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1. INTRODUCTION

Computational Fluid Dynamics covers a wide range of modelling activity.
It includes complex codes based on traditional methods for difficult and
pressing engineering prablems and, at the other end of the spectrum, the developme
of numerical methodology stimulated by the desire for flexible and efficient
new algorithms. It is with the latter area that this report iswconcerned,
in particular with the development of algorithms which adapt in some way to
the flow field. By considering moving grids we overcome some of the limitations
peculiar to fixed grids while raising other issues. Here we describe and develop
the Moving Finite Element (MFE) technique in relation to hyperbolic conservation
laws.

We begin in one dimension by summarising the MFE method for piecewise
linear approximations as originally presented in (Miller, 1987 but without his
.use of penalty functions: see (Wathen & Baines,1985). We then describe
an alternative formulation, based on element basis functions, which is equivalent
to the Miller formulation but involves only local projections as in (Baines, 1985)
From this formulation we obtain ordinary differential equations in time for the
evolution of each element segment in terms of its velocity and angular speed.
The determination of the nodal velocities from the motion of the segments
(also local) is then described, and the resulting method is used to derive
the decomposition of the standard MFE matrix.

We then describe singularities of the method. In the rather rare event
of the nodes becoming collinear (parallelism) one of the local matrices becomes
singular,and a special non-local procedure is needed which is however simple
to implement. The only other singularity of the method occurs when nodes
overtake one another. This arises if the time step (in the numerical integration
of the semi-discrete problem) is so large as to destroy the accuracy.
However it may also arise (correctly) in hyperbolic problems when a shock forms.

In that case the appropriate jump conditioens may be used to continue the solution.



Time-stepping strategies are then discussed in relation to accuracy
and practical results. So far the forward Euler explicit method has been
found to be sufficient, as in (Wathen, 1984, Johnson 1984). Results are given
for two non-linear examples, the inviscid Burgers' equation (for which the MFE
method gives the exact solution) and the Buckley-Leverett equation. Both
programs run in BASIC on a home computer.

Generalising to systems of equations we describe a method which uses
separate grids for each conserved variable given by (Baines and Wathen,1985). Resul
are given for a shock tube problem. Again a small microcomputer is sufficient
to obtain a reasonable approximate solution to this problem.

The method has considerable potential in two dimensions see (Wathen, 1984).
However care is required in that the time derivative Ve of the piecewise
linear continuous function v 1in two dimensions now belongs only to a subspace
of the space S spanned by the element basis functions. Hence a constrained
projection is consideredwhich gives the standard Miller method. The approach
again demonstrates that the MFE matrix has a decomposition similar to that in
one dimension. A local segment velocity can also be derived which assists
in determining the rules for shock formulation. Results are given for a non-linear

problem in two dimensions, a generalisation of the Buckley-Leverett equation.

2. STANDARD MFE APPROACH

We first describe the standard Moving Finite Element method as presented

in (Miller,1981). We begin by approximating u in the scalar equation

u, + fl(u) =20 (2.1)
X

t

by the piecewise linear function v given by

v = z a.o., (2.2)
E J J




where the aj are nodal coefficients and the aj are linear basis functions
as shown in Figure 1(a).
For fixed finite elements aj depends on time t and aj depends
on the space co-ordinate x. In the MFE method aj depends alsc on the
time t through the nodal co-ordinates S5 (i =0,1,...,N+1). In order

to study the solution of the conservation law (2.1) we differentiate v

with respect to time. Since t appears twice in the expression for v we
have

v, = § [éjaj + ajdj] (2.3)

where the dot denotes differentiation with respect to time. Now, by the

chain rule,

aa
X, = 5, T (2.4)
aJ E ch Bsi
so that (2.3) becomes
) ) -
v, = a.o, + a, X s, —= (2.5)
t 3 JJ i J 5 i asi
By interchanging the order of summation we obtain
v, = (.o, + §.8.) , (2.6)
t § 33 33
where
aai
= —_— 2.7
B TS e
1 J
is a second type basis function dependent not only on t and on S5 but
also on a, the vector of nodal coefficients. From (2.2) we may write
B, = =¥ (2.8)
J st

which in the case of piecewise linear basis functions can be written (after some

manipulation as in Baines (1985) in the form



(2.9)

where m is the local slope of v (see also (Lynch,1881)).

