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0 Abstract

The purpose of this report is to describe work carried out on the above con-
tract concerning the feasibility of using Roe’s scheme for problems of interest to
ENEL. This scheme gives approximate solutions of processes governed by sys-
tems of hyperbolic conservation laws and applies to both problems of water flow,
dam-breaks for example, and of gas flow. Although the Euler equations for gas
flow have much in common with the shallow water equations the types of flow
expected are quite different. High speed gas flows are dominated by discontin-
uous shocks and expansion waves. In shallow water flow, on the other hand,
many interesting flows have ‘smooth’ solutions and classical methods will solve
these accurately and efficiently. However, there are situations where discontinu-
ities arise, the dam-break problem for one, and classical methods often struggle
to give acceptable answers to these problems. Discontinuities are, therfore, an
integral part of many problems involving systems of conservation laws and Roe’s

method has been specially developed for solving these problems.

In this work we have sought to show the potential of the method
in areas of special intcrest to ENEL-CRIS. [t is hoped that the work will show
whether or not this new solution technique will provide an algorithm that is ro-
bust, and accurate, enough to provide a numerical method suitable for many of

the flow problems arising at ENEL.



1 Introduction

In order to test the suitability of Roe’s Total Variation Diminishing (TVD)
scheme, see Roe [15, 16] for example, ENEL suggested two test problems for
which there is test data that can be used to verify the codes. The first involves
a dambreak situation and the second is that of a blast wave exiting from a muz-
zle. Both involve the solution of a hyperbolic system of non-linear equations,
the shallow water equations or the Euler equations. In both cases the non-linear
equations are decomposed, using an approximate Riemann solver, into a num-
ber of wave problems. Each of these wave, or advection, problems can then be
evolved using a TVD scheme, see Sweby [19] for example. In this report we will
be concerned only with the approximate Riemann solver due to Roe [15] and

schemes that arise from this.

In the following section Roe’s Scheme will be derived for the 1-D
shallow water equations and then for the 2-D shallow water equations. A dis-
cussion will also be given as to applying these essentially 1-D scheme in more
than one-dimension.Then in section 3 the test problems for the 2-D shallow wa-

ter equations will be described and the results to this problem will be given.
In section 4 we will move on to the application of Roe’s scheme to
the 1-D and 2-D Euler equations, in particular those governing axially symmetric

flows. A test problem for these equations will be described and the results given.

Finally we summarise this work in section 5.



2 Roe’s Scheme for the Shallow Water Equa-

tions

2.1 One-Dimension

The usual form of the shallow water equations in one-dimension are given, for

our purposes, by the St. Venant equations. These are

0A 0Q

(2.1) ot + Oz ==
Q o [Q? oh B

(2.2) —3t_+5:;(—14_)+gA [%'FS}] =10

where
A = cross-sectional area = breadth x depth = B x d
(only rectangular channels are considered here)
u = velocity
@ =massflow
g =acceleration due to gravity
h =height= d + zwhere z is the height of the river bed
S} is a friction term. A typical form of this is %\lgz-l where

K = 4 (hydraulic radius)?/3 and M is Manning’s constant.

Before proceeding we rewrite equation 2.2 in a conservation form
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more suitable for the application of Roe’s scheme, namely,

2 2
Q" gA B (ABjC 2 = )
where we have replaced h by A/B+2 and § = z,. The equations, (2.1) and (2.3),

are now in the form we shall require and can be written in vector notation as

¢, tE,=b
where
( A
(2.4) g =
\ @
Q
(2.5) E. =
2
Ttivw
0
(2.6) b =

gA (4 - S; - 8)
An extra %gz‘PBJC/B2 has been added to both sides of the equation for reasons

which we shall give later. Following Roe [15] we define an intermediate, or pa-

rameter, vector

o=

w A
(2.7) w 1

Il

Wa wA?z
(The definition of this vector is somewhat arbitrary and the scheme can be de-
rived without its use, relying solely on the properties that the resulting differences

and averages must have. The use of the parameter vector in the form given here
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merely simplifies the derivation, by removing several layers of algebra.) The vec-
tors ¢ and F, equations (2.4,2.5), can now be expressed in terms of the parameter

vector variables, w;, w,, as

uff Wy thg

, E=

. s
Wy Wy wh + zgwi/B

[
Il

Using the standard notation of Az = 25 — 27, and Z = 1(zr + ;) we proceed to

calculate matrices B(w) and C(w) such that

(2.9) AF = C(w)Aw.

