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Abstract

The report consists of two parts. In the first part the theoretical
properties of an optimal controller for a tidal energy generation scheme
are investigated under different assumptions on the form of the
instantaneous power output function. In previous work [1] [2] [3] it is
assumed that the power output and the volume flux through the turbines are
non-linearly dependent on the head—-difference across the tidal barrage,
but directly proportional to the control function. For such ‘linear’
control models, the control acts as a switch, and the optimal solution is
essentially 'on-off’ or ‘bang-bang’. Realistically, however, the power
output depends non-linearly upon both the head-difference and the flux.
We show here that for such ‘non-linear’ control systems, the optimal
operating strategy is no longer bang-bang, but takes values continuously
on the interval between the maximal efficiency and maximal power curves
associated with the turbines. A simple flat-basin model of the tidal
generation scheme is used in the analysis, but the results also apply to
more sophisticated, dynamic models of the system.

In the second part of this report numerical algorithms for computing
the optimal control are investigated. The theoretical results of the
first part give only qualitative properties of the solutions under
different assumptions on the power output function. In order to obtain
precise forms of the solution it is necessary to use a computational
method. Algorithms are developed and analysed in [1] [2] and [3] for the
‘linear’ models where the optimal control is ‘bang-bang’, and conditional
gradient methods are proved effective in these cases. Difficulties with

this type of procedure are encountered, however, for ‘non-linear’ models.
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We show here that a projected gradient algorithm is more appropriate for

these problems
algorithms are
derived in the
‘non-linear’.

algorithms are

choices of the

and for general use. Experiments with three iterative
described. The methods are applied to two simple models
first part of the report, one ‘linear’ and one

Discretized state and adjoint equations are used. The
observed to converge within a suitable tolerance for fixed

discretization step, and convergence of the optimized power

output is observed as the discretization step tends to zero. Different

choices of the

coefficients in the power output functions and different

forms of constraint on the turbine flux are examined. Both two-way

generation and

ebb generation schemes are studied.



PART I - THEORY

1. Introduction

The research into tidal-power—generation by the Reading University
Group has made use of optimal control techniques in order to maximise the
power, or revenue, functional for a given estuary tidal barrage scheme,
subject to the satisfaction of certain fluid-flow equations. As this
research has developed, the system models used in this process have become
more complex — ordinary differential fluid-flow dynamics being replaced by
non-linear partial differential ones - and have incorporated additional
relevant features - such as expansion losses, two-way power generation and
pumping options. The more realistic models are thus capable of producing
more accurate results. One area which has received relatively little
attention in our work to date, however, is the control structure of the
model, and, in particular, the form of an optimal controller and the
important factors which determine it. The simple control structure that
has been adopted, has, with the exception of singular arcs, resulted in
simple bang-bang optimal controls.

In this paper we investigate analytically the form of an optimal
controller. In order to achieve this aim most easily we use a simple flat
basin system model, where the fluid-dynamics are governed by an ordinary
differential equation. We demonstrate that by changing the cost
functional - i.e. the power function - we can obtain more interesting
optimal control regimes that incorporate internal control values. We also
investigate the concept of a maximum efficiency operating level for a
turbine, and examine its consequences for the power function, and hence,

the optimal controller.



2. The Model

We take the volume flux q(t) across the barrage as control
(positive in the seaward direction), constrained to lie in some restraint
set, and adopt simple ordinary differential fluid-flow dynamics of the

form
a(t) = - ya(t)

where m(.)., the basin level above some datum point, is our state
variable.

The forcing function is the tidal level f(t) above some datum
point, and for convenience we write h(t) = n(t) - f(t) for the head
difference.

This is a simple flat basin model.

The control problem associated with this model is given by

T
Max E = Ioe(q(t), h(t))dt

subject to

- 3a(t) (1)

n(T)

n(t)

n(0)

a(t) € [-Q;(h), 0] h(t) < 0

a(t) € [0, Qy(h)] h(t) >0

where T is the tidal period,
A is the basin surface area,
e(q.h) is the instantaneous power function for flow q and head h,
Ql(h) is the maximum sluicing capacity of the turbines for head h,

Qz(h) is the maximum flow for turbine use for head h.
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This is the simplest model available incorporating ebb generation
only and no separate sluices. A greater degree of complexity, in the form
of two-way power generation and sluicing in both directions, could,
however, easily be incorporated within this model structure at a later

stage.

2.1 The Transformed Model

As the bounds on the control variable q are functions of h and
hence the state 1, we are unable to apply the standard theory -
Pontryagin’'s Maximum Principle - directly to this problem. We therefore
make the following simple transformation:

Define

{*Ql(h) h <O
X(h) =

Qy(h) h>O0.

Then problem (1) 1is equivalent to the following

T -
Max E = J e(X(h)u(t), h(t))dt
0
subject to
ORI N e
n(0) = n(T)
u(t) € [0,1] |

With the problem written in this form we are now able to analyse the

form of an optimal controller.
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3. The Form of an Optimal Controller

In this section we investigate analytically the form of the optimal
controller for various choices of power function e(.,.). The power
function is representative of characteristics of the turbines and the way
they are situated. In order to achieve this end, we apply the following

form of Pontryagin’s Maximum Principle [5]:

Theorem
% :
In order for the control u (t), with corresponding state response
»*
n (t). to be optimal, it is necessary that there exists a continuous

function A(t) such that if the Hamiltonian is defined by

H(u(t), h(t), AM(t)) = e(X(h)u(t), h(t)) - K(t)%x(h)u(t)
Then
i) A(t) and u*(t) are solutions of the costate equations
7 = (). W), A1)
A() = - @ (e), K0, A®)  ((0) = 0 (e)-E(e))
with boundary conditions
7°(0) = m(T)
ANO) = ANT)
and

ii) H(u(t), h*(t), A(t)) has an absolute maximum as a function of

admissible u(t) at u(t) = u*(t) for each t€[0,T].
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3.1 A Linear Power Function for Fixed Head

We start by assuming

e(Xu, h)

i

VA
(ol e

0 h
{ cQuuh h (3)

a simple linear relationship between flow and instantaneous power for each

fixed head h, with ¢ some constant.