Thus the second type basis function Bj has components which are
multiples of aj and have the same support as aj. {(The result is true
for linear basis functions in any number of dimensions. Diagrams
illustrating the o, and Bj in one dimension are shown in Figure 1.

Hence in one dimension

- ['. L '. . [2.10)
v § aJaJ sJBJ]

belongs to the space of piecewise linear discontinuous functions SaB' say.
If f[v)x also belongs to SaB we immediately obtain from (2.1)

ordinary differential equations for aj and sj in time. For example if

f(u) = ju? (2.11)

the ODE's are
a, =0 S, = a. (2.12)

which are readily integrated to give aj and sj' In this particular

case the trajectories of the nodes are the characteristics of the partial

differential equation as in (Wathen,1884). This is an exceptional case however.
More generally we may project f‘(v)x into the space SaB by minimising

the L2 norm of the residual

)

+ f(v]xll (2.13)
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t

over the variables éj and éj . This leads to the double set of Galerkin

equations

n
o

Koo, v, + flv) >
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Substituting for v from (2.10) we obtain the matrix system of ODE's

Ay =g (2.15)
where
;zT - [....éj.éj,...] (2.16)
<G.,a.> <a..vB.>
A = {Aij} ; Ay = R 1 (2.17)
<Bi.aj> <Bi.3j>
.
and g = {g.}, g, = <%, -f(v) > . (2.18)
1 Bi X

The matrix A is symmetric block 2x2 tri-diagonal, positive semi-definite
depending on y. Equation (2.15) gives the MFE equations as derived in (Miller,19¢

without the use of penalty functions.

It has been shown in (Morton,1982) that the MFE equations (2.15) carry the
best least squares fit to the exact solution in the case of a scalar conservation

law.

3. LOCAL APPROACH

We now adopt instead a local elementwise approach. The function Ve

in the space of piecewise linear discontinuous functions may be re-parameterised
in the form

Lt + éijJ = E [Wk1¢K1 * Wby o) (3.1)

using element basis functions ¢ as shown in Figure 2. The Wy are

ki

the coefficients of the ¢ in the expansion which can be related to the

Ki

éj,éj (see below). Denote by S¢ the space spanned by the basis functions

¢ki: this is the same space as SaB in the one-dimensional case.

Again, if f[v)x belongs to S¢ (= SaB) we obtain Wi1r Wi at once

and consequently éj and éj. More generally we may again project F(v]x

into S,. This can be done locally within each element by minimising the local

¢



element L norm

2
||vt + f(v)x” 5 (3.2)
over W s W o- We thus obtain alternative Galerkin equations
<¢, ., v, + f(v) > =20
S X (3.3)
<¢k2’ Ve ¥ f[v)x> =0
far each element which can be written in the form
Ck W, = Ek ; (3.4)
a 2x2 system. In (3.4)
I
= (3.5
e = D qety)] )
<¢k1'¢K1> <¢k1'¢k2>
C (3.6)
K <¢k2'¢k1> <¢k2'¢k2>
%K1
and Ek =L , ~flv) > . (3.7)
¢ X
k2
To relate the wk's to éj and éj we use the fact that
aJ - ¢j-%,2 + ¢j+%.1 Bj = -mj-%¢j’%.2 . mj+%¢j+%.1 7
(3.8}

where elements j-i, j+i are adjacent to node Jj, as in Figure 2. Then using

(3.1) we have the correspondence

a, - m, ,8, =
37 T3-1%5 T Yi-8,2
Vi . (3.9)
BRI R R B P
This can be written in the form
M. .. = w. » (3'10!
ity
another 2x2 system, where
§/T. = [a&,,8,] (3.11
J J
BRI (3.12



w, , 1. (3.13)

Since both the Miller method and the local elementwise method
minimise the same residual in the same space the MFE equations derived

from the two methods must be identical. It follows that, by writing

[ o] [~ 0
C = A . M = M, ; (3.14)
0o s o J-

we have from (2,15), (2.16), (3.11), (3.10), (3.4), (3.7), (3.8) and (2.18)

the decomposition of the global MFE matrix A

A = MTCM (3.15)

where both C and M are diagonal block 2x2 matrices (apart from end effects].