This leads to

27 O
B =
Wy Wy
and
Wa wy

where B* = /By Bpg.

At least this is what we would like to have done. Unfortunately
not all the terms can be expressed in this fashion — essentially jumps in F due
to changes in B cannot be accounted for in terms of jumps in w — and so an
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extra 1gA?B,/B? must be added to both sides of equation (2.3).

To decompose the problem into its characteristic components we

proceed to find A such that

(2.10) det(AB — C) =0,
giving

M= 2 _\[gBwl/B®

Az = g + gFU)—%/B*z-
Wy :
Reassuringly, if we ignore the averaging, these then simplify to u £ +/gd as we

would expect.

These eigenvalues give two eigenvectors which, after multiplication

by the matrix B, are given by :-

wy
& =
r— o0 2
Wy — \/gB w?wr?/B*
w1
€y =

W; + \/gBw] w2/ B
Two a’s, representing wave-strengths, are now found such that }J; ce; = Ag (and

by construction 3, o; \;e; = AF), i.e.,



wl sz = ’L—U'zA'LUl
2\/g§—u71 w%/B*Q

Q= A’Ll)l =]

wq AU)Q e —’LUQA'U)l

Qg = Aw1 + —
2\/gB w?; w?/B*

The flux difference, AF, caused by the jump in two neighbouring
piecewise constant states, Ag, has now been split into a number of wave problems
where the e;’s can be regarded as the waves, the A;’s as the wave speeds and the
;’s as the wave strengths. We can now apply standard TVD type algorithms to

each of these wave problems as follows.

If we define ¢j,i+% to be the signal from the j** eigenvalue at the
jump at ¢+ %, ie.,
At
vt = — A ML
then the first order upwind algorithm is defined by:-

)\j >0
if then add ¢;;,1 to

/\j<0

25

k=

1

If we, in addition, transfer an amount a;;,1 against the direction

of flow we can achieve second order accuracy in smooth regions by choosing

1,
a; = 5(1 — lvil)

where v; is the CFL number of the j** wave.



Defining a transfer function, Baines [1], by

B(aj,i+%¢j,i+%a Gjitl-o; ¢j,i+%—a]‘) = B(b1, b2),
say, where o; = sign(};), we can arrive at various second order schemes. Lin-
ear functions of b; & b, tend to give classical second order schemes (for a scalar
equation) with all their faults when approximating discontinuous solutions. For
example, B(by, b;) = by is the Lax-Wendroff scheme, B(b,, b;) = b; is the second
order fully upwind scheme and B(b1, by) = 3(by + by) is Fromm’s algorithm. For
non-linear systems these schemes will not be identical to their classical ancestors
but they will tend to exhibit the same properties. Taking non-linear functions
of b, & by, however, enables us to arrive at oscillation-free second order schemes

(see Sweby [19, 20] for a fuller discussion).

Three of the most useful limiters are the minmod limiter, [19], Van
Leer’s limiter, see Van Leer [21], and the Superbee limiter, Roe [16]. With all
these limiters they return a value of B(by,b;) = 0 if 5102 < 0. In the case of the

b’s having the same sign we then have:-

. by if |b1] < [bo)
(2.11) Minmod  B(by,b;) =
by if |by| > by
2, b.
Van Leer’s limiter ~ B(by, b)) = (3%3



b

by 1< &= 2

b, 1< gg <2

Superbee  B(by,b;) = <« ;

b

2b, B >2
b

2b, B2 2

“

We note, for future reference, that the source terms, b, from equa-
tion (2.6), can be expanded in terms of the eigenvectors ¢; & e, as b = Bie, + fBae,

where

~/9(AB,/B* — 8; — B)B*
ovB

b

:62 = _181'

2.2 Two-Dimensions

In two-dimensions the shallow water equations we shall be using can be written

in the form

(2.12) g +tE.+G,=b
where
h
4, = hu |
hv



E = hu? + gh?/2 |>

\ huv )
[

G = huv )

\ hv2+gh2/2/
()
b - gh(ﬁz_s}:)

\ gh(By — Slfl) /

B, and B, are just the bed-slopes in the  and y directions respectively,

0z 0z

ﬂx':'“a_, ﬂy:_aj'

The friction terms we shall be using in the computations here are defined in equa-

tion (2.13) as

,  nfuvu? 4+ v? n?vyu? + v?