The Hamiltonian associated with this problem is then

_ AK-Qlu h<O
- 1
Q2u(chka) h>O0,
with costate equation
1.,
A= Qiu h<O
- A ™1
= ' 1
—cQ2u = Q2u(ch—kx) h>O0,
having end-point constraint
A(O) = AN(T) .

Now, using ii) of the Maximum Principle, we maximise H with respect

%
to u for each t to give the optimal controller u (t):

For h(t) <O

s -{ 1 if A(t) >0
u (t) =
0 if A(t) <0 ;
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if A(t) = 0 on some interval of positive measure then we have
»*
a singular arc and u (t) is not defined by the Maximum

Principle.

For h(t) =0

u*(t) =0 since Ql(O) =0 .

For h(t) > O
s { 0 if A(t) > cAh(t)
u (t) =

1 if A(t) < cAh(t) .

Since it can be shown that if A(t) = cAh(t) on some interval
of positive measure then f(t) = 0 on that interval, we may

2
deduce that this does not occur, and so define u (t) = 0O, say,

when A(t) = cAh(t).

Since we clearly require A(t) 20 V t in order for the basin to

be filled, we may deduce that the optimal controller u*(t) is given by:

wi(t) = 1, At)>0 when h(t) < O
wi(t) = 0, A(t)=0 when O < h(t) < 5§§l
) = 1, At)>0  when 22 ¢ n(e).

This simple bang-bang solution results from the linearity of the
control u in the Hamiltonian, and replicates the previous solution

obtained at Reading.
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3.2 Expansion Losses

A more realistic form for the power function e(., .) 1includes a term

representing expansion losses in the head difference actually available

for power generation

0 h¢<O
e{iu,h) = Q2u(clh = c2Q;u2) h>O0 (4)
with cq and o again given constants.
The Hamiltonian now becomes
1
7\x Qlu h<O
&= 2y2 - pd h>o0
Q2u(c1h - c2Q2u - RX)
with costate equation
P
. - Ax Qlu h<O
e : - 3¢,Q%u? - AL h>o0
- c1Q2u - Q2u(clh 30202u A)

AO) = N(T).

Clearly for h(t) { O the optimal solution follows identical lines

to that given for the problem of section 3.1. However, now, for h(t) > 0

we have

0 if c,AR(t) < A(t)
e Ah(c)-x(t)]”
1 K 1f ¢ AR(t)-3c,AQ2 < A(t)

u*(t) = = -
3c2AQ2

! 1 1f A(t) < c Ah(t) - 3cAQ .



- 12 -

and we can therefore deduce that the optimal controller is given by

u*(t) = 1, ?.\(t) >0 when h(t) <O
a*(t) = 0., A(t) =0 when O < h(r) < X&)
i
%

c,Ah(t)-A(t) . A(t)+3c

o*(e) = [1 ] ACt) < O when —L)-gh()g 2A°2
3c5A05 S
. A(t)+3c,AQ2
e = L A(t) <O when = 2 h(t).
|

So we see here that the non-linearity of the control u(.) in the

power function, and hence the Hamiltonian, results in an internal -
non-extreme — optimal control as part of the solution. This form of
controller has not previously been examined as an optimal solution at

Reading, and represents an interesting variation from the simple bang-bang

control.
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4. Turbine Efficiency

It is clearly realistic to have some notion of efficiency of power
generation for the turbines, and this should be reflected in our model
through the power function. We can therefore derive a formula for
calculating the most efficient rate of flow uE(.). for each fixed head

h, by solving the following problem:
T —
Max E = I e(u(t).h)dt
u,T 0
subject to
T
J u(t)dt < V V a fixed volume of flow.

Since e(.,.) is explicitly independent of t the optimal choice of flow

is constant. Thus the problem reduces to

Max E = Te(u,h)
u,T

subject to

Clearly the constraint holds with equality at the maximum, so that we have

Max E = %e(u,ﬁ)
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which gives

\' E — vV d E =
-u—Eze(u 'h)+u_E$e(“ »h) = 0.

So the turbines are operating at their maximum efficiency when

e(u(&%;?(t)) . gﬁ-e(u(t). h(t)) (5)

If we now apply this condition to the models of section 3, then we

see from (3), where there is a linear relationship between flow and

instantaneous power,

cQh(t) = cQh(t) .

from which we deduce that all choices of rates of flow are equally

efficient.

When the extra term representing expansion losses is added, we have,

from (4)

Qy(c;h - czqguz) = Qy(c;h - 3c2Q;u2)

which implies uE = 0, and efficiency increases as u tends to zero.