Thus we have shown that the MFE method consists of finding a straight line
best fit to -F[v]x in each element together with a local mapping from the

elementwise velocity description (in terms of w's) to the nodal velocities.

A particular property shared by the methods is conservation. Since

ki
of the first of (2.14) or (3.3) gives

both the aj's and the ¢ .'s are a partition of the unit function, summation

N+ 1
f [vt + F(v]x]dx =0 , (3.186)

o

from which we may deduce that

N+1
g [ [ ] N
— vdx| = - [flv) (3.17)
dt[S i Is
0 0
(SN
and conseguently that J v dx 1is constant in time apart from boundary
s
0

effects.

Boundary conditions may be imposed locally on the elements adjacent
to boundaries as in (Baines,1985). 1In the case of a Neumann condition at the end

J = 0 we have

§ =0 (3.18;

a. = w (3.19)

and hence the motion of the boundary nodg.
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If the boundary condition at the end j =0 1is Dirichlet then,

because we cannot impose both

s, = 0, a. =0 (3.20)

simultaneously and preserve the projection, a special constrained projection

has to be carried out in the end element. The result is that

w = 0, W =30b

1 1 1
3,1 3,2 3,

2/[51—50] . (3.21)

where b, , is the second of (3.7) for'the end element. This is consistent
29

with (3.20).

4. LOCAL ELEMENT MOTION

We now show that the motion of a local segment of the approximating

piecewise linear function may be obtained entirely from the local projection

step (3.4).
Let Vk be the velocity of the mid-point of the segment in the direction
perpendicular to the segment and let GK be the angle between the segment

and the x-axis, as shown in Figure 3. Then the equations (3.9) can be

written in the form

1]

& , cose, - 5 , sin® w,_, c0os@

K-z k k-3 K k1 K vk (4.1)
ék+% cosd, - ék+% sineK = Wy o cosf,
where nodes -1, k+! are the ends of element k, as in Figure 3. The
left hand sides of (4.1) are the velocities VK-%' Vk+% (due to the motion of

the single element k only) of the ends of the element k in Figure 3 at
right angles to the element. (The full velocity of a node will be a combination

of two such element end velocities from adjacent segments).

Let Tkt k-3 (4.2)

Then these end velocities may be written



k-3 _ wk'l cosg. ® —1__ C-1 rbk'l : 1 C_1|_<¢k1,f[\/]x,
Vs WKZJ < Voem) [szj /(em) [f¢k2‘f(le'
(4.3)

using (3.4) and (3.7). Since [1,1]T is an eigenvector of the symmetric matrix

: . 0 — = 1 i
Ck with eigenvalue 2[SK+% sk-él zASk, we aobtain
Urvé-’ 1 2 R¢k1'”")x>_l
[(1,1] v = i {1,1] < FlV) >
ked]  /eremp) %Sk P2 TV
Sk+t
S L <> s —2— | fv ax (4.0)
/eme) "ok X as /1em) Syt
-1 - -1 1 =
Hence Ve =3Vt Vk+%] ) B {(f(V)]k+é (f(V]]k-%}
Kk

(4.5)

which gives the normal velocity of the mid-point of the segment in Figure 3.

Putting Af, = {(F[vl)k+l - (f(v))k_lJ} this may be written in the alternative
2 2

forms
A
vV, = - —ih cos 6, = - ﬁiﬁ = - ﬁiﬁ- 5in@ (4.6)
Kk As Kk PQ Av k
K K
where AvK = Aak o ak+% . ak_% and PR are as shown in Figure 3. Thus

we have the important result that the speed of the mid-point of the segment
in Figure 3 in the direction normal to the segment is consistent with the local
average wave speed A{"K/AvK in the element.

