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1. Introduction

Rather optimistically the first of these three reports referred to
the "Atmospheric Transportation of Pollutants". In this, the final of
these reports, we do actually get around to this goal.

The method described in the first report and shown to be highly
promising (Priestley (1989)) is now applied to a three-dimensional
problem — the transportation of a passive pollutant in the atmosphere.

In the following section the test problem is described and the
results presented. In Section 3 we will discuss how to improve on these
results and where future work might best be expended.

In the Appendix we include a discussion on monotone cubic
interpolation because this is an important point if a spectral
representation is not used in the vertical. Williamson & Rasch (1989)
and Rasch & Williamson (1989) have studied a much wider class of
polynomial interpolation. However, the analysis presented here is a
little different, and an alternative estimate to the derivatives is

presented.
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2. The Test Problem

For the test problem we study the advection of a pollutant in the
Earth’s atmosphere over a period of 5 days. The pollutant is assumed to
be passive, that is, it is transported by the winds but it does not
affect the weather itself. The initial pollutant distribution is taken
to be the value of the humidity at the start of the 5 day period. The
winds were calculated using a standard numerical weather prediction
model. Since the problem concerns only a passive pollutant these winds
can be stored and used as data for the velocity field governing the
transportation of the pollutant by the spectral Lagrange-Galerkin method.

In the horizontal a T21 spectral model is used and 19 levels are
used in the vertical, level 19 being closest to the Earth’'s surface.

The time-steps were % of an hour in the numerical weather prediction
code but the velocity fields were only output every other time-step as
the spectral Lagrange-Galerkin method used time—steps of % hours. The
reason for this was due to a lack of storage but it does at least serve
to demonstrate that much longer time-steps can be used with Lagrangian
schemes than with the more conventional methods

Figures la-le are contour plots of humidity at day O. The contours
are plotted at intervals of 2 grams/kg water/air. Figures 2a-2e show
the solution at day 5 as predicted by a conventional spectral method in
the horizontal and a second order centred finite difference approximation
in the vertical using % hour time-steps.

One of the first things to notice about these results is the fact
that maximum values of humidity have been well maintained. However,
having said this we see that the minimum value has not been preserved at

all. The minimum value of humidity should, of course, be zero but is in
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fact slightly negative due to noise in the initial data. The solution
produced by the standard spectral approach with a finite difference
approximation in the vertical has resulted in considerable undershoot,
particularly in levels 17 & 19 - figures 2d & 2e. Noise also seems to be
a significant problem on levels 13 & 15, see figures 2b & 2c.

The results for the spectral Lagrange-Galerkin, with twice the
time-step of the above results, are shown in Figures 3a-3e. There are
good points and bad points connected with these pictures. Firstly we
note that the results, particularly at the lowest level, compare well
with Figure 2 in that the positions of the maximum coincide and that
there is a degree of similarity between the position and shape of the
major features — especially if we take into account the amount of noise
present in the results depicted in Figure 2.

Although the position of the maximum is predicted to be in the same
position by both codes the value of the maximum is quite different. This
is the fault of the spectral Lagrange-Galerkin method and is caused by
the sharp gradient in the concentration of the pollutant - around the
Himalayas as it happens. This phenomenon, which is worse than a purely
Gibbs’ phenomenon would cause does improve as more modes are used to
represent the solution.

There is no undershoot, at any level, indeed the solution does seem
to have been smoothed out somewhat to give the minima that appear in
Figure 3. This is almost entirely due to the vertical approximation
used. Between levels a simple linear interpolation was used which is a
first-order, extremely diffusive, scheme. This was used essentially
because it was so simple but will obviously need to be replaced in the

future.



3. Conclusions

We have shown that the spectral Lagrange-Galerkin method is a very
promising method for transportation problems in the atmosphere.

The most obvious thing that needs to be changed is the way the
vertical co-ordinate is dealt with. Either a spectral representation is
required in the vertical or we could perhaps change to the direct
spectral Langrange-Galerkin method, where we look backwards along the
trajectory, and use a data-dependent monotone cubic interpolation.
Indeed, it may even be possible to do something similar with the weak
method where we look forward in time along the trajectory.

At the moment the trajectories have just been approximated by
straight lines in (A,un.m) space. This does not seem to have caused any
undue problems but we could probably benefit from the ideas of Williamson
& Rasch (1989) and Coté (1988).

A spectral Lagrangian method is always going to be more expensive
than a finite difference Lagrangian method. Naturally we hope to obtain
spectral accuracy but it would be welcome if the expense could be
reduced. There are two spectral transformations that we need to do at
each time-step. With the weak method we firstly perform an inverse
transformation to obtain gridpoint values of the function. At the other
end of the trajectory we then project back into spectral space. The
first part can be formed very quickly because we can use a fast Fourier
transform and, since the grid is fixed, much information can be
calculated once and for all and then stored. This is not the case at the
other end of the trajectory where we will usually fall between gridpoints
and have to calculate the spectral decomposition at each point at each

time—step.
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A way around this would be to use the non-interpolatory approach,
see Ritchie (1986).