So neither of the forms of power function adopted in Section 3
provide a satisfactory model in respect of turbine efficiency, indeed they
do not even have a concept of a most efficient operating level for a given

head. As it is clearly desirable that our power function has such a

property, we consider the following
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0 h<O0
e(Xu,h) = (6)

Qzu(clh + c2Q2uh - cBQ;uz) h>0

For some constants c Cq- From (5) we obtain

1v C2|

2

) = Qy(c;h + 2c2Q2uEh - 303Q;uE )

2
2 E
u

Q2(clh + czQzuEh - 03Q2

giving

If the power function (6) is representative of a barrage containing
k turbines, then for rates of flow u(t) < uE(t) it would clearly be

. ku(t ]
more efficient in terms of energy output to operate —Ei—l turbines at

u-(t)
E
their maximum efficiency levels E—££l . This operating strategy gives a
new power function
0 h<O
eE(Xu.h) = EE e(XuE. h) h>0, u¢( uE
u
E
e(Xu,h) h>0, u>u
Applying the Maximum Principle to this we obtain
A- Q
¥ i h <O
cgh® 4 E
H = Q2u(c1h+%-3——>\x) h >0, u {u

_ 2 2 _ 51 E
Q2u(clh + c2Q2uh 03Q2u XA) h>0., ud>u



with costate equation

1 .
)\K Qlu
. cgh®
A = ) Q2u(clh == I

K) + Q2u(c1 +

Qéu(c1h+c2Q2uh—03Q;u2—A%)+Q2u(c1+c2

h <O
cZh

L E
2c3)

h>0, u<u

u+c2Qéuh—2c3 ‘u?)

h>0, u> uE

AO) = N(T)

For h(t) < O the optimal solution is again the same as for the
problem of section 3.1. However, for h(t) > O we now have two
possibilities, when u(t) ¢ uE(t) the Hamiltonian is linear in the
control so u*(t) will take on its extreme values

c;h2 1
o) if c,h + —=—— < At (7)
o) = 4232 g
h
E : 2 1
u(t) if clh + q > 7\K- . (8)

But, when u(t) 2 uE(t)

the Hamiltonian is quadratic in the control which

gives the possibility of an internal solution

2, 2 1,.\%
c2h + (c2h +303(clh—KK))

3c3Q2

u*(t) =

2.2

c-h
. 2 1
if clh + 1o > RX

3 1 2 (9)
and clh + 232hQ2 < AX + 303Q2

c2h®
if  ch+—2—> A
3 (10)

and clh + 2c hQ2 2 k—-+ 3c3Q§
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We note that condition (8) is made redundant by (9), with

1
Fo - coh + (c;hz + 303(clh—?\%))6 _ By sene o g N
03Q2 1 4c3 A
that the optimal control strategy is given by (7), (9). (10)., and the
cZh?
double condition of (10) is required in case Clh + 433 > k%- implies

uE 2 1 when (9) also becomes redundant.

We conclude from this analysis that the optimal strategy, when the
turbines are modelled adequately in terms of efficiency, is to operate

2%
them only between their total maximum efficiency, u = uE and their

%
maximum power, u =1, levels.

5. Conclusion

In this paper we investigate the form of an optimal controller for a
tidal-power-generation scheme using a simple ordinary differential
flat-basin model. By using the volume flux across the barrage as control
variable, and having the power function explicitly dependent on both this
and the head difference, we are able in Section 3, despite the simplicity
of the model’s fluid dynamics, to obtain interesting forms for the optimal
controller by varying our choice of power function. Most notably, for all
but the most simple case where the control occurs linearly in the power
function (and hence, since we have linear dynamics, the Hamiltonian), the
solution contains internal values as part of the optimal controller,
rather than being a purely "bang-bang” control. Further work is clearly
required here to investigate the significance of the internal part of the

solution, as we have given no indication as to how long is spent there,
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or, more importantly, how much extra power is generated by this as opposed
to a simple "bang-bang"” solution. A numerical approach to this aspect of
the problem is required.

In section 4 we examine the concept of efficient operation of the
turbines and demonstrate that the power functions of section 3 -
frequently used in early work at Reading - are not sufficient in this
regard. After suggesting a more appropriate form for the power function,
we show that the optimal controller should only take on values between its
maximum efficiency and maximum power levels, again with an internal
solution in part. Further work is necessary here in determining an
accurate form for the power function probably through the use of
manufacturers’ data. It should be noted that this data produces a model
of the turbines’' power generating capabilities, with an associated maximum
efficiency and maximum power level, but that factors arising from the
particular use made of the turbines, such as expansion losses, needs to be
added in. The resulting power function also has a maximum efficiency and
maximum power level, slightly different to that implied by the
manufacturer’'s data, and it is these new levels that we are interested in
for operating purposes.

In conclusion we point to the importance of the power function in
determining the form of the optimal controller, as illustrated in this
paper, and suggest that consequently great care should be given to its
modelling in future work. The likely presence of internal values as part
of the optimal controller for any realistic model is also an important
insight, and has implications for the choice of numerical optimization
algorithm. The model developed in this paper provides a good tool for

investigating the relative merits of such algorithms.
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PART II - NUMERICAL ALGORITHMS

1. Introduction

In Part I of this paper we investigate the theoretical properties of
the optimal control of a tidal energy generation scheme for different
forms of the power output functional. In earlier work, [1] [2] [3]. we
assume that the power output is non-linearly dependent upon the head
difference across the tidal barrage, but directly proportional to the
control function. The flux across the barrage is similarly assumed to be
a non-linear function of head, but linearly dependent on the control. The
control thus acts as a switch, and the optimal solution (apart from
singular arcs) is "on-off™ or "bang-bang".

In practice, the power output from the turbines is non-linearly
dependent upon both the head-difference and the flow through the turbines
- and is usually characterized by a Hill-chart. In order to investigate
the form of the optimal control in the case where the instantaneous energy
generated by the turbines is a general function of both head-difference
and flux, we develop a simple flat-basin model in which the system
equations are represented by an ordinary differential equation (for mass
conservation). It is shown that, for realistic forms of the energy
functional, the optimal control is no longer bang-bang, but internal
operating states, between the maximal efficiency and maximal power states,
may be optimal. These results also apply in the case of more
sophisticated, dynamic models of the system.

