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Abstract

In this report we consider numerical methods for solving state
constrained optimal control problems. The theoretical aspects of the
problem are first examined and necessary conditions for the optimum are
stated.

The possibility of using Valentine's Procedure for numerical
calculations is considered and dismissed because of the poor numerical
results. The tests on an example have shown that the method exhibits
numerical instability as the state constraint is approached.

The alternative approach is to use an interior penalty method, a
projection method or a combination of these two methods. All of these
possibilities have been examined in conjunction with the gradient and
conjugate gradient method. The tests were carried out on a simple example
with a known analytical solution.

The methods were then applied to a simple linear, two-way generation
tidal model. The analytical solution was derived under certain
assumptions for comparison purposes. The numerical results have proved
disappointing which leads to the conclusion that 'reduced" methods should
not be applied to the existing tidal power generation model with state

constraints.



1. Introduction

In this report we consider numerical methods for solving state
constrained optimal control problems. The motivation for the research was
provided by the need to apply such methods to models which analyse control
strategies in tidal power generation. The research into tidal power
generation by the Reading University group has produced a versatile model
with a number of special features such as ebb and two-way generation,
consideration of expansion losses and inclusion of a pumping option. The
model, however, does not include any mechanism to control the water level
in the basin. Our initial aim is to adapt the flat-basin model by
imposing constraints on the maximum and minimum levels of the water.

The problem is first formulated as an optimal control problem with
state and control inequality constraints. Necessary conditions for the
optimum are then examined. Various numerical strategies are considered
and tested on a simple problem with a known analytical solution.

Later sections of the report deal with applications to the tidal
power generation problem and in particular to a specific case where an

analytical solution can be determined.

2. The Problem
The problem considered here requires the optimisation of a given cost
functional subject to a set of ordinary differential equations and some

additional constraints. In mathematical terms this can be stated as:

T
max J = J g(x,u,t) dt (2.0.1)
2 0

subject to:



x = f(xu.t) . x(0) = x_ (2.0.2)

and
R(u.t) <0 (2.0.3)
S(x.t) €0 (2.0.4)

where x(t) e X is a state vector belonging to a state space and

u(t) e U is a control vector belonging to a control space. X is the set
of piecewise smooth functions of time with a finite number of corners,
while U 1is the set of functions which are allowed to undergo jump
changes and are restricted to be piecewise continuous only. The
functional (2.0.1) is known as the "cost functional" and the system of
equations (2.0.2) as the "state equation”. The conditions (2.0.3) and
(2.0.4) shall be referred to as the "control constraint” and the "state
constraint” respectively.

If we temporarily ignore the state constraint (2.0.4) the necessary
conditions for the optimum are given by the following theorem (Hadley and
Kemp, 1971):

Theorem Let wu(t) be an admissible control and x(t) the corresponding
solution to (2.0.2). Then if (u(t).x(t)) yield an absolute maximum of
J it is necessary that there exist a number Ao 2 0 (which without loss
of generality may be taken to be O or 1) and a vector-valued function
A(t) ., the components of which are continuous functions of time with the

property that (Ao‘bﬁt)) #0 for any t and such that if

f(x,u,t) (2.0.5)

then



x =S5 GLu ) = Exu.t) : x(0) = x, (2.0.6)

and
R=-5 (xude) i MT) =0. (2.0.7)

Furthermore, if
M(x,A,t) = sup H(x,w,A, t) (2.0.8)
weU

then

H(x,u,A. t) = M(x.A. t) . (2.0.9)

The last condition is known as the "Maximum Principle”.

We now consider the changes which the inclusion of the state
constraint (2.0.4) makes to the above theory.

We first need to introduce explicit control dependency into the
constraint. This may be achieved by differentiating the constraint with
respect to t and substituting f(x,u,t) for é. a number of times, say
q, until u(t) 1is introduced explicitly into the constraint. We now
define the Hamiltonian in the following way:

Hudt) = gxut) + A fxue) + o' 80 (2.0.10)

where S = 0 and §Fq) = 0 on the constraint boundary, and L =0 off
the constraint boundary (i.e. where S < 0) .