In (2.13) Manning’s constant is denoted by n and takes the value 0.012 for the
dambreak problems of section 3. Instead of k, the height, we actually use the
variable ¢ = gh and define the momenta to be m = ¢u and n = ¢v. This is
an inconsequential difference as far as the method is concerned and we could as

easily proceed using h.

There is some concern about using essentially one-dimensional mod-
els for multi-dimensional problems and there has recently been some effort to
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create genuinely multi-dimensional upwind codes, see Deconinck et al. [6], Hirsch
& Lacor [10] and Roe [17] for example. However, these algorithms have been
developed solely for the Euler equations at this point and are at a very early
stage of development. Hence the vast majority of practitioners use the splitting

approach. That is, we regard the problem

flt+Qy=0

to which the one-dimensional algorithm can now be applied, see Strang [18] for

example.

Following the procedure explained for the one-dimensional case we

define a parameter vector

w1 ¢%
= p— 1
1

W3 ¢§'U

and now express the vectors ¢, F & G in terms of these variables to get
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wf W1W9 w1Ws

4
s — w —_
=] ww, |+ £=] w2+ =+ | G= Wols3
2 vl
W1 W3 WolW3 w3 + ;

Considering just the x-direction we again look for matrices B(w)

and C(w) as in equations (2.8) and (2.9). This now leads to

Wq w4 0
C=| o2muw? 2w, O
0 W3 Wy
As in (2.10) we calculate
)‘iz,s o 22‘ — yw?, @, 22 + Vw?
w1 w1 W1

which are sen to be the u,u £ /¢ characteristic speeds we would have expected.
These eigenvalues then lead to three eigenvectors which, after multiplication by

the matrix B, are

3 R

Wy 0 W,
F' e = _ [ . _ —
€23= | Wa—wWiyw? [+ 0 [»| Wy +wWr/w? | (-
Ws Wy W3
Py

"

The wave strengths can then be found as
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Performing similar operations in the y-direction gives

G
)‘1,2,3 -

with

G .
€123 = 9

and

.

W3 [~ W3 W3 —
— =ty —u =+ yYwh
w1 W1 w1

W1 0

W2 | Wy |

w, 'LU21 0 E3 + w1

N

Wy Awy =W Awy,

2/ w—zl

W Mg —1oa Ay
i

A'UJ] —_

3 W) Awg—Wa Ay
A.HJI + Wy Awg—p Aw
2y w2y

Ty Ay —wa Ay

i A Wy

iy Aiwg =T Ay
w1

Awy —

Ty Ay =T Aw

A'u” +
le AV LU?]_

2.3 Body-Fitted or Cartesian Grids ?

When Roe’s scheme is used in two-dimensions for non-Cartesian geometries there
are two possibilities for extending the scheme for use in these situations. A body-
fitted grid can be used, see Glaister [9] for example. This is certainly the most
aesthetically pleasing way of tackling the problem. The main advantage is that
it is also efficient in the sense that fewer cells can be used to cover the whole
domain. In implementing the method in this way we need to calculate fluxes

normal to the cell boundaries, labelled D and E in Fig. 1. These have a very
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similar form to the fluxes already dealt with. (If we label u to be the normal
velocity component and v to be the tangential velocity component then all cases
are covered by the formulae given for the x-direction previously). Problems with
this method are that the domains that can be tackled are limited in complexity,
because of the need to generate a quadrilateral mesh to fit it, the ‘second order’
schemes are limited to formal first order accuracy because of the non-uniformity
of the grid, and the grids resulting from a mesh generation routine that creates
the mesh according to the geometry of the boundary may not be particularly

good for representing the solution in that domain.

(We have also found great difficulty in programming this method.
Whilst there may be a bug in the code causing the problems, it does not seem to
be very robust and only works for the problems in the next section because the

grid actually only varies slightly from being cartesian.)

