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ABSTRACT

A simple model is developed for steam injection into an idealised
0il reservoir. The development of the steam zone is governed by a
weakly singular integral equation which in turn becomes the equation of
state in a related control problem. The control problem arises from
optimisation of suitable quantities involved in the injection process
and development of the resulting steam zone. Finally an elementary

profit functional is formed and an economic limit imposed on the model.
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INTRODUCTION

The problem under consideration is the optimization of heavy oil
recovery by cyclic steam injection. This involves injecting steam into
the reservoir for a certain amount of time, then allowing a soak period
followed by a production period, this cycle 1is then repeated

successively until it becomes uneconomic to do so.

The eventual aim of the work is to maximise the overall profit
taking into account such factors as running costs of the well, the cost
of injecting steam and the cost of extracting the o0il and water

produced.

This involves determining the optimal placings of the switch points
from one cycle to the next and determining the switch points from
injection to soak and from soak to production within each cycle. The
total number of cycles also has to be found along with quantities such

as optimal steam injection rates.

The first step in this work is to look at one period of steam
injection and to investigate how certain quantities related to this

process can be optimized. This is the subject of the present report.

In chapter one the actual model that is to be used for the
injection process is presented together with the exact solution for a
specific case. In chapter two we go on to look at maximizing the area
penetrated by the steam and minimizing the amount of steam injected.
Finally, in chapter three, we briefly look at imposing economic limits

on the model.



CHAPTER ONE

THE INJECTION MODEL

SECTION A - THE MODEL

A very simple model of the injection period is described in [1] and
[2]. This model estimates thermal invasion rates and cumulative heated
area for an idealized reservoir making full allowances for
non-productive reservoir heat losses. The underlying assumptions of
the model are detailed below. This model is valid only up to some

critical time tc which shall be discussed later.
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Assumptions and Conditions

A.1 Disregard changes in the shape of the condensation front, see
fig. 1, and assume that it 1is perpendicular to the reservoir

boundaries.

A.2 Assume that the reservoir has a constant thickness and is

homogeneous and isotropic.

A.3 The very small changes in Cw and CS ., the specific heat per
unit mass of water and solid respectively, with temperature may be

safely neglected — i.e. take Cw and Cs to be constant.



A.4 The specific heat C0 of o0il is treated as a function of

temperature T , 1i.e. C0 = O(T) ;

A.5 At any point the components of the fluid/solid system are in
thermostatic equilibrium, i.e. fluids and solids have the same

local temperature.

A.6 Temperatures and saturations are constant over any cross—section

perpendicular to the flow direction.

A.7 The temperature in the steam zone is a constant and is independent

of position and time.

A.8 All temperatures will be measured from the reservoir temperature

TRI ,  which serves as zero level.

A.9 The steam and liquid densities P i P

-, and Py will be treated

as functions of the temperature.

In order to develop the model expressions for various quantities
such as the heat contained in the steam and liquid zones, the heat flux
through a cross—section in each of the zones and the rate of heat loss
to the surrounding rock, must be found. The assumption of no heat flow

across the condensation front must also be formulated.

Heat Content (see [2])

For H1 and H2 , the heat content per unit volume of the

fluid-solid mixture in the steam and liquid zones respectively, we

obtain, when taking the heat content at original reservoir temperature



as reference level,

H1 = plclT1 + ¢Sstpst(T1)LV (1.1)
where

p,C; = pC (1-¢) + p (T{)C 95

+ Po(TIC(T 1980, + P (TGS

H2 = p202T2 (1.2)
where

p202 = pSCS(1_¢) + pW(Tz)CW¢SW2 .
Here p represents density, C specific heat, T temperature, S

saturation and ¢ porosity.

Heat Flux and the Neglect of Heat Flow Across

the Condensation Front (see [21)
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Let Uhl' Uh2 be the heat fluxes through the fixed cross—-sections

(see fig. 2). From a heat balance for the volume enclosed by the two



fixed cross—sections

U, Uy = V() |H (r7, t) - H2(r+, t)] (1.3)
where
v(t) = %%

In the present model the assumption is also made that all heat
arriving at the C.F. is consumed there while heating the matrix and
residual oil from original reservoir temperature to steam temperature.
This means that the heat flux U ., - vH is neglected. Using this

h2 2

assumption in equation (1.3) results in

U, = v(t)Hl(r_, t) . (1.4)

The heat flux Uhl is obtained by subtracting Qst(t) , the rate
at which the whole steam zone loses heat to the surrounding rock layers,
from the rate of heat injection, and by taking into account changes in

the heat content in the steam zone that are associated with saturation

changes, namely,

U = Wee (O GT * Lv] + W EC.T — Qg (¢)
r(t)
- ¢pst(T1)P%;r1 * Lv] J‘ gz'sstdx
0
r(t)
d
= #p (TG J; gt w1
r(t)

a
= 9P, (TCG(TTy J; at So1¥



where Wst and Ww represent the mass injection rates per unit
cross—sectional area of steam and hot water respectively and Lv is
the latent heat of steam.

