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Abstract

We describe a solution/grid duality in the approximate solution of a
scalar hyperbolic equation on triangles. Solution mechanisms for a Least
Squares minimisation approach are discussed.



1. Form of the Fluctuation

Suppose that a function u(z,y) is aproximated by a linear function U(z,y) in
each triangle T" of an unstructured grid {7'}. Then, for the PDE

aVu=0 (1.1)

let the fluctuation in the triangle T’ be defined [1] as

bp = — /T (a.VU) dQ. (L2)
SinceVU is constant in 1" we have
¢ = —Sr (ar.VU) (1.3)

where St is the area of the triangle and

ar = —1—/ adqQ. (1.4)

STT

.Let the corners of the triangle be labelled 1, 2, 3: then we may write

3
¢r = kU, (1.5)
v=1
where 1
k,, = —EaT.n,, (16)

n, being a vector in the direction of the inward normal to the side v of magnitude
equal Lo the length of the side. Note that k3 for example can be written

ks = %aT. ( (_Yi );f)xl) ) (1.7)

so that, if ar = (a, b)

1 1
k3 = EG(Y'Q s )/1) e 'z—b(Xg — Xl) (18)
= @ (= 11) .N) (1.9)



e EZT—] ((r2 —r1) ﬁ) (1.10)

where 1, — r; is the vector length from vertex 1 to vertex 2 and N is a unit vector
perpendicular to ar. Therefore k3 is proportional to the projection of ry —r; In
the direction of N, denoted by Ny — N1, say. We may therefore write

(Ny — N,) (1.11)

and hence
a a a
¢r = % ZUs (Nz - M) = _2T_|UE.F (PTNT) - _I‘2L| (PTUT)tNT (1'12)

where U and Nz are 3-vectors of U and IV values at the cornersof triangle T’
and P is an antisymmetric permutation matrix which in 2-D takes the form

0 1 -1
10 1 |. (1.13)
1 -10

i
Pr=3

Equally via transposition we obtain the dual forms

o = — [ar| N% (PrUr) = |ar| (PrN7)' Ur. (1.14)

In the local framework the functions Ur and Ny are defined element by element
and from a global point of view there is no reason for them to be continuous. We
may however enforce nodal continuity by introducing an assembly matrix M which
has the effect of adding the contributions to the local matrix entries from triangles
around a node. Then the vectors {Ur} of Ur’s and {Nr} of Ur’s satisfy

The matrix M may be thought of as node based and is simplest to write down
in a node based numbering. Unlike Ur the direction of Nz and its zero positionl
changes from element to element but N is still a local average at a node.

2. Fluctuation Norm Minimisation

Solving the set of equations ¢ = 0 VT for the unknowns Uz and Nr is an
underdetermined problem even when continuity of U and N are enforced. We
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Define the square of the local I, norm of the average residual of (1.1) in the
triangle T' to be

. s 1o = 2 g 1 ¢T
r= 350 = 5 [ @VU)Pd0 = 28 @YU =
Using (1.12) and (1.14) wehave - -~

se @D

seek a solution: by least:squares using-a weighted Iy norm corresponding to the
square of the average residual R of (1 1)

1 .
Jr = U4 (PrNy) wr (PrNp) Up = §N5-. (PrUr) wy (PrUz)' N

)Ny (22)
i R _
B 3

where : _

Enr = (PrNp) wy (PrNr)’, Byp = (PrUg)wyp (PrUr)"  (24)
and

o
|ST
Note that if wr is held constant (2 2) is quadra.tlc in each of the variables UT and
Ny separately.: =7 ... - R i
... The global functlonal

1
o =52 UrEnrUr
~2S5r 2 ; N
can then be assembled, using (2.2) and (2.4)
= 2UtMt{ENT}MU =§UtMtENMU
where

1
:EUtANU

EN el {ENT} AN = MtENM
Also, interchanging the roles of U 'and N

Z N EyrNr



1 1
= ENtMt{EUT}MN :";—NtMtEUMN ZENtAUN (28)

where

Ey = {Eyr} Ay= M'EyM. (2.9)