Subtracting pairs of the equations (3.8) we obtain another important

result, namely,

et~ k-t T MkBker T Sk-y) T M2 T Ve e
or, using (4.2), dmk 1
= (=11 0w, (4.8)
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Since [-1 1] is also an eigenvector of CK with eigenvalue E-ASK we obtain
s

% o K_E,_?H “F:“':E:;xi i '[Zi_’J K+§(¢k2_¢k1)ﬁ\/)xdx
i k2o x d Sk-3 (4.9)
This leads to the alternative forms
dm
—K = _1_2_ A_—I = - 2,0
ry [ﬁs]z(F f) Fxx(nkl mkf_ (n) (4.10)
k
where S
" 1 k+z .
f = = J flvldx, f = 5([F(V]JK_% + [f(v]JK+%)
k /s
K-z
and n, € [SK-"SK+ ). (4.11)

1 1
2 2

Hence we have the result that the rate of change of the slope of the solution
in an element is equal to the second space derivative of the flux function.
In other words the solution segment rotates in response to the local convexity
of f. Another form of this result is
de m?
KoK _ e (n,). (4.12)

dt 1 + m;

As the segments move the intersections (nodes) also move, giving
the nodal velocities. Note that the segments have lengths that vary with

time. The movement of a node is thus the locus of the intersection of adjacent

elements (see Figure 4).

The results (4.6) and (4.10) show clearly the element behaviour in terms

of the flux function.

5. SUMMARY AND PARALLELISM

We give now a summary of the local elementwise method which is complete
provided that none of the matrices involved are singular. We then go on to

discuss the treatment of such singularities.

Summary
E = -
(1) valuate Ek <¢K, f(v]x>
(2) Solve Ckﬂk = Ek for W, V¥V elements Kk

(3) Pair off the w's nodewise
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. . : T
(4) Solve M, vy, = w for . = [4.,s8.] Y nodes j.
J XJ —x XJ JJ d

Note that the method involves the inversion of 2x2 matrices only: little
storage is required and the algorithm can be run on a small micro computer.
The method may break down if any of the matrices CK or Mj are

singular. Singularity of Mj corresponds to collinearity of nodes,

usually described by the term parallelism. This occurs when

in (3.12). Sipgularity of CK arises only if As, = 0 (see (3.6}).

Consider singularity of. Mj first. In this case we find that we

obtain inconsistent solutions of the pairs of equations (3.10). As a result

we can no longer solve equation (3.10) locally. The remedy is to temporarily

fix any parallel nodes, solve over a patch consisting of these nodes and

their neighbours and relocate the parallel nodes in some averaged way as in (Wathen
It is convenient to return to the a,B basis

& Baines,1985; Baines, 1985).

by combining equations (3.4) in staggered pairs. Then in the event of parallelism

at a single node we retain the combination of these eguations corresponding to

the basis function aj and replace the second (corresponding to BjJ by

*

éj =0 . (5.2)
where the * refers to the special solution under construction.

This gives
L shw, , ++
Jj-3,2 3 J+z J*z,1 6 j+3 j+3,2
= b, + b, , (5.3)

Since now éj = 0 we have éj = w, ,

problem which yields

1
R EE T I L VR B - B L T T Mt Y ST TP
aj = 1 < (5.4;
—(A A
3[ j_%s + j+%S]
W
s, =0
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as the solution for the modified system with the parallel node fixed.

The null space of the singular matrix Mj is spanned by the vector
[m.’l]T (where mj_15 = mj+% = m) and an appropriate multiple of this vector
may be added to satisfy an externally imposed averaged velocity or position.

If several nodes become parallel simultaneously a number of equations
of the type (5.3) will occur and it may be necessary to solve a tri-diagonal
system if the nodes are adjacent to one another. This can be avoided by a
different approach which leads to an explicit solution for the modified system.