In using this procedure we ensure that our trajectory always ends at
a gridpoint. This would then mean we could transform into spectral space

very quickly using the fast Fourier transform and stored information.
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Figure 3a

Day 5 Spectral Lagrange-Galerkin




Level number 13

Maximum = 6. 41

Minimum = 0. 58

-

~— >~

Figure 3b Day 5 Spectral Lagrange-Galerkin
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Figure 3c Day 5 Spectral Lagrange-Galerkin
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Figure 3d
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Appendix

The Search for SPOC — The Supreme Piecewise Oscillation—free Cubic.

As we have mentioned earlier the linear interpolation used in the
vertical introduces an unacceptable amount of diffusion. One way around
this problem is to use a higher order polynomial interpolant. One good
point about the linear interpolant is the fact that it is monotone and
this is a constraint we shall want to keep with the cubics.

Using the notation of Fritsch and Carlson (1980) we consider a cubic
polynomial function p(x) on the interval [Xi'xi+1] such that p(x)

is monotone and

I
a0

p(x;)

P(¥141) = fi

We can write p(x) on each sub-interval in terms of the cubic

Hermite basis functions to obtain

p(x) = £H (x) + £ H(x) + dHy(x) + dy, H,(x)
where
d; = p'(xj) j o= 1i,i+l
H(x) = ¢ ((xg,, - %) 7/ h) .
Hy(x) = ¢ ((x-x)/h) .
Hy(x) = - hy ¥ (x5, - %) 7 h) .
Hy(x) = b, ¥ ((x-x)/h) .

with



h. = x - X, ,

i i+1 i
o(t) = 3t% - 2t% ,
and y(t) = t% - t%.

Letting Ai = (F = Fi) / hi we can rewrite the Hermite cubic

i+l

polynomial as

+

d. d. - 2A, -2d, - d. .+ 3A,
p(x) = [ i i+l i ](x _ xi)a " [ i i+l i (x - Xi)z

h2 h,
1

+d(x - %)+ (A1)

As it stands (Al) will not be monotonic. Monotonicity is ensured by

limiting the values of di and di+ An obvious necessary condition

1

for monotonicity is that
sign (d;) = sign (d;,;) = sien (4;) . (A2)

Writing a = di/Ai and B = di+1/Ai’ Ai # 0, Fritsch and Carlson
(1980) were able to prove that (Al) is always monotone if and only if

(A2) holds in conjunction with one or both of the following conditions on

(a.B): -

0 ¢ a <3, 0¢<BpB <3 (A3a)
and ¢ (e.B) < O (A3b)

where

¢ (a.B) (a-1)® + (a-1)(B-1) + (B-1)* - 3(a+-2) .
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For obvious reasons (A3a) is the more usually applied constraint.

This still leaves us with the question of how to choose the
estimates of the derivatives. As mentioned in the introduction
Williamson & Rasch (1989) and Rasch & Williamson (1989) have performed
exhaustive tests on the choices of derivatives and on the type of
polynomial. Here we will only consider cubic polynomials but will
provide some analytic results for the various choices of derivative
estimate.

The derivative estimates chosen were: -

Linear d = Ai s (xi’ Xi+1)
i =
a9 x € (x5 9+ %)
Central Difference or di = (Ai—l * Ai)
Arithmetic Mean 2
(2A -1 + 5Ai - Ai+1) x € (xi, xi+1)
6
Cubic di =
(-A 5 + 5Ai—1 + 2Ai) x € (xi—l’ xi)
6
Hyman a, = Byt Ay T - Ay
12
and
MAHG d, = 3, o + 194 )+ 194 - 34,
32

The two quantities that we will study are phase speed and

amplification factor for the linear advection equation

u tau = 0. (A4)
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The phase speed should equal a and the amplification factor should
be unity. The errors in these quantities are averaged over all CFL
numbers and all wave numbers. These results are then compared to those
obtained for the linear derivative estimate, except for schemes with
higher order phase accuracy which are then compared to the phase accuracy
of the cubic derivative.

We start by doing the analysis in some detail for the linear
derivative estimate.

In calculating the phase speed of equation (A4) we look for

solutions of the form
() = el = 5X) (A5)

where for every real wave number § we assume that there is a
corresponding real value of the frequency  such that (A5) is a
solution to (A4). The relation w = w(f) 1is called the dispersion

relation for the differential equation. The phase speed is then defined

as
c(§) = w(§)/€ .
When using a numerical scheme, (A5) is replaced by
n _ _i(wnDt - §.Ax)
Ui = e J : (A6)
Linear

For the linear derivative estimate

(€) = arcsin [Sin(Afi) aAt] : (A7)

AtE

C,.
linear




_11_
Equation (A7) is a little unwielding to deal with so the phase speed
is expanded as a Taylor series in § to produce

Clinear (§) ® a- a (- a%at® + Ax?) €7

+ a (- 10aAt2Ax® + 9a*At® + Ax*) E* .
120

(A8)

In comparing with the other schemes we shall look at the ratios of
their respective £2 terms squared and then integrate over all CFL
numbers between O and 1. For the schemes with a higher order phase
accuracy we compare the E* terms to those of the cubic derivative
estimate.