The other alternative is to use a cartesian grid even though the
geometry is non-Cartesian. Obvious advantages are in grid generation and the
simplification of the algorithm. Accuracy also formally improves, away from
boundaries, as the mesh can be made uniform. On the other hand efficiency
decreases since, generally speaking, a greater number of computational cells is
needed. However, by the use of overlapping meshes (Priestley [11, 12]), the res-
olution and efficiency can be greatly improved. More recent advances using this
approach by Quirk [14] and Falle & Giddings [7] mean now that it is debatable

that whether, for a given accuracy, the body-fitted approach is still more effi-
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cient. It should be noted that for efficient programming these approaches can use
a quadtree data structure and hence benefit from one of the newer programming

languages such as Fortran 90 or C.

The main problem with Cartesian meshes is the modelling of curved,
or at least non-aligned, boundaries. There are two approaches to this. There is
the staircase method, fig. 2, where the curved boundary is modelled by hori-
zontal and vertical sections, see [7] for example. This looks crude but can be
surprisingly effective, especially when combined with the refinement procedures
mentioned above. A second method is to model the boundary with discontinu-
ous piecewise linears. Although this also looks a little odd, replacing a smooth
boundary by a discontinuous one, it is obviously a better approximation than the
staircase. Each sweep now sees that the boundary is not aligned with the carte-
sian mesh. Also linear shaped boundaries can be approximated exactly, which is

an important improvement over the staircase method.

3 Test Problems and Results for the 2-D Shal-

low Water Equations

The first of the two test problems suggested by ENEL has been tackled in this
section. This is a dambreak problem due to Bellos et al. [2, 3, 4]. This consists of
an inclined channel 21 metres long and 1.4 metres wide at its widest. There is a

constriction in the channel that reduces the width to 0.6m at a point 8.5m along
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the channel. (The coordinates of the channel are measured from -8.5m to 12.5m
so that the throat is at 0.0m). A dam is situated at the throat with depths of
water ho and hy upstream and downstream. Precise details of the channel can be
found in [2, 3]. The paper (2] is concerned primarily with the collection of exper-
imental data for this problem whilst [3] concentrates on the authors’ numerical
solution to the same problem. The existence of detailed experimental data makes

this a very useful test problem for validating computer models.

In the following we shall take the value of Manning’s constant, n,
to be 0.012. The acceleration due to gravity will be taken as 9.8ms™? and the

slope across the channel, §,, will be assumed to be zero.

The first test problem is taken from Bellos et al. [3]. The slope, s,
in this case is 0.002. The two depths are 30cm and Ocm respectively. This means
that we are essentially dealing with a dry bed problem. Roe’s scheme cannot,
always, deal with zero depths as it is particularly sensitive to negative values of
depths because of the square roots that need to be taken. These negative depths
can be caused by minute oscillations, bearing in mind that we are not guaranteed
perfect monotonicity for non-linear equations, or even rounding errors. Hence we
shall work with a so called ‘damp’ bed. The depth of water, where it should be
zero, is taken to be a small positive number. In these tests we used a value of depth
of 10~® as the smallest permissible. Smaller values have been used but whether
these would be as robust is unknown. The solution seems to be unaffected by pre-

cisely how large the tolerance is at this scale. We have used tolerances a thousand
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times larger and a thousand times smaller and can see no difference in the results.

The results are plotted as four hydrographs at various points along
the channel. Fixed time-stepping has been used for all these cases. It should be
noted though that considerable savings could be made by using a time-step that
responded to the maximum CFL number, as this steadily reduces throughout the

computation.

The first solutions are generated on a 40x10 body-fitted mesh, fig.
4. In fig. 5 we see the results of the first order method with a time-step of 0.02.
In fig. 6 a temporal refinement is performed and the code is run with a time-step
of 0.01. Figure 7 is the same as fig. 6 but now run with the second order scheme
using the minmod limiter, equation (2.11). Figure 8 is the same situation as fig.

6 except that it is now run on an 80x20 grid.

Figure 9 shows the result for the same parameters as fig. 5 but
with the source terms now upwinded as discussed previously. This is due to the
fact that Glaister [9] and Priestley [13] have noticed significant improvements in
the solution as a result on occasions. When upwinding of the source terms gives
a better solution is unknown. Here it seems to make no difference to the solution

obtained.

As can be seen, most of these results are virtually identical. All

correspond exceedingly well to the results in [3]. The use of the second order
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scheme does ‘sharpen up’ the profiles visibly although the actual differences in

depths with the first order method are very small.

