.264x1073 4.13x1073 2.0
256 3.17x1074 1.032x1072 2.0

Table ii: Errors for Problem 2 using the one equation model.
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No. of points

Error in depth

Error in massflow

Order of convergence

1 0.2063866 0.22127 —
2 0.2063366 0.22127 —

4 0.2063866 0.22127 —

8 0.0806906 0.056772 1.35
16 0.021496 0.010409 1.91
32 0.02067343 9.9405%1073 0.06
64 6.416x1073 2.6934x1073 1.69
128 6.3536x 1073 2.666x1073 0.01
256 2.75%x1073 1.1134x1073 1.21

Table iii: Errors for Problem 3 using the one equation model.

No. of iterations | Error in depth | Error in massflow | Order of convergence

1 1.133698 5.797245 —

2 0.737708 3.3309832 0.62

4 0.2793413 1.050197 1.40

8 0.050947 0.170757 2.45

16 3.626x1073 0.011833 3.81

32 4.2x107° 1.35x1074 6.43

64 0.0 0.0 -

128 0.0 0.0

Table iv: Errors for Problem 2 using the one equation model.
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No. of points

Error in depth

FError in massflow

Order of convergence

8 0.3470903 1.694867 —
16 0.0610075 0.3181655 2.51
32 0.014248 0.076558 2.10
64 3.5011x 1073 0.01904 2.02
128 8.72x10~* 4.757x1073 2.01
256 2.18x10™ 1.19%x 1073 2.00

Table v: Errors for Problem 2 using the two equation model.
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Figure 1: The surface P = P(Q,e).
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Figure 2: The cross-section e = 1 of P = P(Q, e).
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Figure 3: Solution tracks for continuous discharge flow over horizontal bed.
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Figure 4: Solution track for discontinuous discharge flow over horizontal bed.
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Figure 7: Water depth for side-weir: Problem 1. Inflow depth and massflow are

0.534426m and 0.962776m3s~!.
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Figure 8: Water depth for side-weir: Problem 2. Inflow depth and massflow are

2.23097m and 14.7079m3s"1,
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Figure 9: Water depth for side-weir: Problem 3. Inflow depth and massflow are

0.49985m and 1.22127m3s~!. Froude no. is 1.2186.
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Figure 10: Water depth for side-weir: Problem 1 with 128 pts. Inflow depth and

massflow are 0.534429m and 0.9627725m3s™!.
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Figure 11: Water depth for side-weir: Problem 2 with 128 pts. Inflow depth and

massflow are 2.232234m and 14.71203m3s~!.
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Figure 12: Water depth for side-weir: Problem 3 with 128 pts. Inflow depth and

massflow are 0.4934964m and 1.218604m3s™!.
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