We can introduce the instantaneous average saturations from the

steam zone

r (t)

S(x, t)dx (1.5)

and thus obtain from substituting equations (1.5) and (1.1) into (1.4)
[Wst(t) + ww(t)]ch1 + W (t)L - ést(t)
= v(t)¢pst(T1)Lv§st + v(t)TIEIE;
* ¢r(t)[pst(T1)Lv * Tlcw(pst(Tl) - pw(Tl))] %? §st
where

p,C; = p.C (1-¢) + p (T )C ¢S 4

+ Po(T1)Co(T1)9Sg; + P (T)C 95,

and we have made the assumption

Q-l o7
ot

|
O
—

]

O

If we make the added assumption that

= 0 then we obtain
[Wst(t) + Ww(t)]Cle + wst(t)Lv - Qst(t)

5 v(t)[¢pst(T1)Lv§st + TIE;EI] . (1.6)



Rate of Heat Loss, Qst(t) (see [2])

Assuming vertical heat flow in the surrounding rock layers, the
rate of heat loss Qst(t) can be expressed as a functional of v as

follows.
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FIG. 3

The local heat flux from the steam zone at x to the overlying and

underlying rock is known [3] to be

: 21K P Cp
6 (x. t) = —RLEE (1.7)
° Vir(t-s)

where th, P, and Cf refer to the thermal conductivity, density and
specific heat respectively of the cap and base rock. Here s stands
for the instant at which the originally cold boundary at x first
became exposed to steam temperature T1 and hence (t-s) represents
the time the cross—-section at x has been effected by steam, i.e.
r(s) = x .

Integrating (1.7) over the total steam zone and referring the heat

loss to unit reservoir cross-section we obtain, on substituting into

equation (1.6), the following expression



[Wst(t) + Ww(t)]Cle + Wst(t)Lv (1.8)

= [¢pst(T1)LvSSt + Tlplcl]v(t)

+2T1”ﬁhfpf(’f It v(s) g,
h Vir 0 VvVt — s

We have combined expressions for heat flux, the heat content of the
steam zone and the rate of heat loss to the surrounding rock in the form
of a heat balance equation with the rate of heat being injected into the
reservoir, to finally obtain equation (1.8). This equation determines

. E . . dr
the position of the condensation front, remembering that v(t) = ac

Constraint On Model

Mandl-Volek [2] claim that this simple model is only valid up to
some critical time. This is because steam injection must supply the
content of latent heat stored in the expanding steam zone which is not
possible after some critical time. This information, which is not

contained in equation (1.6) can be formulated as the constraint

wst(t)Lv - Qst(t) 2 ¢pstLvSstv(t)

ds
having made the assumption dit =0 . The above inequality can also
be written in the form
< oar | ZTEPCr ot g g
wst(t)Lv - ¢pstLvsst dt J ds ds . (1.9)
h v 0 Vvt-s



The next stage is to non-dimensionalize equations (1.8) and (1.9).

Non-Dimensionalization

L
Put t = t and T = LrD where tD and rp are both

TV. D
1

dimensionless quantities (see [2]).

L = length of reservoir
dr
Vi = v(0) = Ere (0) .
Then
L ow gL Yo
dt dt ~ dt. L i dt
D D
t t
2 v(s) 4o = J 1 %1 d
0 Vt-s 0 vt-s °
t
D dr
= VLV, ] ——Q-ds

3. Wst(t) = W(tD)Wst(O)

Ws,c(t)LV + [Wst(t) + Ww(t)]Cle

= F(tD){wst(O)LV + [Wst(O) + WW(O)]Cle}

where the quantities W(tD) and F(tD) are dimensionless.
Using the relations 1-3 the equations (1.8) and (1.9) can now be

re-written in the form

{%St(O)LV + [Wst(O) + Ww(O)]Cle} F(tp)

(1.8a)
oT VK _p.C.LV. D d
1 ohePeeet' 1 ™ 4
- ds-. “°p
h vir 0 chSD D
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= [¢pst v st plclTl]vi dt

B er
wst(O)LV w(tD) = ¢pst v Stvl dtD
o1 VK p O IV, D dr
+ bt ¥ I : d—SRdsD (1.92)
h Vir 0 ) D
where the boxed terms are dimensionless. Putting t =0 1in equation
(1.6) gives the relationship

Wst(O)Lv + [Wst(O) + WW(O)]C T [¢pst st t plclTl V . (1.10)

Using (1.10) to eliminate Vi in equation (1.8a) and dividing (1.8a)

through by the LHS of (1.10) we eventually obtain

d D dr
D ag 1 D
i P )
d D m mdSD D
DD
where
4T, Ky P CL
a —
2
h {wst(O)Lv + [Wst(O) + WW(O)]C T }{¢pstLvSst + plclTl}
and

Wst(tD)L + [W (tD) + W (tD)]

F(t
W (O)L + [w (0) + W (O)JC T

p) =
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If we take the origin to be the time at which injection actually starts
then the denominator of F(tD) will not be zero.
Again using (1.10) to eliminate Vi in equation (1.92) and

dividing through by wst(O)LV we eventually obtain

t
dr D dr
D 1 D
D 0 Vvt -s D
DD
where
o 1+ [1+¥ (0)/W, (0)I[C,T/L ]
1+ pIC /P L s
(1.13)
5 4T12K PCe L{l + [1 + W _(0)/W, (O)][Cle/LV]}
2
B Ok [¢pst Vst T p1C1T1
Note

The form of F(t automatically gives us the initial condition

D)
that F(0) =

Summarising we can describe the movement of the steam front by the

equation

[=¥

T

D drp
—2 = F(t.) - v//_‘[ —2 ds (1.11)
dt, D dsD D

as long as the inequality
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g —-W(tD) - /CZW_J; = ds dsp, (1.12a)

D

is satisfied.