The analysis of Part I gives qualitative properties of the optimal
control under different assumptions. In order to obtain the precise forms

of the solution for various power output functionals, it is necessary to
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use a numerical procedure. For 'linear’ models, where the optimal
operating strategy is 'bang-bang’', computational algorithms are deveioped

and analysed in previous reports [1] [2] [3]. A conditional gradient type

of algorithm proves efficient and accurate in these cases. Difficulties
with this procedure are encountered, however, for 'non-linear’ models, and
some other types of method, including projected gradient algorithms, are
expected to be more appropriate for general use.

The aim of this part of the paper (Part II) is to investigate the
application of various numerical techniques to the models derived in

Part I. The two simplest models are selected for the tests, with

modifications for two-way generation. The system equations are given by

. Ql(h) u/A h¢O
n(t) = (1)
- Q2(h) wA h>O0
n(0) = =(T) . (2)
and the control function u(t) 1is constrained such that
u(t) € [0,1] . (3)

The model problems are then written:

T
max E(u) = J e(u,h)dt
u 0

subject to (1) (2) and (3), where
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Model 1 - Linear
= Ql(h)uh h <O
e(u.h) = (4)
Q2(h)uh h >0
and
Model 2 - Non-linear
= Q (h)u(h + ch(h)zuz) h<oO
e(u.h} = (5)
Qz(h)u(h = cQz(h)zu2 h>O0.

The notation used here is essentially the same in Part I with a few
obvious minor changes. For these problems the gradient vE(u) of the

power output functional is defined in terms of the Hamiltonian of the

system and is given by
VE(u) = %[e(u.h) + AX(h) u/A].

where X(h) = —Ql(h) for h <0 and X(h) = Q2(h) for h > 0. Here h
is defined by h = f - 7.

We remark that in the non-linear model (Model 2), the line of maximal
efficiency is uE = 0. Although this is less realistic than the model
proposed in Section 4 of Part I. the optimal must nevertheless lie between

E A ] . . .
u=u and u =1, and this model retains the properties in which we are

interested.

Three numerical methods are investigated, and the effects of
different choices of the constraint functions Ql(h)' Q2(h) and different
choices of the constants are studied. Results for ebb flow models are
also obtained. In the next section the methods are described and in

Section 3, computational results for the two—-way generation schemes are
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presented and discussed. In Section 4, the ebb generation models are

examinec. .ad the conclusions are summarized in Section 5.

2. Numerical Solution Procedures

The problems as formulated in the preceeding sections are
state-constrained optimal control problems. In order to solve these
problems, a numerical solution procedure is used which determines an
optimal admissible control u(t) with corresponding response n(t) and
adjoint A(t) satisfying the state and adjoint equations. The procedure
consists of a constrained optimisation algorithm for iteratively
determining the optimal control function, together with a numerical
approximation scheme for solving the state and adjoint equations.

The numerical solution to the state and adjoint equations is achieved
by the use of a finite difference scheme, with the state equation being
integrated forward in time from the initial condition n(0) and the
adjoint equation then being integrated backward in time from the final
condition A(T). A similar scheme is adopted by [1] [2] [3] in the
previous tidal power generation optimisation studies and is proved
absolutely stable for the type of ordinary differential equation under
consideration. Details of the scheme are given in [1].

In what follows two optimization algorithms for the current control
problems are presented. These are modifications of those found in [1] and
are known respectively as the conditional gradient and the projected
gradient method. The main reason for employing gradient based
optimisation algorithms is that the functional gradient can be evaluated
analytically for the type of problems under consideration. The gradient

algorithm, as a class, generally has a fast rate of convergence as opposed
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to the other classes of optimisation algorithms. In addition to these two
optimisation algorithms. a third which is a revised conditional gradient
algorithm proposed in [3], is also included in the investigation. This
algorithm differs form the first conditional gradient algorithm in that a

quadratic step length rule is utilised at each iteration for step length

determination.

2.1. Conditional Gradient Algorithm {Algorithm 1 - CG)

The structure of this algorithm is illustrated in the flow chart
given in Fig. 1. As shown in the diagram, the algorithm generates a
sequence of admissible controls {uk} for which the values of the
functional Ek = E(uk) are monotonically non-decreasing. To be more
specific, if an approximation uk to the optimal control with a response

n and an adjoint Ak satisfying the state and adjoint equations exists,

then a new approximation can be made as follows:

uk+1 = (1 - S)uk +S Gk+l
where S 1is step size and Gk+1 is obtained according to the following
L C o100 if vEWN) > o0
= 0 otherwise,

where VE(u) is the functional gradient. This selection maximises the

first variation <vE(uk), Gk+1 . uk> of the functional over all possible

choices for Gk+1. Since the response 7 of the system (1) is

continuously dependent on the control u and is uniformly bounded for all
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(non-trivial) u € Uad‘ it can be shown [1] that the sequence {Ek} is

bounded and convergent.