The amplification factor for this scheme is

|A|2 1 - 4s®v + 43%s? ,

linear

I

where v is the CFL number and s® = sin (£/2). The measure of the

error here is calculated as

2
(1 - IA|?) dv ds® .

O%H
O%P—‘

By definition both the phase speed error and the amplification error

are 100%.
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Central Differencing

ccd(f) = arcsin [sin(AxE) aht (AxaAt + Ax® - a®At?

+ cos(Axf) a®At® - cos(AxE) AxaAt)]

Ax®

AtE

c () = a - a (2a®At® - 3AxaAt + Ax®)E?
cd 6

+ a (30a®AtAx - 21a*At? + 5a®Ax®At® - 15aAx°At + Ax*)E? .
120

The comparative phase speed error is 18.22% that of the linear

estimate.

lxlzd = (- 16v° - 48v° + 48v* + 16v°)s®

+ (- 120% + 24v® - 120%)s* + 1.
The amplification error is 40.41% that of the linear scheme.

Cubic

(§) = -arcsin [sin{AxE)adt(a®At® - 40x® - cos(AxE)a®At® + cos(AxE)

ccubic
3Ax°

At

() = a- _a (aAt* + 4Ax* - 5Ax%a®At?)E*

c .
cubic 190

+ a (- 21ax*a®At® + 21a*At*Ax® - 4a®At® + 4Ax®)E° .
1008
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This has third-order accurate phase speed and again, by definition,

we say that its comparative phase error is 100%.

N2 e = 1+ 4s* (041)(0-1)(v-2) (45”0 - 4% - 3)
5

resulting in an amplification error of 50.38% of that of the linear

scheme.
Hyman

(&) = arcsin 1 sin(Axf)aAt (-2 cos(EAx)alxAt

3Ax°

q 1
Y AtE
- cos(EAx)® a®At? + ahxAt + cos(FAx)ZabxAt + 4Ax>

- cos(EAx)Ax® + 3 cos(3Ax)Z%a®At® - 2a%At?)

a - a (a'At® + 5Ax%a®At® - 10Ax®aAt

c (&) =
Hyman 130

+ 4Ax*)E*?
+ a (- 21a*At*Ax® + 40x%a®At® + 7TAx%a®At® - 4a®At®
1008

- 28Ax°aAt + 4Ax®)E°®

Comparing with the cubic scheme this has 22.07% of the phase error.
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In] = 1+4 s*v2(v-1)2(16s®v? - 16vs® + 16s*v® - 16ws*

2
Hyman

- 45* + 4s%p® - 4vs® - 20s® - 3)
The amplification error is 19.03% that of the linear scheme.

MAHG

CMAHG(E) = 1 arcsin [sin(fAx)aAt (- 5cos(§Ax)ahxAt
Atg 8Ax"

+ 2ahxAt + 3cos(EAx)ZadxAt + Scos(EAx)a®At?

- 3cos(EAx)%a®At? - 3cos(EAx)Ax® + 11Ax® - 5a2At2)]

() ® a+ Z%_(2a2At2 - 3ahxAt + Ax®)E>

- a (30a°At°Ax - 12a*At* + 502%At%Ax® - 105aAtAx®
560

+ 37Ax*)E* .

This has a phase error of 0.28% compared to that of the linear

scheme.

INE = 1+ l_ssvz(l—v)2(3654v2 - 36s*p + 245>

MAHG

- 24s%p - 9s® + 4v® - 4v - 39) .

This results in an amplification error of 27.77% that of the linear

scheme.
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Phase error Phase error RS .
Scheme Order Accuracy GonipEREd 6 conpared Amplification
of Phase Speed 13 R error
inear cubic
Linear 1st 100% - 1007
C?ntral st 18.99% = 40.41%
Difference
Cubic 3rd - 100% 50.38%
Hyman 3rd - 22.07% 29.03%
MAHG 1st 0.28% = 27.77%
Table 1

Table 1 is useful for seeing that we would expect the central
difference estimate to provide a better scheme than the linear derivative
estimate, or that we would expect the Hyman derivative to provide us with
a better scheme than the cubic derivative estimate. The problem is how
do we compare the MAHG derivative estimate (which we believe to be
original and which has the lowest amplification error) and the Hyman
derivative estimate which has a formally more accurate phase speed. If
we consider a derivative estimate at the point i that just involves the
five points i-2, i-1, i, i+l, i+2 then the Hyman estimate gives the
minimum amplification error for a scheme with 3rd order phase accuracy.
If the 3rd order phase accuracy is relaxed then we can reduce the
amplification error while still keeping a stable scheme, to obtain the
MAHG derivative estimate.

Since Table 1 cannot tell us which scheme is best of these two, they

were both applied to the linear advection of a square wave. The
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derivatives were limited by (A3a). It must be stressed that these tests
were not extensive but in the examples we did the MAHG derivative
estimate always performed better although never reducing the error by
more than 10%4. It would be interesting to see how the MAHG derivative
compared to the Hyman derivative in the much more challenging tests of

Rasch & Williamson (1989).
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