There is an exact solution to equation (1.11) for the case where

F(t is piecewise constant. This will be described in the next

D)

section.

SECTION B - THE EXACT SOLUTION OF THE MODEL EQUATION

Our model equation (1.11) is

t
g—izF(t)—\/E —1 %d,
dropping subscripts. Let us first consider the case where F(t) =
a constant. We can now write down the exact solution of equation

(1.14) using the following argument due to D. Porter [4].

Define the operator K by

_ £(s)
Kf)(t) = ds . 1.15
(xe) (1) fOtSs (1.15)
It can readily be shown that
t
(K?£(t) = w I f(s)ds . (1.16)
0

Substituting (1.15) into (1.14) gives
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dr o dr
i = F(t)-/;KTE

[I+ %K]j—z = F(t) . (1.17)

We can now apply the operator [I - v//giK] to both sides of (1.17),

remembering that F(t) = F , a constant, to obtain

_ Gzl dr _ = /g
[I wK]dt_F[l 2 Wt]

Using (1.16) yields

t
dr dr o
E—O’J\Ogds = F[1—2/;t]

Now we know that r(0) =0 and so

g—‘t"—ar(t) = F[1—2 i—‘:] , (1.18)
Multiplying (1.18) by the integrating factor e_rt and integrating

gives

r(t) = ot J; Fe—as[l B 2\//5E ]ds

Finally, making the substitution x = Vot

2
r(t) = = [ex Bl & = 1] (1.19)
Vir
-
where erfcx = —2-Jm e ° ds
vir Jx
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Differentiating (1.19) gives

dr x2
it = F e erfcx

and so we can write equation (1.12a) in the form

dr x2 t
-— < g e erfcx where x = Bt

2
a

(1.20)

(1.21)

Using the data in table 1, page 42, and assuming a constant rate of

steam injection the parameters in the above equations take the following

values,

Substituting these values into equations (1.19),

obtain

F =1

Vv =1

a = 0-0009
a = 000003
B = 00018 .

2
r(t) = 1111 e* erfex + 2 _ 1] where x = 0-03vt
vir
(see graph 1.1),
2
%% = &% erfcx where x = 003Vt
(see graph 1.2)
g5 o vy Vi
ac S 33333 e’ erfcy where y = 1414vt

(1.20) and (1.21) we

(1.22)

(1.23)

Combining (1.22) and (1.23) results in the model being valid for

t { 784 where t 1is dimensionless (see [1] for table of values of

2

e® erfcx) .
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CHAPTER TWO

THE CONTROL PROBLEM

In this chapter we shall consider control aspects of a single steam

injection period. We shall investigate two separate problems:
Problem A in which the length of the injection period is fixed.

Problem B in which the length of the injection period is not
fixed, leaving the final time to be determined as part of the

optimisation.

There are two approaches to the control that can be taken within each

problem.

Approach I - Fix the total amount of steam to be injected and

maximize the length of the steam zone at the final time tf

Approach II - Fix the length of the steam zone at t=T and

minimize the total amount of steam injected.

It is to be expected that the problems arising from these two individual

approaches are equivalent in some sense.

SECTION A - NUMERICAL. EXPERIMENTS

The aim of these experiements was to obtain some idea of how a
fixed amount of steam should be injected in order to obtain the maximum
steam zone length after some fixed period of injection, for example, is
it better to inject the majority of the steam towards the beginning or

end of the injection period?
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From chapter one we know that the rate of growth of the steam zone

is governed by the non-dimensionalised integral equation

F(t) = ds (2.1)
Our aim is to maximize r(tf) , given that the total amount of
steam to be injected is fixed, where tf is the final time of

t
f
injection, i.e. max r(t subject to F(t)dt = 1 where 1 is
g 0

fixed.

Equation (2.1) was solved numerically using a second-order

Runge-Kutta method (see [6],[7].[8]) with F(t) taken to be a step

function with upper and lower bounds given by 05 < F(t) < 3-0 . The
time of injection was chosen such that tf =1 and o was determined
from the sample data as shown in table 1, page 42. Typical results

obtained are shown in graphs 2.1-2.12.

These results suggest that for a fixed amount of steam to be
imputted in the form of a step function it is better to step up the rate

of injection as time goes on rather than to step down.