For the cartesian grid approach we have used a 40 x 40 grid. This
gives a slightly more accurate representation at the throat than the body-fitted
mesh. Points that fall outside the domain don’t involve us in any work and can
be ignored. However, we are faced with a great, and unrequired, increase in res-
olution at the two ends of the domain. We cannot do anything about this in
the current code but use of the refinement procedures described in [11, 12] would
obviously be a great advantage. In figure 10 we see the first order scheme run
with a time-step of At = 0.02 and in fig. 11 we see the results arising from the
use of the minmod limiter with a time-step of At = 0.01. In both cases the
source terms were evaluated pointwise and the boundary was approximated by
the staircase method. Again we see excellent agreement with the experimental

results, [3], and only slight differences between the first and second order schemes.

As a second test case we take a problem computed in Bellos et al.
[2]. This is the same as the previous case but with a bed-slope of 0.004. We
try just two versions of the scheme. The body-fitted grid, fig. 12, and on the
cartesian grid, fig. 13. Both are run using the minmod limiter. Again we see

excellent agreement with experiment.
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4 Roe’s Scheme for the 2-D Euler Equations

The 2-D Euler equations, in cartesian co-ordinates are given by

p pu pu

pu pu?+p UV 0
(4.14) + + = ;

pv pUv pvi+p 0

\ e ), \wetn) j \vetp) ) |0

where p is the fluid density, u & v are the fluid velocities. The momenta, pu &
pv, are usually replaced by new variables m & n. The static pressure is denoted
by p and e is the total energy and is related to the other variables by an equation
of state, which for a perfect gas is
Ea= (7—]11—) + %pu?’,

although other gas laws are possible. The constant 7 is the ratio of specific
heats and takes a value of 1.4 for our calculations. Two other variables that are
needed in deriving Roe’s scheme for the Euler equations are the total enthalpy,
h = (e + p)/p and the sound speed, a = (fyp/p);‘. Here we will not specifically
derive the scheme as the algebra is entirely analagous to that given in section 2

and formulae for the wave strengths etc. are all well known and given elsewhere,

see Roe [15], for example.

In axially symmetric co-ordinates the Euler equations become,
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p Rpu pv 0
pu 1 Rpu? puv —PR
(4.15) + 7 + =
pU Rpuv pv?+p 0
R 0
\ € 'E \ u(e + p) . \v(e-l-p)}: \ )

Glaister [9] applied Roe’s scheme to these equations by defining new variables,
R = Rp,U = Ru, P = Rp etc. The only term that is not accounted for by Roe’s

b= (0,p,0,0)T. Alternatively, we can

scheme is then put on the right-hand side,
expand the R derivatives in (4.15) and we are left with equations identical to
those in (4.14), if we identify the R direction with the y co-ordinate and the 2
direction with the z co-ordinate in those equations, but now with the source term

given by b= (1/R)(—pu, —pu?, —puv, —u(e + p))~.

The advantage of Glaister’s approach is that there are less terms
left to be accounted for as source terms, but the disadvantage is that we are
required to use transformed variables. The advantage of the second approach is
that one code can be used for 2-D cartesian geometries and 2-D axially symmetric
flows just by the addition of an extra source term. We shall adopt the second
approach here. Glaister also found advantage in upwinding his source term as
it was readily identifiable with the direction of R increasing. Our source terms,
now more numerous, have no such obvious linking with either of the co-ordinate
directions and so we evaluate the source terms pointwise with no obvious ill-effect

showing in the results.
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The test problem is that used by Cooke & Fansler [5] for which
there exists experimental data, see references in [5]. It consists of a blast wave
exiting from a shock tube. The dimensions of the problem are all given in [5] and
are also illustrated in figure (14). We plot time-histories of the overpressure, the
pressure above or below atmospheric pressure, at 8 points. The first 6 of these
points lie on an arc of a circle of radius 1.5 radiating from the centre of the opening
of the circular shock tube, position (1,0) in our axially symmetric co-ordinates.
The points are then placed at angles ¢ = 0°,30°,60°,90°,120° and 130°. The
seventh point lies on the face of the shock tube at co-ordinates (1,0.74) and the
eighth point lies on the upper surface of the shock tube at position (0.54,1), see
figure (14). The initial conditions are taken to be atmospheric outside of the
shock tube, that is the velocities are zero, p = 1.22kg/m?® and p = 100kPa. In-
side the tube the radial velocity, v, is still taken as zero but the other components

are u = 332m/s,p = 2.78kg/m® and p = 342k Pa.