The necessary conditions for the optimum are then given by (Bryson

and Ho, 1975):

[% e
I

f(x,u,t), x(0) = X, (2.0.11)



of
_ 9 T =
3& A X when § < 9
X = 2.0.12
& (@) ( )
o 1%L 138
~§—-A Q—E @ when §=9_
% af as(a)
oH _9g T =, T = _ _
3 = Y + A a +p 70 =0 when S =0 (2.0.13)

together with the Maximum Principle. It is also necessary for

L to
satisfy:
p(t) <O when S =0 . (2.0.14)
The negativity of u when S = 0 can be interpreted as the requirement
that the gradient;
of
H _ 0 , ,\T o=
gg ol + A Ty (2.0.15)

be such that the improvement can only come by violating the constraints.

We also need to satisfy the following conditions at the point where the

state constraint is encountered:

[S(x. t)

Nxt) = W | -

1O

(2.0.16)

s x, o))

At this point we note that the Lagrange multipliers (adjoint variables)
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A(t) are discontinuous at the junction points between constrained and
unconstrained arcs. In fact they are not unique along the boundary arc
S =0 . It is a matter of choice whether to force the adjoint to be
discontinuous at the point where the constraint boundary is first
encountered or at the point where the optimal path leaves the constraint
boundary. It is, however, usual to apply the "tangency conditions"
(2.0.16) at the entry point and therefore force the discontinuity in A(t)
to coincide with the point at which the state constraint becomes active,
and to allow the adjoint variable to be continuous at the exit.

With inequality constrained optimal control problems we of ten
encounter corners - the points at which the control undergoes
discontinuous changes. Let t denote the time just before and t+ the

time just after the corner. Then the following conditions hold:

(i) problems with control constraints only

A7) = A(th)
H(t™) = H(t") (2.0.17)
e =8

(ii) problems with state and control constraints. At the entry:

8N
Ton ot B m il 2
A(t ) =A(t)+m 3%
i ) N
H(¢) = H°(c") - o 5 (2.0.18)
aH~

3 (

©) = 5 (¢h)
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is a constant vector of Lagrange multipliers. At the exit point

where w
the same conditions as in (i) hold.

3. Numerical Methods
We have considered a number of numerical techniques to solve the

They broadly fall into the following categories:

above class of problems.
(i) transformation techniques, (ii) penalty methods and (iii) projection

methods.

3.1. Method 1 A Transformation Technique
Initially, an attempt was made to adapt the transformation technique
They consider the following state

proposed by Jacobson and Lele (1969).

constrained problem:

T
max J = J g(x,u,t) dt (3.1.1)
0]
subject to
x = f(x,u,t)  x(0) = x (3.1.2)
and
S(x.t) <O (3.1.3)
is given

There are no other constraints present and the final time T
Valentine's device is used to convert the state constraint

explicitly.
into an equality constraint by the introduction of a slack variable a(t)

S(x.t) + % a®(t) =0 (3.1.4)
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Differentiating (3.1.4) q times the following set of equations is

obtained
S(l)(i,t) taa; =0
S(2)(§,t) + ai taa, =0 (3.1.5)
(a) . : _
S**/(x,t) + {terms involving aq_l.....al} + o == 0
where

a = a,
a1= a2 (3.1.6)
%q-1 = %

It is assumed that the qth equation in (3.1.5) contains u explicitly

and we can obtain the following expression for u:

a a ,t) (3.1.7)

= G(x.a, ‘
u (x,a,a =17

ERRRE
This can be used to eliminate u from the problem. The transformed

problem is now

T
max J = J g(x.G(x,a, al,...,aq,t),t)dt (3.1.8)
o

subject to
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x = f(x,G(x,a, al,...,aq.t),t), x(to) = X,

a = a . a(to) = a°

by _ (o]

a; =a, . al(to) = aj (3.1.9)
Y o

aq_1 = aq , aq_l(to) = aq_1

where the initial conditions are chosen in the following way:

a(to) = £ vV - 25(x(to), to)

al(to) Sl Sl(ﬁ(to),to)/a(to) (3.1.10)
a2(to) =~ [S2(§(to),to) + a?(to)]/a(to)
etc.
In the transformed problem aq is the new control variable while
i,a.al,...,aq_l are the state variables.