The results also suggest that we should perhaps use the idea of

injecting as much steam as late as possible in order to maximize the

distance, and hence area, penetrated by the steam at the end of the

fixed period of injection.
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SECTION B - FORMULATING THE CONTROL PROBLEM

We have two problems, A and B as previously described, to
consider and within each problem there are two approaches that can be
taken. Whichever problem or approach we take the following conditions

have to be satisfied:-

t
dr o) 1 dr
oo fi] Lk @)
dt m Omds
t
g—‘;géw(t)—/'ﬁf Lty (2.3)
a®r Y0 Vt-s
r(0) = 0, initially the steam zone is of zero
length. (2.4)
F(t) ., which represents the rate of steam injection, (2.5)

has upper and lower limits.

The form of the non-dimensional ratio F(t) (see
equation (1.11)) forces the condition F(O) =1

and so 1 £ F(t) £ Fu is the fixed upper limit.

Here we have assumed, based on the previously
described numerical experiments, that we shall increase
the rate of injection from its initial value, not

decrease it.

We now consider both problems and approaches in turn.
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Problem A — Approach I

t t

f f
Fix F(t)dt = I and max{r(t.) = gr dt subject to the
0 f 0 dt

t
dr a 1 dr
constraints —=— = F(t) - /I —ds 1 {F(t) <F .
dt ™ Jo Viss ds 13

We assume that the final time which is fixed, is such that

tf ,
condition (2.3) is satisfied. From Section B of Chapter one we know

. . . . . . dr .
that, for a piecewise constant increasing injection rate, T3 will be

monotonically increasing and hence (2.3) will be satisfied for

0<tgt

- - f .
If we put y(t) = g—z we can write the problem as
tf tf
fix I F(t)dt = I and max J y(t)dt
0 0

subject to the constraints

t
v = ¥ - [T] Iyt

1 ¢ F(t) <F
SF(t) <F,

The Lagrangian is now formed as

L(F) = I:f{y(t) * Al(t)[y(t) +/§ Lt) \/1——5 y(s)ds - F(t)]}dt (2.6)

by
+ 1y Uo F(t)dt - I]

where By is a constant.
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We may reverse the order of integration in (2.6) to give

t t

J;sz A (0)y(s) 4 dt - J;f Jff flffszfz.dt ds

t-s s t—s

We can now write (2.6) in the form

\: Ye A (t
L(F) = 1+n(s)+ /< 1) dt yy(s)ds (2.7)
0 1 m s Vt-s

‘e e
+ “J F(t)dt - ”11 - J 7\1(t)F(t)dt
0 0

Taking variations in F and y , i.e. F = F* + ebF , y = y* + edy ,

we obtain on substitution into (2.7)

L(F) = sz{1 + 2 (s) +v//gijzf 3%;;? dt}[y*(s) + eéy(s)]ds (2.8)

e
+ ”1J; [F*(s) + eaF(s)]ds - I

te
_ J; A (s)[F(s) + eéF(s)]ds

We require L(F) to be a maximum with respect to the variations &y

and O6F and so if we write

5 ” f f
L(F + e6F) - L(F) = &J a oyds + EI B 6Fds
0 0

where
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Q
1

f>\(t)
1+?\(s)+‘/7J\ dt and

ﬁ = Ml - )\l(s)
then since &y 1is unconstrained we require that
a = 0 . (2.10)

Now 6F 1is not unconstrained as F* + e6F € X where X 1is the convex
set [1, Fﬂ] but we require that L(F* + eb8F) - L(F*) <0 Ve>0

and so

j B 6F ds <O (2.11)
0

given that condition (2.10) is satisfied. (2.11) implies that

By - )\l(s) 20 == b6F {0 and (2.12)
My - )\l(s) {0 = O6F 2 0 where (2.13)
6F = F-F"

(2.12) and (2.13) give us the conditions
Fo= F, when m - A(s) 20 and (2.14)
%
F = 1 when My ?\l(s) <0.

Note that there is no need to find the constant Ky - the switch point

t
f

can be determined from the condition that I F(t)dt =1 as will be
0

shown later.
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We can find A?(s) from equation (2.10) using the same idea as
used in Chapter One for finding the solution of (1.14) but this time

defining the operator K by

t
f .
(K)(s) = £8) 4¢

s Vt-s

In this way we eventually reach the solution
2
kl(s) = - e X erfcx where x = Va(tf—s)

Al(s) is a monotonic decreasing function and so from conditions (2.12)
and (2.13) we can see that there can be at most one switch point. If
we let the switchpoint be at t = tg then from (2.14) and the fact that

Al(s) is decreasing we can see that

F = 1 t € [0, ts)
(2.15)

F = Fu t € (ts, tf]

Note that (2.15) satisfies the initial condition that F*(O) =1.

However, we still have to satisfy the condition that

t

£
J F(t)dt = I and so
0
t + (tf - ts)Fu =
thu -1
t, = F oo (2.16)
33

From (2.16) we are able to determine the position of the switch

point provided that I, te and Fu are such that t € (0, tf] .