2.2. Projected Gradient Algorithm (Algorithm 2 - PG)

The flow chart of the projected gradient algorithm is given in
Fig. 2. In this method the new approximation to the optimal control is

chosen as

uk+1 = P(uk + SvE(uk)) 5

where P 1is the L2 projection operator onto Uad' As the operator P

has the following property

<Pv - v, ﬁv -v> = min <u-v, u-wvw

u€Uad

it follows, therefore, that for the selected control uk+1 the

inequality

<VE(uk). uk+1_uk> > l_" uk+1 _ uk ” 2
S 2

. . k+1 k
holds, and it can be shown that for some choice of S, E(u ") 2 E(u")
[4]. If the initial approximation u®(t) is continuous, on [0,T], then
the algorithm generates a sequence of continuous controls uk for which
the functionals Ek e E(uk) are monotonically non-decreasing, and,
provided that an optimal solution exists amongst the admissible controls,

the process converges and the limiting control satisfies the necessary

conditions.
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2.3. Revised Conditional Gradient Algorithm (Algorithm 3 - NOG)

The flow chart of this revised conditional gradient algorithm is

illustrated in Fig. 3. The algorithm generates a sequence of admissible
controls {uk} in much the same way as Algorithm 1, i.e., if an
approximation uk to the optimal control with a response nk and an
adjoint kk satisfying the state and adjoint equations exists, then a new
approximation can be made as follows:

K21 - s)uK + s gkt

~k+1

where S is the step size and u is obtained according to
S0 if vE(WX) > 0
=0 otherwise .

It has been mentioned briefly that the main difference between the
two conditional gradient algorithms lies in the choice of step size at
each iteration. Here the step size S at each iteration is computed based
on a Taylor series expansion of the Lagrangian, which is

L(a® + s - )y o oLy + s, + $°Dy/2 + o(s3llk+t - K13

where D1 and D2 are the first and second derivatives of L in the

~k+1
thtl _

. . k X . .
direction of u  respectively. To a second order approximation,

it is desirable that the following quadratic expression be maximised

L(u¥) + sD, + $°Dy/2 .

|



- 26 -

subject to the constraint that S € [0,1]. Hence we have

1 if D, >0
S = 41 if Dy <0 and -D /D, > 1
-D/D, if Dy < O and -D;/D, € [0.1] ,

where the first derivative D is calculated as

D, = E(WK), TH1-d

and the second derivative D2 is approximated by

R + @ - ), T - WS -,

D, = 3
for small A.
3. Results and Discussion

The numerical procedures are tested with both linear and non-linear
models of the power functional (Model 1 and 2 of Section 1). The model
data used in the current study to define the tidal period and estuary

geometry are typical of those from the Severn estuary and are given by

T = 4.32 x 10* s
A = 3.33 x 10° m?
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It is assumed that the forcing function imposed on the seaward side of the
barrage is given by f(t) = cos2wt over a complete tidal period [0,T].
Throughout the computation, the initial approximation for the control
function is taken as u(t) = 1.0 on [0,T], and the whole tidal period
is divided into N computational steps.

To begin with the algorithms are applied to the linear power
functional model (Model 1). It is known from the analytical work that the
optimal control for this problem is bang-bang in nature. For the sake of
simplicity and clarity it is postulated that the flow functions Ql(h)
and Q2(h) take the simple form —Ql(h) = Q2(h) = h. The computational
results corresponding to N =200 and N = 25 are illustrated in Figs.
4-9, while the detailed comparison of their optimised power outputs and
number of iterations for various choices of N are given in Table 1. It
should be noted that the results are based on the convergence criterion
that the first order correction is within 1% of the functional value. It
can be seen that both conditional and projected gradient algorithms have
predicted the optimal control reasonably well even at large computational
steps, with their calculated power outputs in agreement to within 1.0
percent. The revised conditional gradient algorithm has produced good
output but its control fucntion is relatively poor. In terms of rate of
convergence the conditional gradient algorithm appears to be most
efficient, requiring only a few iterations. We remark that the results
obtained by this method are comparable to the results given in [1] for the
same model problem.

For illustrative purposes the results with more accuracy (first order
correction to within 0.1% of the functional value as indicated in the flow

chart) are obtained and listed in Table 2. The computed solutions for



Table 1 Computational Result for Linear Model (1.0% Tolerance)

No. of No. of Iterations Power QOutput

SESpS CG PG NCG CG PG NCG
200 4 8 5 0.2273 0.2267 0.2255
100 3 7 9 0.2269 0.2262 0.2259
50 4 7 29 0.2278 0.2268 0.2255
25 4 7 50 0.2292 0.2287 0.2271

Table 2 Computational Result for

Linear Model (0.1% Tolerance)

No. of No. of Iterations Power OQutput
Steps
CG PG NCG CG PG NCG
200 5 16 10 0.2277 0.2275 0.2275
100 4 16 17 0.2278 0.2277 0.2276
50 4 15 81 0.2278 0.2276 0.2275
25 5 9 167 0.2294 0.2293 0.2291
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N =200 and N = 25 are shown in Figs. 10-15. Some observations can be
made on these results. Firstly much better agreement in the predicted
power outputs and in the optimal controls has been achieved with all three
algorithms. Secondly there is some small amount of gain in the power
output, indicating that the iteration converges for each fixed choice of
computational step size. However, this is achieved at the expense of more
iterations, i.e. more computational cost. It is doubtful whether this
gain in power output is worthwhile as opposed to the corresponding rise in
computational cost by opting for more accuracy.

Next the algorithms are applied to the non-linear power functional
model (Model 2) in which an internal optimal control is expected as part
of the solution. As in the linear model, the flow functions Ql(h)' Q2(h)

and the constant c¢ are assumed to take the following simple forms:

- Ql(h)

Q(h) = h
1.0 .