This method cannot cope with the case where there are more state
constraints than control variables.

In our applications we want to be able to include the control
constraints as well as the state constraints. Under the proposed

transformation the control constraint

R(u,t) < O (3.1.11)
becomes

R(G(x,a.a a _1,t).t) <0 (3.1.12)

1 %
To test the feasibility of this procedure the transformation was applied
in conjunction with the projected gradient method to the following

problem:



5 t u) dt (3.1.13)
o
subject to
X1 = X2 Xl(O) =0 (3.1.13)
Xy = 4u - 8t X2(0) =0 (3.1.15)
0<uxl1 (3.1.16)
Xy < 0.5 (3.1.17)

The procedure has shown signs of extreme numerical instability. We note
that in (3.1.7) aq, the control, is always multiplied by a which
becomes very small as the state constraint is approached. This causes
inaccuracies in the numerical calculations.

This approach has been abandoned.

3.2 Method 2 Interior Penalty Function

Optimal control problems with inequality constraints are often
converted into unconstrained form by means of penalty functions. The type
of penalty function considered here was suggested by Lasdon, Waren and
Rice (1967), and works from inside the constraint set, with the penalty
increasing as the boundary is approached. In particular, if the problem
(2.0.1) to (2.0.4) is considered then it may be converted into an
unconstrained form by adding a penalty function P to the objective

(2.0t1), where

S g T 4
Pzr[EJSi(ﬁﬂLzli W] (3.2.1)
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and r 1is a small positive scalar. A sequence of unconstrained problems
is then solved for different values of r. It was shown by Lasdon, Waren
and Rice (1967) that under some general assumptions the maximum point of
the penalised problem approaches the solution of the inequality
constrained problem as r - O.

¥hatever solution method for the unconstrained (penalised) problem is
adopted, the following must be ensured:

(a) the starting point must lie inside the feasible region,

(b) any subsequent iterates must lie within the feasible region.
We have considered solution techniques based on gradient and conjugate

gradient methods.

(i) Gradient Method

The algorithm generates a sequence of admissible controls {Ek} for

which the values of the functional Jk = J(EF) are monotonically

k

non-decreasing. Let u be an optimal control with the corresponding
state and adjoint variables 53 and lk satisfying (2.0.6) and (2.0.7)

respectively. The new approximation is made as follows:
Fu ¥s8 7 (3.2.2)

k

Kk 8H(WY)
where v = —‘'— denotes the gradient of the Hamiltonian and s is

— du

the length of a step in the gradient direction chosen so that the value of

. R k+1 k+1 A
the cost functional is increased and u and x stay within the

feasible region.
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(ii) Conjugate Gradient Method

In this case a new approximation is made according to the formula:

PSRRIy (3.2.3)
where

£k+1 - 1k+1 + Bk Lk (3.2.4)

R AR S WA N (3.2.5)
and

kK k T x K
A =) | v R K ae (3.2.6)
_ el 1 1
i 0

The step length sk and 7k are chosen in the same way as in the

previous method.

3.3 Method 3 Based on Projected Gradient Algorithm

The basis of this method is the projected gradient algorithm. As in
the previous method we are generating a sequence of admissible controls
{gk} for which the values of the cost functional are non-decreasing. The
new approximation to the optimal control is chosen as

e g’(gk + sk Zk) (3.3.1)

k+

v
where % 1is the L2 projection operator on U. In cases where the
constraints on the state variable are present, they also act as implicit
constraints on the control variable. Let Uc denote a set of controls

which satisfy the control constraints and US the set of controls which
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produce the states that satisfy the state constraints. Then the
admissible space of controls is U = UC n Us and the projection operator
must be constructed accordingly.