Note that ts cannot be zero as this would contradict the initial

condition F*(O) =1.
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Problem A — Approach II

This problem can be stated as

t

f f
: - dr
fix r(tf) = rp = J‘ ac dt and min J F(t)dt
0 0
subject to the constraints
dr
Poatalt F(t)—
dt O\/_ds
1 <F(t) F
SF(t) < F)

Again we make the assumption that te is such that condition (2.3) is

satisfied and put y(t) = %% . We can now write the problem in the form
N tf tf
fix rp = J y(t)dt and min J F(t)dt
0 0]

subject to the constraints

t
v = F© - [2] Loy
-S

1 { F(t) <F
SCF(t) < F,

This time on forming the Lagrangian we obtain

— J;f{_ F(t) + A2(t)[F(t) = V/G%

t

+ pg[J;fy(s)ds - rT]

where Ho is a constant.
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Again reversing the order of integration and taking variations in

F and y we obtain

L(F + e8F) = L(F) =

I [ 2(s) - 1]6F ds - EJ L/ J 't ?\2(t) dt + ?\2(5) - Mg syds

Using a similar argument to that used in approach one we have the

condi tions
= (F A(%)
Z j = dt + A(s) By = O (2.17)
s (t-s)
and
A(s)-1>0 = F = F
5(s) = 12 = F,
(2.18)
>
Ay(s) -1<¢0 = F = 1
Again we can write down the exact solution for A(s)
x2
i.e. Az(s) = Hoe" erfcx where x = *%J(tf—s)

The constant Moy must be positive in order for (2.18) to be feasible
and so A2(s) is a monotonic increasing function and once again we have

Jjust one switch point ts where

F =1 t € [0, ts]
(2.19)

Fo= Fu t € (ts, tf]

This time the position of the switch point has to be determined from the
tr

condition that I y(t)dt = r
0
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To do this we may use the fact that we know the exact solution

r(t) . We know from (2.19) that

dr /I

&L ds t € [0, t)
dt 0 (t-s A ds s
dr J

—— ds t € (t, t.]
dt v/f— 0 (t-s % ds s’ °f

1

1

2
i.e. r(t) = 3 [ex erfcx + 2X 1] t € [0, t )
g \/TF S
(2.20)
F 2
r(t) = —E-[ex erfcx + = ] + & t € (t , t.]
o i o s' °f
where x = Vot and C 1is a constant (see equation 1.19).
Now r(t) must be continuous at ¢t = tg and so from (2.20)
X2 2X X2 2X
F [e erfc X + —| +C = e “erfc XS + — -1
S Vr vir
where XS = Vats and thus
X2 2X
C = (l—F)[e erfc X +—] -1 (2.21)
u s £

Substituting (2.21) into (2.20) and enforcing the condition r(tf) = r'p

we obtain

Qh:"rj

erfc X + —

vir

S
rp = e “erfc XS +— -3 (2.22)

vir

2
[exz ox ] . (1 -F )[ X 2Xs 1
ag

where X = \/atf

It is from equation (2.22) we expect to find the value of XS and

hence the position of the switch point ts
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Comments On The Two Approaches Applied To Problem A

1. Both approaches have led to conditions of the form

a + A(s) + V//_-J‘ —i—l dt = O

b-XA(s) 2 = F min F, max F

b-XA(s) { = F =maxF, min F

where a and b are constants.

2. It is much easier to find the position of the switch point using
approach I than it is using approach II as in approach II it proves

to be awkward to satisfy the boundary condition r(tf) = Tp .

Problem B - Approach I
te L
Fix F(t)dt =1 and max{r(t,) = — dt subject to the
0 f 0 dt

constraints

%% = F(t) - l_ 4 (2.23)
0 Vt-s
t
e 1. /B[ 1 dr
&< w(t) E L ds (2.24)
a“mr YO Vt-s

1< F(t) <F

(1) < F,

where the final time tf is now free to be chosen.

Equations (2.23) and (2.24) can be combined to give the condition

[1—%/@]% é()-—/EF(t) . (2.25)
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From (1.12) and (1.13)

1 B _ - =
@ /: = 1Ty 7 dpglySge 2 1
and so (2.25) can be rewritten

dr > —2 . [\/E w(t) - \/EF(t)] :

€ ave - VB

If we consider the case where no water is being injected, just steam
then from (1.12) we can see that F(t) = w(t) and so the above

inequality can be written

dr vo - VB
= > 7F(t) where + = ——
£ oo - VB
dr

Writing y(t) = gc s before and forming the Lagrangian for the problem

we obtain

tf t
1
LF) = fo y(6) + g(0) [F(o) - /;’7_ fo L y(s)ds - y() fat

(2.26)
te 7
+ J }\4(t)[y(t) - "YF(t)]dt + “BH F(t)dt - I]
0 0
where Hg is a constant and where
A4 = O when y(t) - F(t) >0
(2.27)