(]

Again, computational steps between N = 200 and N = 25 are selected and
the results are presented in Figs. 16-27 and Tables 3 and 4 for tolerances
of 1.04 and 0.1% respectively. As shown in the diagrams, all three
algorithms predict the internal control reasonably well with a generally
smooth control function. The projected gradient algorithm is the most
efficient both in terms of rate of convergence and smoothness of the
control function obtained. By contrast the conditional gradient algorithm
is the least efficient. One point which must be made regarding the
convergence rate in the Tables is that the figures inside the brackets are

the total number of times the state equation is solved. Therefore it



Table 3 Computational Result for Non-Linear Model (1.0% Tolerance)

No. of No. of Iterations Power Qutput

Steps cG PG NCG CG PG NCG
200 76(440)] 23(33) 130 0.1535 0.1535 0.1530
100 84(516)| 23(33) 129 0.1534 0.1536 0.1531
50 94(590)| 24(35) 121 0.1532 0.1539 0.1531
25 62(759)| 27(41) 122 0.1539 0.1547 0.1538

Table 4 Computational Result for Non-Linear Model (0.1% Tolerance)

No. of No. of Iterations Power Qutput

Sleps CG PG NCG cG PG NCG
200 462(4070)1118(192)| >1000 0.1537 0.1538 0.1537
100 >600 48(176) >1000 0.1538 0.1539 0.1537
50 >600 32(50) >1000 0.1537 0.1539 0.1538

25 >600 35(57) >1000 | 0.1545 0.1547 | 0.1546
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appears more reasonable to cite this figure when the convergence rate is
considered. A comparison with the results in Tables 1 and 2 shows that by
accounting for a large expansion loss in the power functional the power
output has fallen by 32.6%.

It should be noticed at this point that with the revised conditional
gradient algorithm (NCG) it can no longer be guaranteed that the power
function is monotonically non-decreasing. As is evidenced from the power
output versus iteration number diagram in Fig. 18, the power output
obtained in iteration 2 actually drops below that obtained in the previous
iteration. This is also encountered in the more general problems which
are to be discussed shortly (see Fig. 44), and casts further doubt on the
use of this algorithm in more complex situations.

It should also be remarked that all three of the discretized
algorithms are only guaranteed to converge to within some region near the
optimal solution of the continuous problem. Therefore, if too strict a
convergence tolerance is imposed, relative to the size of the
discretization step, the iteration may never satisfy the stopping
criterion. In practice it can be observed from the Figures that after a
relatively small number of iterations there is little improvement in the
computed power output, though more accurate controls are obtained when a
higher convergence tolerance is imposed.

After testing all three algorithms for the linear and simple
non-linear problems, we next extend the computation to more general
practical control problems where the constant c¢ takes values other than
unity and the flow functions Ql(h) and Q2(h) are allowed to vary. For
convenience of description the additional experiments can be further

broken down into two groups: group A in which the constant c¢ is
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varied in the range 0.0 to 1.0 while the flow functions remain
unchanged from the previous two models; group B in which the flow
functions Ql(h)' Q2(h) are assumed to be restricted at a prescribed head
difference. The main purpose of the second group is to simulate the
choking effect which is invariably experienced in sluices and turbines
when the head difference exceeds a certain limit. In other words the flow

function is expressed as

1}
o

= Ql(h) for |h| ¢ h

Qy(h)

Qy ()

0 (]

5 for |h| > h

Q, (h) o

|
=2

where ho is selected in the range (O, 1). The computed results for the
two groups are presented in Tables 5 and 6 respectively. The optimal
solutions are shown in Figs. 28-33 and Figs. 34-57, respectively. It is
found that convergence is achieved in all cases tested, although the
convergence rate varies considerably from one algorithm to another. Upon
examination of these results the following remarks can be made:

(1) For large values of ¢, the projected gradient algorithm
performs better, whereas for smaller ¢, the two conditional gradient
algorithms fare relatively well. This is quite obvious from the point of
view that the degree of non-linearity of the power functional is directly
associated with c¢. In fact, if the value is set to zero, i.e. c¢c =0,
then the problem is simply reduced to the linear model problem. Generally
as the value of ¢ decreases the power output increases.

(2) For the linear problem, the restriction of the flow through the

barrage leads to a reduction in the optimised power output. The lower the

maximum flow rate, the lower the power output. The same phenomenon is not



Table 5 Computational Results for Group A

C

= 0.25

(1.0% Tolerance)

No. of No. of Iterations Power Output
Steps
CG PG NCG CG PG NCG
200 21(68) 10(10) 25 0.1950 0.1942 0.1944
100 21(67) 10(10) 24 0.1952 0.1943 0.1945
50 20(63) 10(10) 21 0.1954 0.1947 0.1948
25 20(55) 10(10) 21 0.1968 0.1957 0.1959
C =0.1 (1.0% Tolerance)
No. of No. of Iterations Power Output
Steps
CG PG NCG CG PG NCG
200 12(29) 10(10) 10 0.2105 0.2099 | 0.2102
100 11(25) 10(10) 10 0.2105 0.2100 0.2103
50 8(15) 11(11) 9 0.2110 0.2105 0.2105
25 11(24) 12(12) 10 0.2126 0.2122 | 0.2120
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= 0,25 (0.1% Tolerance)

No. of No. of Iterations Power Output
SEeRg ca PG NCG cG PG NCG
200 132(900) 23(23) 305 0.1953 0.1953 0.1953
100 131(929) 20(20) 295 0.1954 0.1953 0.1954
50 165(1148)| 18(18) 274 0.1958 0.1959 0.1957
25 74(481) 23(23) 224 0.1969 | 0.1969 0.1968
C =0.1 (0.1% Tolerance)
No. of No. of Iterations Power Output
Stepe cG PG NCG e PG NCG
200 36(166)| 19(19) 91 0.2108 | 0.2108 | 0.2108
100 37(172)| 24(24) 88 0.2110 | 0.2109 0.2109
50 39(205)| 14(14) 82 0.2113 | 0.2113 0.2113
25 23(98) 17(17) 76 0.2128 | 0.2129 0.2128