The calculations were, except where otherwise stated, performed
on a mesh of 120 x 60 points. Time-steps were chosen to give maximum CFL

numbers of just under 1/2,

Figures (15-18) give contour plots of the pressure at times 200,
500, 1000 and 1500us for a solution calculated by the first order scheme. Figure
(19) shows the time-histories at the selected points for the first order method.
Comparing with the exact solution and calculations given in Cooke & Fansler [5]

the contour plots look acceptable but the time-histories are rather disappointing.
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Although the general shapes and positions are all correct they are clearly too
smoothed and the peak values are equally clearly not at the correct values. In
figures (20-23) and (24) we give the same results but now calculated with a sec-
ond order scheme (Van Leer’s limiter). We recall that in the dambreak problem
the improvement obtained by using a second order scheme was somewhat less
than dramatic. The contour plots are much the same as for the first order case.
The real differences are in the time-histories, fig. (24). Here there has been a
very real sharpening of some of the profiles, compare the feature at position 2 at
around 1000us. Not only have the features been sharpened up but peaks have
taken on values much closer to the expected physical values; see the first peak at

position 1, for example, where the peak value has increased by 10%.

In some respects these calculations are better than those of [5] but
in one place we do seem to have got the wrong answer. At position 1 the tran-
sition to negative overpressure appears to occur noticeably too soon, an error of
over 10%. This occurs for both methods. To see what might be causing this
we tried running the second order scheme on a finer mesh. This produces figure
(25). We note only a marginal improvement in most of the figures but the po-
sition of this feature has definitely moved in the right direction. (To be fair to
the method here we ought to note that other methods also fail to get this feature
in the correct place. This may be due to the numerical interpolation used to
calculate the value at that point as suggested in Cooke & Fansler [5]). The other
thing to check is the effect of the far field boundary conditions. These have been

taken to be supersonic boundary conditions, which is a very dubious assumption
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for much of the boundary. Hence we ran the second order scheme again on a
domain of twice the size on the 240x120 mesh, that is, at the same resolution as
the original problem. These results are shown in figure (26) and are, to all intents

and purposes, identical to those on the smaller region.

5 Conclusions

In this report we have investigated the use of Roe’s scheme for two problems in-
volving systems of conservation laws in two dimensions; namely, the shallow water
equations and the Euler equations of gas flow. Having developed the method for
both of these systems of equations in one and two dimensions, two test problems
were tackled for which there exists experimental data. A dam-break problem was
investigated using the shallow water equations, and a blast wave exiting from a

shock tube was solved with the Euler equations.

One novel feature of the work tried here was the comparison of
body-fitted grids with cartesian grids. Although body-fitted grids were more ef-
ficient than cartesian grids for the “valley” of figure (4), the situation is often
reversed. If body-fitted grids need extra points for resolution in one region it
is difficult to vary the grid and it is necessary to work with this grid density
throughout the whole domain. The cartesian grids offer not only a substantial
simplification of the algorithm but also, though not attempted here, the pos-
sibility of variable resolution leading ultimately, for larger problems, to greater

efficiency.
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Source terms arose in both problems, and in the past these have
sometimes been found to give problems with TVD schemes. Here we compared
the effect of pointwise evaluation and upwinding of the source terms. No differ-
ence was detected and we concluded that the character of the source terms in
these test problems was not such as to provide the conditions for the difficulties

experienced elsewhere.

All the results showed a very good agreement with the experimen-
tal results obtained by other authors. The first order algorithm showed itself to
be adequate in some situations but the second order flux limited scheme showed

itself to be clearly superior for the harder blast wave problem.

Finally we conclude that this feasibility study has shown Roe’s
scheme to be capable of providing results in excellent agreement with experimen-
tal data, at least for these two application areas. The potential of the method, in
particular the use of nested cartesian grids, has not been fully explored here but
looks very promising. This, together with more realistic problems, could be the

subject of further investigation.
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Figure 15: Pressure contours (kPa.) for the flow from a shock tube using a 1%

order scheme on a 120x60 grid.
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order scheme on a 120x60 grid.
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PRESSURE at time
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Figure 23: Pressure contours (kPa.) for the flow from a shock tube using Van

Leer’s limiter on a 120x60 grid.
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