A4 # O when y(t) - *F(t) =0

(see [5]).
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Reversing the order of integration (2.26) can be written

e — e )
L(F) = J; [1 - As(s) + A4(s) - V/C; j dt]y(s)ds
s Vi-s

(2.28)
s
+ J; [us + AB(S) - 7A4(s)]F(s)ds = pgl
Remembering that tf is now free to be chosen we must consider
variations in tf as well as in F and y . Substituting
t = t’f‘ +ebt, y=y +eby and F=F +ebF into (2.28) and

subtracting (2.28) we obtain

L(F* + edF) - L(F') =

>
tf+66t t Ay (t)
12 B N(s) - /2| ==—atly*(s)a
ft* RN O RO RO =t 2 OL%
f

»*
t.tebt

%
£ W)
g 3
+ eJ; [1 - As(s) + A4(s) - v/c; J; — dt]éy(s)ds

% »
t.tebt €. tedt

- %Jof Ui Ay(t) dt] [y*(s) . eay(s)]ds

T t-s
totedt
+ eJ ' Lﬁ3 + A\,(s) - A (s)]éF(s)ds
0 3 4
t?+e§t
+ J [”3 + 2y(s) - '77\4(s)]F*(s)ds
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We require L(F* + ed6F) - L(F*) <0 Ve>0 . Sy is

unconstrained and so we must have that

*
b A (1)
1=k A(Gs) - /2 3 "4t = 0 . 2.29
J(8) + A (8) /;f < (2.29)

Using the same argument as before for o6F not being unconstrained we

have
My + Ag(8) - My(s) 20 = Fo= F,
(2.30)
2
By + ?\3(5) - '7?\4(5) {0 = F =1
Now for any function f(s)
t)fe+e§t
f(s)ds ~ eétf(t);) as e —0
3
‘'t
and so
t* *
f AB(tf) x
I y (s)ds = O (2.31)
0 t* B
P
and
* N
[MB + 7\3(tf) - '17\4(tf)]F (tf) = 0 (2.32)
2.31) = My(ty) = O
(2.31) (6 =
*
(2.32) = u3—77\4(tf) = 0
3 »
7\3(tf) = 0 =>?\4(tf) = -1 (see (2.29))
* 2 0
7\4(tf) = -1 =>y(tf) . ’YF(tf) = 0 (see (2.27)). (2.33)
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We know from the exact solution that y(t) is a monotonic function and
thus that there will be only one value of t? such that (2.33) is
satisfied, and hence that A4(t) =0 t € [O, t:) . Using this in

equation (2.29) we have the condition

¥
TEWED)
1 - 24(s) - v//g J; T_S dt = 0 s € [0, c?) (2.34)

and from (2.30)

%
o
l
o]
I

i

KB(S) + gy 2

I\
o
l
ry
1l

p—

RB(S) Ll

2
From (2.34) AB(S) = e erfcx where x = V o(t?—s) and so AB(S) is a

monotonic increasing function. It now follows that
F = 1 t € [0, t)
% »*
F = Fu t € (ts, tf]

where ts is the switchpoint determined as before in problem A.

Problem B — Approach II
7 o
Fix I y(t)dt = Iy and minj F(t)dt subject to
0 0

t
y(£) = F(t) —/gfo\/l_y(s)ds
t—-s

y(t) 2 F(t)

1 {F(t) <F
CF(t) CF,

dr

where y(t) = T



- 30 -

We can form the Lagrangian for this problem

e
L(F) = J; {- F(t) + A

}dt

(2.35)
e e
J; A7(t)[y(t) - 7F(t)]dt + “4[J; y(t)dt - rT]
where
A7 = 0 when y(t) - F(t) > O
(2.36)
A7 # 0 when y(t) —F(t) =0
(see [5]).

Reversing the order of integration (2.35) can be written

t
f
o
L(F) = Jo A6(s) + A7(s) - v/(; J; A6(t)dt]y(s)ds
e
+ Jo L)\6(5) =i - 7%7(5)]F(s)ds = Bylp
Taking variations in t, , y and F as before we obtain

f

L(F" + e6F) - L(F) =

-

%
t.+ebt

f A [t)
Ng(s) + Ag(s) - /_f at]oy(s)as

. ji [y - 26(e) + 2090 - [jf %6 4 [ + eoyior]as

LA,

t*+ ot
O ag()ae

][y*(s) + eéy(s)]ds

t-s
t
f
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*
t . +ebt

+ J i [As(s) -1 - qx7(s)][F*(s) + eaF(s)]ds

Ee

*

+ erf[AG(s) -1 - 1%7(5)]6F(s)ds

Finally, using similar arguments to those in the previous approach,

we obtain

g A (t)
- - /e 5 "4t = o 2.37
ity = ) he) - [ ] (2.37)
Ag(ty) = O (2.38)
Ag(tp) — 1 - Mo (tF) = O (2.39)

Ag(s) -1 - M (s) 20 = Fo= F,

(2.40)

Ng(s) -1 -7 (s) <O = F = 1

Substituting (2.38) into (2.39) results in the condition that
%* 1 0 *

k7(tf) =--#0 and so from (2.36) y(tf) - 1F(tf) =0 . We know

from the exact solution that y(t) 1is a monotonic function and hence

that y(t) - ¥F(t) > 0 for t € [O, t?) . We can now write conditions

(2.37) and (2.40) as
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f A
- Ag(5) —/_J r(t) =0 te[o, ty) (2.41)

%
ks(s) -1>20 = F = FM
(2.42)
3
Agls) -1€0 = F = 1
Combining (2.37), (2.38) and (2.39) results in By = l >0 (from
(1.14)). As(s) is therefore a monotonic increasing function and hence
Fooa 1 t €[0, t)
2 >
F = Fu te(ts, tf]

where t is the switch point which has to be determined by a similar

method to that in approach two of problem A.