TABLE 6 Computational Result for Group B (N = 200)

Linear Problem

h No. of Iterations Power Qutput

° CG PG NCG CG PG NCG
1.0 6(6) 10(10) 4 0.2245 0.2243 0.2256
0.5 14(19) 9(9) 27 0.2002 | 0.1983 0.1998
0.25 5(8) 12(12) 6 0.1366 | 0.1359 0.1357
0.1 2(2) 33(33) 2 0.0617 | 0.0613 0.0617

Non-Linear Problem

h No. of Iterations Power Qutput

° cG PG NCG cG PG NCG
1.0 T7(456)| 32(56) 125 0.1534 0.1536 0.1529
0.5 29(107)| 13(13) 31 0.1534 0.1529 0.1531
0.25 15(31) 11(11) 4 0.1257 0.1254 0.1259
0.1 2(2) 34(34) 2 0.0608 0.0605 0.0608
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observed in the non-linear problem in which there is little fall in the
power output due to this restriction until hO is dropped below 0.5. The
reason for this is that both linear and non-linear terms in the power
functional are affected simultaneously by the flow. As a result, any
reduction in the power output due to the restriction is compensated by the
corresponding reduction in the expansion loss. However, when ho is
below 0.5, the linear term seems to be dominant and any further drop in

h0 leads to a cut in power output.

In view of the results presented here for a wide range of problems,
the following conclusions can be drawn:

The conditional gradient algroithm is the most efficient for the
linear ‘bang-bang’ problem, whereas the projected gradient algorithm is
the most efficient for the non-linear problem. As a majority of practical
problems is non-linear in nature, the projected gradient algorithm is

recommended. As regards the revised conditional gradient algorithm, some

modification is necessary before it can be used effectively.

4, Ebb Generation Results

In this section we extend our numerical investigation of the optimal
control problem in tidal power generation to the ebb generation only
scheme. Only two cases are examined here. These include the linear power

function model where the instantaneous energy output is given by

Linear Model

0 h <O

hQ,(h)u h>o0,

e(u,h) =
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and the non-linear model, where the power output function is given by

Non-linear Model

0 h<O0
e(u,h) =
Q2(h)u(h—cQ2(h)2u2) h>o,
with ¢ = 0.25. As in the case of the two-way generation scheme, the

flow functions Ql(h) and Q2(h) are assumed to be linearly proportional
to the head difference across the tidal barrier. Numerical results are
presented for four choices of the computational step number N (N = 200,
100, 50 and 25), and two tolerances (1.0% and 0.1%). The iteration counts
and optimized power output are given in Tables 7-10, and the optimal
solutions obtained with a tolerance of 0.1% and N = 200 are shown in
Figs. 58-64.

An inspection of these results indicates that in general they
support the findings made for the two—way generation scheme.
Quantitatively the two-way schemes produce about 40% more power than the
ebb scheme with the current data. However, since only a very simple model
is used here, it is unreasonable to draw conclusions from the comparison
between the results from these two modes of generation with this data.

This fact is further underlined by observing the forms of the optimal
control given in the figures. It can be seen that when the head
difference crosses from positive to negative, the turbines switch
instantaneously from generation mode to sluicing mode, with no switching
time. This is an artefact due to the choice of the flow functions Ql(h)
and Q2(h) and due to the fact that the model admits only one control.

In practice the sluices and turbines can be controlled separately and a



Table 7 Ebb Generation Computational Result for Linear Model

{1.0% Tolerance)

No. of No. of Iterations Power Qutput

SLERE cg Pg NCG ca PG NCG
200 2 13 2 0.1315 0.1307 0.1315
100 2 13 2 0.1317 0.1308 | 0.1317
50 2 13 2 0.1322 0.1309 0.1322
25 2 13 2 0.1323 0.1308 0.1323

Table 8 Ebb Generation Computational Result for Linear Model

(0.1% Tolerance)

No. of No. of Iterations Power Qutput
Steps
CG PG NCG CG PG NCG
200 3 30 3 0.1319 0.1319 0.1319
100 3 28 3 0.1320 | 0.1319 0.1320
50 2 34 2 0.1322 | 0.1321 0.1322
25 2 46 2 0.1323 0.1321 0.1323
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Table 9 Ebb Generation Computational kesult for Non-

Linear Model
C =0.25

(1.0% Tolerance)

No. of No. of Iterations Power OQutput
Steps
CG PG NCG CG PG NCG
200 22(73) 14(14) 29 0.1169 0.1165 0.1165
100 20(62) 14(14) 27 0.1169 0.1165 0.1165
50 19(61) 14(14) 31 0.1170 0.1167 0.1167
25 17(51) 14(14) 21 0.1174 0.1165 0.1169

Table 10 Ebb Generation Computational Result for Non-Linear Model
C =0.25

(0.1% Tolerance)

No. of No. of Iterations Power Output
Steps
CG PG NCG CG PG NCG
200 152(1071)| 28(28) 364 0.1170 0.1170 0.1170
100 146(1087)| 28(28) 364 0.1170 0.1170 0.1170
50 172(1253)| 31(31) 299 0.1172 0.1172 0.1172
25 134(937) 34(34) 292 0.1176 0.1176 0.1175
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more sophisticated model can be developed. The aim of this sctudy,
however, is to obtain qualitative results concerning the nature of the
optimal control under different assumptions, and the behaviour of various
computational algorithms for determining the optimal.