The entries in the matrix Ay are

aNij = Z (PTNT)i wr (.PTNT)EL = Z’LUT (Nz'2 — Nil) (Njg e le) (210)
T T

when the nodes ¢ and j share a common triangle 7' and zero otherwise, where
N;y, N;1 are the N values at the nodes of the side opposite node ¢ taken counter-
clockwise. Similarly

avi; =y, (PrUr); wr (PrUr); Zw:r —Ua) (Ujp — Ujp). (2.11)
T

When essential boundary conditions are overwritten J is augmented by addi-
tional terms of the form

U'b + N'c (2.12)

with the number of unknowns in U and N reduced accordingly.
A related simpler norm is

1
Jp = %NtDUN =§U‘DNU (2.13)
where
Dy = diag{Av}, Dn = diag{An}. (2.14)

Since the diagonal matrices Dy, Dy of Ay, Ay are assemblies of local matrices
on each triangle, in this case their diagonals,

Dy = M'diag{Eyr}M Dy = M'diag{Enr}M (2.15)

the diagonal entries of Dy, Dy (and Ay, Ay) are as in (2.10),(2.11) with ¢ = j.

3. Rayleigh Quotient

If Dy is non-singular, then for any vector y the Rayleigh Quotient

yAvy y M'Ey My z' Py
ytDyy — ytMtdiag{Ey}My ztdiag{EU}z
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__ Yrzr (Bur)zr

S rzhdiag (Eyr) zr
where z = My and z = {zr}. By expanding zr in terms of the normalised
eigenvectors e, of |ag| diag (Eyr) ™" Eyr with coefficients z; the Rayleigh Quotient

becomes , )
S 2 2ok 2z ediag (Eyr) 2
Z'tr Zj > %jdiag (EUT) 2k

from which it can be shown (see e.g. [3], [4]) that it lies between the maximum
and minimum values of the \;’s, i.e within the roots of the determinantal equation

(3.2)

1—-Xx 1 1
1 1-x1 |=0 (3.3)
1 1 1—A
which are 0 (twice) and 3. With boundary conditions applied the zero root be-
comes positive (¢) though small. Thus, provided that Dy is non-singular, the
diagonal norm Jp, stays close to J irrespective of the values of U (or of ar or St).
A similar argument holds for Ay.
Equivalently, the eigenvalues of D;;* Ay and Dy' Ay lie between € and 3.

4. Solution Methods
Descent methods for the minimisation of J are of the form
UPH= UP4r? (HP) ' dP (4.1)

where H approximates the Hessian of J and d is a descent direction. The steepest
descent method may be written as

Urtl= U?P—7PVyJ?P = (I—TAN)p U? + b (42)

or

NPH = NP—g?PVJP = (I—0Ay)’ NP + oPc (4.3)

(see (2.6), (2.8) and (2.12)) where 7 and ¢ are the stepsizes and wr is held
constant. This is a descent method with d = —VJ and H approximated by I.
A modified steepest descent method is obtained by replacing H? by DP in (4.1)
giving

U= (I-rDy'Ay)" U” + 7 (DF')"b (4.4)
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or

N7H= (I-0D5' Ay)" NP + 0% (D7) c. (4.5)

In any sweep each U? +1, NP it component is a weighted average of its surrounding
values plus a boundary term where appropriate.

Since the eigenvalues of D~1A lie between € and 3 irrespective of their argu-
ments (where is £ small) the eigenvalues of I — 7D~! A lie between 1 — 7¢ and 1—
37. So choosing 7 < 2/3 ensures that | P (I —TD;,IAN)‘ < 1 with a similar result
for 0. The only proviso is that the matrix D is non—singular which in practice
means that the modulus of the diagonal entries is not less than a certain tolerance
TOL. If it is less than TOL the update is set to zero, which from (2.10) and (2.11)

occurs when

Ny — Ny)?| < TOL (4.6)

or

Ua)?| < 1072, (4.7)

A well-behaved algorithm can therefore be constructed in which the solution
is found from a suitable initial guess by descent methods. An argument for this
approach is that each variable depends on the other in the minimisation, so they
should be iterated simultaneously. Direct Methods such as CG or GMRES may
be used to improve the initial guess for U.