Comments On The Two Approaches Applied To Problem B

1. Both approaches have led to conditions of the form

a+ A(s) + V//_-J J£:£ dt = O

b-As)20 = F minF

Il

b-2As) <O = F = maxF

*
2. Both approaches have given the condition on tf to be

y(t:) = 7F(t?) =0 . This condition means that the optimal final

time is the greatest one for which the model is wvalid. This
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suggests that if the model were valid for all time then there would
be no optimal final time and hence no optimal solution for the

unfixed end time problem.

Having applied both approaches to the fixed and free end time
problem approach one seems the most favourable in that it is far

easier to determine the position of the switchpoint.
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CHAPTER THREE

ECONOMIC LIMITS ON THE MODEL

In the previous chapter we have considered optimizing the area
penetrated by the steam and paid no attention to the cost of carrying
out such an operation. In practice overburden and underburden heat
losses will impose a practical limit on the area which can be "swept
out", or heated, from any one injection point for any given combination
of heat injection rates and reservoir parameters. Continued heat
injection beyond this point imposes an economic liability wupon the

operation.

A simple profit functional, based largely on the injection period,

may take the form

_ value of oil _ |cost of injecting
P(t) = displaced so far steam so far : (3-1)

The theoretical economic limit for sustained heat injection may be
defined as the point reached when the net value of the o0il displaced per
unit time is just equal to the cost of the heat injected per unit time.

13 = 0 where P is the

This can be formulated as the point when %?

profit functional, such as the one expressed by (3.1).

We consider now certain aspects of the production of o0il resulting

from one steam injection period.
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0il Displacement Rates

Firstly it should be noted that displaced oil, as the term is used
here, is not the same as produced oil. Only between 80 and 100 per
cent of the displaced o0il should ultimately be produced from standard

well patterns.

The oil displacement rate, Vo(t) , can be expressed in the form

Vo(t) =

fraction of mobile rate of change of volume
oil/unit volume penetrated by steam

dA
V(t) = he(S, - S )Tt (3.2)

where A(t) is the area penetrated by the steam at time ¢t .

The non—-dimensional equation we have been studying,

i.e.
dy D dy
= = F(tp) - /gf LD, . (3.3)
D o VtD = SD D
describes the development of the steam zone. Marx and Langenheim

assert that A(t) 1is given by (3.3) whereas Mandl and Volek imply that
it is r(t) that is given by (3.3). This difference leads to two
separate expressions for Vo(t) (see (3.2)) and hence for the profit

functional itself.

We know, from chapter one, the exact solution to equation (3.3)

where F(tD) =1, i.e.
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2
yD(tD) = %-[ex erfcx + 2 _ 1] (3.4)
vir
and
dy. 2
EJQ = e" erfcx (3.5)
t
D
wvhere x = Vot . We may substitute the appropriate solutions into

D

(3.2) to obtain expressions for Vo and hence the profit functional P.

The formula (3.1) may be expressed in the form

P(t) = cost of o0il/| [volume of oil
~  |unit volume displaced

_ steam energy no. of million Btu
cost/million Btu of steam injected

and so for a constant rate of steam injection we have

t

P(t) = zjv (s)ds - Y[t.Q.h.W (0) x 10‘6] (3.6)
0 o st
where Z = cost of oil/unit volume
and Y = steam energy cost/million Btu.
Differentiating (3.6) results in %% being expressed as
dP -6
it = Z Vo(t) = Y[Q.h.Wst(O) x 10 ] 3 (3.7)

Substituting values from table 1, page 42, into (3.6) and (3.7) we

obtain
“t
P(t) = [ V (s)ds - 5.75 & t] (3.8)
Jo © y/
dp [ Y
o = V(1) -85 Z] . (3.9)
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We now consider the two cases arising from the two separate

interpretations of equation (3.3).

Case 1.