We consider the following algorithm:

Step 1 Choose g?e Uc' s?, 10
Step 2 EF+1 = @C(EF + sk lk)
Step 3 calculate §F+1
Step 4 project §F+l to satisfy the state constraint
Step 5 recalculate EF+1 to correspond to §F+1
k+1 k sk
Step 6 if no improvement in J set s = 5 and go to step 2.
Step 7 if |Jk+1 - Jkl < 61, or sk < €2 go to step 13
Step 8 calculate the adjoint variable §F+1
Step 9 calculate EF+1
Step 10 calculate the gradient I?+1- On the constraint 1k+1 =0
if p<oO

Step 11 s -
Step 12 go to step 2
Step 13 STOP
Remarks

(i) In step 5 we assume that the readjusted control immediately
lies in Uc and therefore no further projections are necessary.

(ii) Steps 4 and 5 ensure that the pair (EF+1- xk+1) satisfies all

given constraints. In practice, because of the discretization, the state
variable could be violating the state constraint by a small amount

proportional to the step-size.
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(iii) Steps 9 and 10 make use of the condition that
u(t) <O on  §=0

to speed up the procedure.
k+1

(iv) The procedure terminates if |J - Jkl < €
The procedure aborts if we cannot make any further improvement in the
given gradient direction.

(v) The state equation is solved numerically (STEP 3) by forward
integration using the Trapezium Rule. The adjoint equation is solved by
backward integration using the same method (STEP 8).

Another variant of this method has been considered. In step 2 of the
algorithm instead of taking a step in the gradient direction, a step in

k . . . . . 3 . .
the I direction is taken, as described in the section dealing with

conjugate gradient methods.

3.4 Method 4 Combination of Projected Gradient and Penalty Methods
In this method the state constraint is imposed via an interior
penalty. The projected gradient method is then applied to the

state-penalised problem in order to satisfy the control constraint.

3.5 The Test Example

The above methods have been tested on the following example:

| T

1
{x cos 2wt - ik u } dt (3.5.1)
u

1 472

subject to



X| =Xy xl(O) =0 (3.5.2)
>’<2 = u x4(0) =0 (3.5.3)
-1<u<l (3.5.4)
3 % < %, < % (3.5.5)

The problem has an analytical solution which can be obtained using

the necessary conditions (2.0.11)-(1.0.18). The solution is illustrated

1 3 5

in fig. 1. Note that the switches in control occur at t = 35 8

%. The adjoint variable Al corresponding to the first state equation is

and

continuous while A2 corresponding to the second state equation has

discontinuities at t = é and t = 5. The value of the cost functional
is calculated as J = 1.2583 x 10—2.
Method 2

The results were calculated using both gradient and conjugate
gradient methods. A number of penalty parameters were used which affected
the number of iterations. Fig. 2 gives the results obtained for the
gradient method with a penalty parameter of 10_6 and e, = 10_10. The
value of the cost functional was obtained as J = 1.2210 x 10_2 and the
number of iterations was 709. Fig. 3 gives the results for the conjugate
gradient method with the same parameters. In this case J = 1.2305 x 10_2
and the number of iterations was 451. It must be pointed out, however,
that the conjugate gradient method requires more work per iteration than

the gradient method. In either case the switching points are reasonably

well approximated.

Method 3

Fig. 4 gives the results for the gradient method. The method aborted



after 200 iterations and the constraints were violated.
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results for the conjugate gradient method. In this case J

and the method converged after 208 iterations.

not accurately calculated by either of these methods.

Method 4

The results were calculated using the conjugate gradient method and

are displayed in fig. 6.

calculated as

J = 1.2260 x 1072

The penalty parameter was 10_6

in 181 iterations.

switching points was calculated reasonably accurately.

The results are summarised in table 1.

The results indicate that Method 4 is possibly the best one to use.