One valuable observation that can be made from the ebb generation
results concerns the behaviour of the algorithms when the functional
gradient VE(u) is close to zero. For the non-linear model the
conditional gradient algorithms predict a very brief switch at time
t = 0.625, where the head difference crosses the zero axis (see Figs. 62
and 64). At this point the function gradient is very nearly zero, and
small computational errors can introduce sign changes leading to switches
of this kind.

For the linear model the same situation arises, but in this

case, no switch is predicted by the conditional gradient algorithms (see

Figs. 58 and 61). By contrast, with the projected gradient algorithm, at

points where the gradient vE(u) 1is near zero, the control is essentially

maintained at its initial value. This can be nbserved in Fig. 59 and 60,

where different initial values for u® are seiected. In the first of
these, (Fig. 59), the initial value is u® = 1, and no switches are
predicted at the critical point. In the second (Fig. 60), the initial
value is set to an intermediate position in the range (0.1) at the

critical time, and since this position is maintained by the algorithm at

each iteration, a switch appears to be predicted here. For the non-linear

model, where the initial value is taken to be u°® = 1, the initial value

is also maintained at the critical time, and no switch is predicted (see
Fig. 63).
In practice, with realistic data, cases where VE(u) is essentially

zero may not arise; however, it is important to consider in detail the
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required form of the controls at points where the gradient vanishes and to

modify the numerical methods to ensure the correct behaviour of the

optimal.

5. Conclusions

In this part of the paper we examine three numerical methods for
solving optimal tidal power generation control problems ~ a conditional
gradient, a projected gradient and a revised conditional gradient method.
The methods are applied to two simple models - Model 1 and Model 2, with
linear and non-linear power output functions, respectively. It is
observed that for the linear problem, the computed optimal control is
bang-bang in nature, as predicted, and for the non-linear problem the
turbine control increases continuously from its minimum to its maximum
value when switched on. For the linear model the conditional gradient
method is most effective - giving precise bang-bang controls with least
computational effort. The other methods are also quite efficient,
although the revised conditional gradient method does not appear as
effective for large discretization steps. For the non-linear model the
projected gradient method is most efficient and also produces the
smoothest controls. The revised conditional gradient method is generally
much more efficient than the original, but both algorithms suffer when a
high tolerance is demanded. For low tolerances, however, the optimal
solutions can be very rough. These effects vary with the degree of

non-linearity, as is shown by varying the data in the energy output

functions.
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The algorithms are all observed to converge, although theoretically
the tolerance that can be achieved is limited by the size of the
discretization step used. The optimized solutions are also observed to
converge as the discretization step tends to zero, although for N ) 50,
the results are all probably accurate to within computational] error.

It is observed that in the revised conditional gradient method, the
values of the energy functional do not increase monotonically with the
iteration, and a further modification to the algorithm is advisable to
avoid this behaviour. It is also observed that at points where the
gradient c{ the energy functional is close to zero, the optimal control is
not well-defined by the first order necessary conditions and the choice of
the control at these points is somewhat arbitrary. The conditional
gradient and projected gradient algorithms behave differently at such
points, and further modifications to all the methods are needed to ensure

the correct behaviour of the optimal control.

Results for both two-way generation and ebb only generation are given
here. Reasonable conclusions and comparisons between these cases cannot
be made however, since the simplicity of the control model constrains the
flow in an unrealistic way. More sophisticated models can be derived
which allow the sluices and turbines to be controlled independently and
which take into account the estuarine flow dynamics. It is expected that
the results of the studies presented here concerning the qualitative

nature of the optimal controls and the behaviour of the numerical

algorithms also hold for the more sophisticated models.
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Summary

The form of an optimal controller for a tidal power generation scheme
is investigated here under different assumptions on the instantaneous
power output function. In the first part, theoretical propercties of the
controller are examined analytically using a simple flat-basin model of
the system dynamics. Power output functions which are linearly dependent
on the control are contrasted qualitatively with power functions which
depend non-linearly on flux and head-difference across the tidal barrage.
It is shown that whereas the optimal controller in the 'linear' case is
essentially bang-bang, in the 'non-linear’' case the controller can take
interior values lying between the maximal efficiency and maximal power
curves of the turbines. In the second part of the report, the form of the
optimal controllers is examined numerically for various choices of the
povwer output function, and various constraints on the turbine flux. Three
computational algorithms are investigated - two conditional gradient type
methods and one projected gradient method. It is shown that whereas the
conditional gradient methods are effective in the 'linear’ cases, provided
the numerical discretization steps are sufficiently small, the projected
gradient method is more efficient in the ‘non-linear’' cases. Moreover,
the projected gradient method provides a qualitatively ‘smoother’
approximation to the optimal control in both cases. It is therefore
concluded that for general use, the projected gradient method is the
preferred algorithm.

The results of these studies can be extended to more sophisticated
models of the estuarine dynamics. The same conclusions regarding the

qualitative forms of the optimal controller apply. The projected gradient

method is also expected to be preferable to the conditional gradient



- 44 -

techniques, but difficulties with parameter choices are likelv to be more

serious in the sophisticated models. The revised conditional algorithm

offers a reasonable, intermediate solution, but other algorithms, such as

trust region methods, may prove to be more reliable and efficient in these

cases. For problems where singular arcs arise, the optimal forms of the

solutions need to be ascertained, and adjustments to the algorithms must

be made to ensure the proper behaviour of the computed results. Further

investigations are currently being carried out.
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