In the approach above the system of equations

Cw = b (5.5)

or CMy = b (5.6)

with C given by (3.14) is pre-multiplied by MT to give the 0(,(3 inner-
product equations. Suppose that we pre-multiply this equation by MTC_1

(assuming C non-singular). Then we obtain different linear combinations of

the equations (5.8) but they still have the property {(through the presence of

the MT matrix) that in the event of parallelism the equations remain consistent.
We therefore again delete one of each of the offending pairs of egquations by

removing the second column of each relevant IVIj (see (3.14)). Call the

resulting matrix M*. Then, if we also impose &* = 0 as before we end up

solving
w e lomegr = meTe™s (5.7)
where v*= (.e..,@%,8%,...), (5.8)
L 37
which gives g = ety e ey (5.9)

where M*TM* is a block diagonal non-singular matrix. This is an explicit
particular solution of the MFE equations in the event of (possibly multiple)
parallelism, to which the null space of the matrix M can be added as before

to locate the parallel nodes as desired.
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Parallelism is a rather rare occurrence and is usually associated with
the curvature of the solution changing sign during the evolution, or perhaps

with the evolution to a steady state.

We go now to consider singularity of Ck' Since this type of singularity

is linked with node overtaking as a consequence of time stepping we discuss it

in the next section in association with time integration.

6. TIME STEPPING AND NODE OVERTAKING

The MFE method is semi-discrete and gives rise to ordinary differential
equations in time which require integration to obtain the full solution.

We have already seen that in the case of the inviscid Burgers'
equation the nodes move along characteristics, while for the general scalar
hyperbolic law the least squares best fit to the exact solution is carried
asymptotically for small time steps. Approximate time stepping will degrade
the latter property if the time step is too large, while the former property
will be lost for more general flux functions.

It has been found that using the Euler explicit forward difference
method is sufficient in the examples tried so far by Wathen, 1984, Johnson, 1984.

In no case do implicit methods give any advantage. We therefore use

B I S VI ) R m W, (6.1)
N =5 +j i = j i =3

n+1 n

S, S,

j &

(see (3.10)).

As far as the choice of At is concerned we still require an accuracy

criterion. Algorithms for accuracy are not well developed but in view of the

simplicity of the method we can afford to be generous in taking a trial and

error approach. A possible algorithm compares the result of one MFE step

with that of two half steps and continues halving the step until the difference

between the two results is acceptable, as in (Baines, 1985).
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A major difficulty with time stepping is that the nodes may overtake
one another if At is not small enough, and this gives a restriction on the
time step. The restriction is that At should not be greater than the
smallest time [At]D taken for any node to catch up with its neighbour. This
is easily calculated if Euler time stepping is used. However, time accuracy
is also lost so At should not be too large.

In problems whose solution is expected to be smooth we expect nodes to
merge when they overtake. Because of time inaccuracy this may not occur
in practice and we have found that a practical time step is obtained by taking
half [At]o. For hyperbolic problems which admit shocks however we expect
discontinuities to form and we can take advantage of node overtaking to model
shocks in an effective way.

If it is not known in advance whether a shock is forming or not we can
test the slope of the segment which is tending to zero. If this remains finite

then there is no shock forming.

As the separation of nodes goes to zero the element segment becomes
vertical (parallel to the u-axis} and from (4.6) with Ok + w/2 the normal
velocity of the mid-point of the segment tends smoothly to the shock speed,
at least in the semi-discrete case. The shock speed may then be "frozen"”,
i.e. imposed on both nodes of the shocked element: this acts as an internal
boundary condition and the solution on the adjacent elements to left and right

may proceed separately. The procedure is also feasible when nodes run into

shocks or when shocks overtake shocks, in which cases a node can be deleted.
From equation (4.12) we see that the angular speed of the segment

is non-zero when the shock forms (mK + ®) g0 that there is a change of state

at this instant. The manner in which the shock forms in the MFE method is

consistent with the (Oleinik,1355) entropy condition in the semi-discrete case.

Moreover this is also true for expansions.
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Accuracy in space is of course determined by the number of nodes

used to represent the solution and this is decided when carrying out the

projection of the initial data into the piecewise linear space. Less

obviously it has been found that it is crucial how these nodes are distributed

in space, equidistribution of [u")% being an effective choice: see (Herbst,1982)
We show numerical results for two scalar problems, the inviscid Burgers'

equation and the Buckley-lLeverett equation. These are shown in Figure 5.