It appears to combine the best features of Methods 2 and 3.

Fig. 5 gives the
1.2355 x 10

The switching points were

and J was

The position of the

2

TABLE 1
Number of Cost Stopping

Me thod iterations functional value criterion | pen.
Method 2/gradient 709 1.2210 x 10 2 10710 10°°
Method 2/conjugate gradient 451 1.2305 x 10 2 10710 1075
Method 3/gradient 200" = aborted —
Method 3/conjugate gradient 208 1.2355 x 10—2 10_10 —_
Method 4/conjugate gradient 181 1.2260 x 10_2 10_1O 10_6

Analytical solution

1.2583 x 10 2
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4. Application to Tidal Power Generation

4.1 The Problem

The model used is an adaptation of the simplest linear model

investigated by the Reading University Group incorporating two-way

generation and no separate sluices. It can be stated as follows

T
max E = J e(X(h)u(t),h)dt
o

subject to

n(t) = - = X(h)u(t)
A
n(0) =mn,
u(t) e [0.1]
where
- Q(h) h <0
X(h) =
Q2(h) h>O0
and
- Qluh h<O
e(X(h)u(t).h(t)) =
Q2uh h >0
Here

n(t) 1is the basin level above some datum point

f(t) 1is the tidal level

h(t) 1is the head difference defined as h(t) = n(t) - f(t)
T is the tidal period
X is the basin surface area

(4.

(4.
(4.

(4.

(4.

(4.

1)

.2)
.3)

.4)

.5)

.6)

Ql(h) is the maximum sluicing capacity of the turbines for head h

Q2(h) is the maximum flow for turbine use for head h .
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In our calculations we have made the following assumptions:

f(x) = cos 27wt (4.1.7)

- Q(h) = Qy(h) = h (4.1.8)

which are consistent with the assumptions made by (Andrews, Nichols and

Xu, 1990). Under these assumptions the problem becomes:

T
max E = J u h? dt (4.1.9)
o
subject to

L (4.1.10)

A
n(0) = m, (4.1.11)
u(t) e [0,1] (4.1.12)

In addition we require mn(t) to be between some given bounds i.e.

n. <n<n (4.1.13)

which is a state constraint; a feature not previously considered.
We note that the form of the boundary condition (4.1.11) is different
from the one previously considered by the Reading University Group. Their

investigations were based on the periodic boundary condition

n(0) = n(T) .

4.2 Analytical Solution

A problem can be solved analytically provided a particular control

pattern is assumed. First of all we map the interval [0,T] onto the
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interval [0,1] by a simple change of variable. The problem is now
equivalent to
1
max J u h® dt (4.2.1)
Y0
Subject to
o ~Lhu s s Fhu (4.2.2)
A
n(0) = N (given) (4.2.3)
where h =71 -f, f = cos2rt and A = % . We solve the problem assuming
the following control pattern:
1 0 <t¢( T
0] T <t (< T2
u = 1 T <t g T3 (4.2.4)
0 73 <t (< T4
1 T4 Ct <1
This control pattern is also suggested by some numerical experiments.
If u=1 then
<1,
n==Ce + ¢ (2mA sin 2wt + cos 27wt) (4.2.5)
It gt
A=De + CA e + 4mA%¢ sin 2wt (4.2.6)
where C and D are constants and ¢ = ————L————.
4r®A® + 1
Since n(0) = M then A(l1) = O and therefore
%—(t—z) —%-t .
A=-CAe + CA e + 4mA%¢ sin 2wt T,t<1 (4.2.7)
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H to be continuous at 74. i.e.