For the Jp norm (2.13) the corresponding iterations, using (2.10) and (2.11),
are Vi

Urtl= (1 T"ZwT 2 — N ))U3’+T5’bi (4.8)
or

Np+1 (1 OPZU)T (U,,z . ,,1) )Nf’—}—a‘fq (49)

In the conjugate gradient method the directions d in the descent method are
made A-orthogonal to each other. The updates are

UPHl= UP—7?d? or NPH= NP—gPd% (4.10)

where

dfy = —rp + 7l or  dfy = —1h + Py (4.11)
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P =AU-b or 1 =AyN-c (4.12)

with
d’ = —r° (4.13)
Here .
i AL +1
. )y e (™) Avd?, (114)
(df)" Avdy;’ (df)" Avdy,
or ;
, 1
oo Ry () Avdh (4.15)
(dR)" Andy,’ (dR)" And}
The residuals are
Iy = ANU —b or 'y = AuN — C. (416)

The method may be preconditioned using the diagonal matrices Dy or Dy.

5. Role of wr

When wr is not held fixed the functional J is no longer quadratic in N and there
are extra terms in the gradient of J of the form (see (2.3))

1. ¢? 1 Z
. ; §TVX,YST Sl ZTj 5 (PYr,—PXr) (5.1)
since

1
Sp = %Z XrAYy = X4PYy = 2 3 YrAXp = ~Y4PXr.  (5:2)

Hence (43) receives extra terms
¢° an;
Y i@ (5.3)

where n; is the scaled inward normal to the side opposite node ¢, and there is also
an additional steepest descent equation for the coordinates C' in the characteristic
direction of the form

P
Crtl — CP ¢+ % ; %PN. (5.4)
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These additional factors represent nodal movements in which the elements
compete for area and as such are smoothing effects. The same can be said for in-
troducing diagonal swapping with area as the criterion for swapping. On the other
hand the minimisation over N is directed towards making the residual zero. This
is equivalent to aligning particular sides of the triangles with the local characteris-
tic direction and as such is a directional rather than a smoothing operation. When
both effects occur together there is inevitably some cancellation which reduces the
effectiveness of either.

Alternatively the variation of J with respect to St can be used to construct
separate iterative descent steps of the form

() (2) (gl

? {73}
Vi, 1.e.
NN _(NY 7 (s g2p [ Co—Ci g
( C ),; s ( C )i +? {TZ;}ST Qb:t( _(NiQ—Nil) ),: (56)
or
p
£ = (3 s, 6)
2 {13}

where r; is the displacement of node i and n; is the scaled inward normal (by side
length) to the side opposite node i. Since Sy = |n;| h; where h; is the height of
the triangle measured from node 7 we have

P
= l'f‘l'%p (Z Sflfﬁgrhz‘ﬁz‘) ; (5.8)
{Ti}

where 1i; is a unit vector in the direction of n;. A suitable dimensional scaling is
to divide the update by

D
(Z S;%%) (5.9)
{T:}

giving

2 h:iis p
2= st (ZELER) (5.10)

where S;'¢r = Ry is the average residual and  is a new relaxation coefficient.
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6. Upwind Minimisation

Suppose now that for an interior triangle the update to Ur is carried out over
only those corner values of U which correspond to downwind nodes. Denote such
an update by a superfix d. Then the local update becomes

UsH — UL = —?E4,U% — br (6.1)

where E2. is the part of Er corresponding to the downwind nodes, the rest of E%r
consisting of zeros. After assembly we have (cf (4.2))

Urtl — UP = P M*ES% MUY, (6.2)

However since the matrix M*E$, M is not symmetric, it is clear that (6.2) cannot
be obtained from a least squares minimisation.

On the other hand, if we confine the calculation to the elements adjacent to
the inflow boundary (as if the downwind corners were outflow points), overwriting
of the inflow values ensures that each local matrix is symmetric with respect to
the downwind points. For example, if the least squares method is applied only
to the strip of elements adjacent to inflow, it is indeed equivalent to an upwind
method.

Carrying out the minimisation over U in this way results in a scheme close to
the LDA scheme [3]. The update is of the form

UPt U = -7 _ ko, (6.3)

where the sum is taken over only upwind triangles, which corresponds to the LDA
scheme provided that the non-zero k; are normalised so that they sum to 1.

The question arises whether the upwind least squares approach can also use-
fully be applied to the coordinate N. If N is treated in the same way as U, namely
obeying inflow conditions which enable N to be overwritten and leaving outflow
conditions free, then there is no reason why it shouldn’t. The key point is that
the minimisation should be done a strip at a time, working forward in a frontal
manner through the grid.
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