The first gives the exact solution for $his (convex) flux function while the

second gives an approximate solution (in the case of-«a non-convex flux function).

7. EXTENSIONS TO 1-D SYSTEMS

In extending the above ideas to systems of conservation laws we are
faced with an immediate decision. Should we work with separate nodal coefficients
and a common mesh or should we give each component of the system its own mesh
with individual nodal coefficients and co-ordinates?

Where discontinuous features are expected to occur simultaneously
for all components of the system, as in the Euler equations, there is an
argument for using a common mesh. However the useful algebraic structure
of previous sections is only preserved when each component is given its own
mesh, (but see below).

One possible strategy is to use a single mesh whose movement is determined
by a single preferred component of the system as in (Baines & Wathen,1885). For
example, in the Euler equations we might choose the density as the most
significant component and use that to drive the nodes. The remaining components
are then determined on a prescribed moving mesh.

The difficulty here is that the flux function in the density equation is
the momentum, which is itself piecewise linear on the same mesh as the density.
By (4.10) it follows that the slopes of the element segments of the density

do not change with time, which is much too restrictive.
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We therefore censider here a model which uses a different mesh

for each component of the system. As a result of the independence of each mesh
we can easily solve the MFE equations in the manner of earlier sections,
once the right hand sides have been set up. Thus the mpgip New feature
is the quadrature in equation (3.7) which links the components of the system
through the evaluation of f(v). (In one dimension the elements can be sub-
divided suitably with an elementary quadrature over each sub-element.)
The only other difficulty arises in the shock modelling. A feature of a shock 
in gasdynamics 1is that components shock simultaneously and this is not
guaranteed in the numerical method. An additional device is therefore
needed in general to ensure that when a shock occurs it is simultaneous
in the appropriate components.

We can devise yet another algorithm which uses only a single grid by
mapping the result of the separate mesh method above onto a single mesh. This
can be done by a least squares projection which replaces (3.10) by

| — T
M.My, = M.w, (7.1}
J JX' J—]
as in (Baines, 1985).

We give numerical results for the well known shock tube problem

used as a basis for comparisons by (Sod,4978)}. These are shown in Figs.,sa o o
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3. THE METHOD IN HIGHER DIMENSIONS

One of the most promising aspects of the MFE method is its straightforward
generalisation to higher dimensions. We consider here the two dimensional
scalar conservation law

u Fx + gy =0 . (8.

We again approximate the function u by a piecewise linear function v

given by equation (2.2), where the basis functions are now two dimensional
"pyramid” functions as shown in Figure 7. The time derivative Vi of the
function v now however belongs to a subspace SaB of the space of piecewise
linear discontinuous functions S¢ on the two dimensional mesh, because it

has to correspond to a continuous v and not all members of S¢ do so.

This is because there are generally more elements surrounding a node than there

are nodes at vertices of an element (see Figure 3).

From a local elementwise point of view we can readily calculate

the Ek in the two dimensional generalisation of equation (3.4), which

is now a 3x3 system. But in order to obtain the nodal velocities, which

are evaluated from the union of equations (3.10), we require w, the union

of the Ek's' to lie in the range space of M (see (3.14)), which is now

rectangular.

It is therefore necessary to constrain the projection which leads

to the vector W. The result of this constrained projection (as in Baines, 1985)

is that W satisfies

Mow = m'b (8.2)
which, since MT9_= g (8.3)
leads to the familiar form

meny =g (8.4)

i.e. it is equivalent to the standard method (see for example (Wathen &

Baines, 1985).
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Hence the decomposition

A = MTCM ' (8.5)

holds in higher dimensions, but although the matrix C 1is square 2x2

block diagonal (using elementwise numbering) the matrix M is rectangular.

For example, in two dimensions using nodewise numbering M takes the form

N where
4 -mj,l -nj{‘
N = diag {Nj} Nj = 1 -mj2 Mo (8.6)
i 1 -ij —nj¥'
where m,,, nji are the slopes Vo vy of the function v 1in the x and

y directions within the element i( for i = 1,2,...,1).