Let H = uh® - \hu/A . We require

H(T4_) = H(T4+) (428)

We note that u = 0 for T3 <t« T4 which implies H(T4_) = 0. Thus

h2(74) - Mty h(ry) /A=0 (4.2.9)
or
A(nmin - cos 2#74) = A(T4) ; (4.2.10)
We also know that n(T4) = Moin and therefore
1
TR T4 .
Ce + ¢(27A sin 21r'r4 + cos 2#74) = Min (4.2.11)
which defines the constant C for T4 <t 1.
From (4.2.10) and (4.2.7)
1 1
- (7,-2) = = T
Mrg=-caet P T haae Aty a4 sin 27, =
A(nmin— cos 2WT4) (4.2.12)

(4.2.11) and (4.2.12) define 7, and provided A = 3.33 x 10°,
= 0.9015

T =4.32 x 10° and 71, = -0.5 the solution is found to be T
min 4

regardless of the starting point Mo
We now determine switching points Ty and T3 We know that
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n(T2) = Moax and n(TB) =M in (4.2.13)
We also require H(TB_) = H(73+) and H(T2_) = H(T2+) which gives the
following conditions
A(TB) = h(T3)A = (nmin - cos 2#73) A
(4.2.14)
A(T2) = h(T2)A = (n - cos 2v72) A .
Thus we have four equations in four unknowns C, D, Ty and T3 These
reduce to the following pair
1
A2
[nmax - ¢(27A sin 2WT2 + cos 2ﬂT2)] e =
1 (4.2.15)
: A'3
[nmin - ¢(27A sin 2WT3 + cos 2vT3)] e
1
A2
e (A(1-¢) cos 2WT2 + 2mA®%¢ sin 2WT2) =
_1 . (4.2.16)
A '3 2 .
e (A(1-¢) cos 2WT3 + 2mA%¢ sin2r T3)

These can be no further reduced and a numerical solution is required.
This was surprisingly difficult to calculate and it was found to consist
of two pairs of solutions which were then repeated periodically. One of
the pairs was found not to lie in the interval [0,1] and was therefore
rejected. The other pair (which was more difficult to find numerically)
was T, = 0.4647 and 7, = 0.5512. It was found that the equations were

2 3

ill-conditioned. A change in the solution of the order lO—6 produced a
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change in the residual of the order 108. It is worth noting that the

positions of Ty and Ty are not dependent on the choice of boundary

conditions but mainly on the bounds 7 and Thnin and the forcing

function.

To determine T, we use the initial condition 7(0) = 7, and the

1 0
fact that n(Tl) = Mo This gives the equation:
1
"R "1 .
(no—w)e + (2 A sin2rnr Tt cos2m Tl) = (4.2.17)
and for —— 0.5, Noin = 0.5 and Mo = 0.25 we find T = 0.0316.

4.3 Numerical Results

All of the methods already discussed have been applied to the tidal
power generation problem and all of them have given unsatisfactory
results. Fig. 7 illustrates the control pattern obtained by the penalty
method with conjugate gradients, while fig. 6 gives the control calculated
using the projection method with conjugate gradients. Neither of these
are even close to the analytical solution. However, given the
ill-conditioned nature of the problem, this is perhaps not surprising. It
remains to conclude that the "reduced" methods such as ones discussed in
this report should not be used to solve the existing tidal power

generation model with state constraints.

5. A Possible Way Forward

Another class of methods may possibly give a solution for the tidal

power generation problem. These methods proceed by discretising the cost
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functional (using, say, the trapezium rule), the state equation (using
some finite difference mehtod) and the constraints. The discrete problem

may take the form:

N-1
= h
mix J=h E g(Ei'Eiti) + (g(EO,EO,tO) + g(EN'EN’tN)) (5.0.1)
=i i=1
subject to
X = x, + ) [f(x.,u,,t,) + f(x u t. )] (5.0.2)
=+l T =H O 2 =ired =il =i+17=i+1" T+l o
R(Ei'ti) <0 (5.0.3)
S(§i.ti) <O (5.0.4)
where u, = Eﬂti). X = i(ti) and h = 1/N. This is an

optimization problem where a maximum of the given objective function is
sought subject to some non-linear equality and inequality constraints.
Problems of this kind can be solved by the package LANCELOT [3]. This has
been applied to the tidal problem and the preliminary results have been
encouraging although the run times were quite high.

This approach merits further investigation.
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