Using a permutation matrix @ to map between the elementwise numbering

and the nodewise numbering we obtain the consistent decomposition

A = NTQTCQN ) (8.7)

where M = QN.

It has been shown by Wathen (1984) using this decomposition that if D is the matris
consisting of diagonal blocks of the MFE matrix A then the eigenvalues

, -1
of the matrix D 'A 1lie in the real interval

] (8.8)

where d is the number of dimensions.* There is therefore
every reason for using a conjugate gradient method with D_1 as preconditioner
to invert the MFE matrix A.
It is interesting to note that the MFE equations (B8.4) also arise
from first carrying out an unconstrained projection for w into the space

S¢ and then doing a least squares projection of the equation

Ny = w (8.9)

1
weighted by the matrix C?Q as in (Baines, 1985).

* The result also holds for the usual fixed finite element consistent mass
matrix (see Wathen, 1985).
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By a calculation similar to that in Section 4 we again find as in (Baines,1985)
that, when w 1lies in the range space of M, the velocity \/K of the centroid
of the triangular segment of the solution in the direction perpendicular to the

segment is given by equation (4.6), where now

Af = the outward flux of (f,g) across the

" element boundary |, (8.10)
Avk = the vertical profile of the element k, (8.11)

and the angle ek is given by
tan 8, = [ov] . (8.12)

There is also a corresponding result on the segment rotation similar to
equation (4.10) but apart from noting that the convexity of the flux function

is again involved we do not set down the details.
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9. SINGULARITIES IN HIGHER DIMENSIONS

Because of the decomposition (8.5) the singularities of the method
in higher dimensions correspond to those in one dimension, namely, they are
singularity of C when the element size goes to zero,and rank deficiency
of M when nodes become coplanar : see (Wathen & Baines, 1985).

In the latter case of parallelism the remedy is the same as in one
dimension, namely to remove the (linearly dependent) equations causing the
parallelism and to solve a reduced system, adding a suitable multiple of the
null space at the end. Some care is required with the larger blocks occurring
in higher dimensions: it is safest to transform the local system to upper
triangular form, which avoids problems of ill-conditiconing which can arise
if an arbitrary equation is omitted.

Singularity of C arises when the size of an element goes to zero
as a result of a node running into the opposite side of a.triangle. Even
though we do not have a proved best fit property in more than one dimension
we may still conjecture that this occurrence corresponds to the formation of
a shock. Technical difficulties arise in determining how the shocked triangle
should move subsequently but we have the following lead.

We recall the result in Section 8 on the normal velocity VK of the centroid
of the triangle segment perpendicular to itself. It can be seen that this
velocity tends to the local shock speed as the segment becomes vertical in the
sense that the triangle sweeps out "mass” at the correct rate. It appears that
we should therefore impose this shock speed on all points of the vertical line
through the centroid of the triangle in the subseguent motion with the shock in
place. Thtis still allows possible rotation of the triangle about the line
through the centroid which must be determined from the solution of the rest of

the system. We do not go into the details here.



_21 =

We show results for one problem, a generalisation of the Buckley-Leverett

equation in one dimension. The governing equation is

u +z-|_ Ca ] -0 (8.13)

[yz + %(1—uJ2J

and Figure 9 shows both the initial data and the solution at a later time.

t

It is worth noting that even though the triangles of the mesh become highly

distorted there is no ill-conditioning of the MFE matrix.

10. CONCLUSION

In this report we have shown that the MFE method in one dimension
is a local method which gives the motion of individual element segments by means
of a local straight line best fit. Moreover the segment movement can be found
in terms of elementary properties of the flux function. As a result non-linear
problems involving scalar conservation laws can be solved simply on a small
computer. Shocks are particularly well resolved by the method, the entropy
rules being respected. Two ways of dealing with systems are described.

In higher dimensions the local nature of the method is modified in
that an additional least squares fit is required to map the local element motion
onto the nodewise velocities. The technical problem of dealing with shocks is
assisted by the consistency of the element segment velocity with a local wave

speed.
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