Remembering that V0 is a dimensional quantity, we have

V(t) = he(S, - S )V, % (3.10)

dA
where Vi = B (0)

From equation (1.8) putting t = 0O gives

¥V (0O)JL +CT ]
Vi _ _st 1 v wl (3.11)
¢pstLVSst * Tlplcl

where Ww(t) =0 .
Substituting expressions (3.11) and (3.5) into (3.10) and using values
as shown in table 1, page 42, results in

2

V. (t) = 65 e® erfex (3.12)
vhere x = oty = 0.016Vt
Substituting (3.12) into (3.8) and (3.9) and taking values from table 1
we obtain the following expressions for P and %% ,
2
P(t) = —Z [ex enfex 1 22 - 1, = (00015 % t]
[0.016]7 vir

2
g z[eX erfex - 5.75 % ]
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_ er
— dt

Case II Yp

o

We know that A(t) = w[r(t)]® and so we obtain from (3.2)
V(t) = 2mhe(S -S )r(t) &
o - o or dt

Again we have to remember that Vo is a dimensional quantity and thus

can be expressed in the form

er

Vo(t) = 2wh¢(So = Sor)Lvi rD(tD) E;B- (3.13)

As in case I we are able to use the exact solution of equation
(3.3) for the special case of F(tD) = 1 and therefore obtain, for the
data shown in table 1, the following expression for Vo ;

2

X erfex (3.14)

2
erfex + 2x _ l]e

V (t) = 40840705 [ex
° vir

where x = 0.016Vt

We can integrate the above expression for Vo and this results in

t
2 2
JVo(s)ds = 8.0 x 101°[ex erfox + 2% - 1] . (3.15)
0 vir

Substituting (3.14) and (3.15) into (3.9) and (3.8) respectively results

in the following expressions for P and %% .

2 2 _
P(t) = 8.0 x IOIOZ{[ex erfcx + 2_X - 1] - 7.2 x 10 10 % t}
vir
2 > _
%E = 409407052{[ex erfcx + X, _ 1]6x erfex - 1.4 x 10 4 X}
t \/1? 7
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We now have two separate expressions, arising from the two cases,

for the profit functional P , 1i.e.,
Case 1
Blk) i e [exzerfcx + 2 _ 1 -0.0015 % t] ; (3.16)
[0.016]2 vir
Case 11
P(t) = 8.0 x 1010Z{[exzerfcx + i—f - 1]2 - 7.2 x 10710 % t} . (3.17)
m

We are interested in finding where (3.16) and (3.17) reach their

maximum. However, first we make the following observations.
Comments
1. In order that P given by (3.16) should have a maximum the

condition %-( 0.17 must be satisfied as this forces %%-(O) >0

which ensures that the one extremum of P is a maximum and not a

minimum.
2. For %- of O0(1) it appears, from studying (3.17), that for

case II the functional P does not have a maximum and that
%% (0) * 0 corresponds to P having its minimum at t =0, 1i.e.

P(0) = O .

As a consequence of this second comment, only the profit functional
corresponding to case I was plotted to investigate the effects of
changing the ratio % ; This can be seen in graphs 3.1, 3.2 and 3.3.

By comparing these graphs it appears that as the ratio %

decreases the time at which the profit reaches its maximum increases.

As would be expected, the value taken by the profit functional at its

. i Y
maximum also increases as = decreases.

Z
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CONCLUSION

In chapter one a very simple model has been developed for the steam
injection process around which, in chapter two, two separate, but

related, control problems have been applied.

These control problems are

1. Fix the total amount of steam to be injected and maximize the area

penetrated by the steam.

2. Fix the area to be penetrated by the steam and minimize the total

amount of steam injected.

The results obtained indicate that we should use the hypothesis of
"injecting as much steam as late as possible". Numerical experiments
also suggest that this is the correct approach to take. It was found
to be much easier to satisfy all the conditions in the first control

problem rather than the second.

Finally in chapter three we looked at a very simple profit
functional based largely on the injection period. The results obtained
emphasize how simple the wmodel is. Taking two different
interpretations of the quantity r(t) , a radius or area, resulted in
two totally different shapes of profit functional. The first, as
expected, reached a maximum but the second was found to be unrealistic,

being monotonically increasing throughout.
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A great deal of further work needs to be carried out in this area.
A soak and production period has to be attached to the injection period
to form one complete cycle. Then the problem of optimisation where two
or more of these cycles are linked together, and how previous cycles

affect the present one, has to be investigated.
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SAMPLE DATA (see [1], [2])

Reservoir porosity ¢ = 0.25

0il saturation 501 = 0.60

Residual o0il saturation sor = 0.10

Steam saturation §st = 0.20

Water saturation §w1 = 0.20

Relative steam temperature T1 = 390°F

Initial reservoir temperature TRI - 80°F

Steam injection rate Wst(O) = 250 lb/hr - ft?
Reservoir thickness h = 20 ft

Length of reservoir L = 90 ft

Physical Constants

Specific heat, rock C, = 0.21 Btw/lb - °F
Specific heat, water Cw = 1.0 Btwlb - °F
Specific heat, oil C, = 0.5Btu/lb - °F
Specific heat, cap rock C, = 0.20 Btu/lb - °F
Density, rock p, = 167 1b/ft°
Density, water P, = 62.4 1b/ft°
Density, oil P, = 50 1b/ft°
Density, steam p,, = 0.006 Ib/ft®
Density, cap rock P, = 137 1b/ft®
Thermal conductivity, cap rock th = 1.00 Btu/lb - hr'F
Latent heat of steam Lv = 908.8 Btu/lb
Available heat of steam Q = 1,150 Btu/1lb

at 470°F, 500 p.s.i.g.

TABLE 1
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Glossary Of Symbols

specific heat of cap and base rock

specific heat of oil

specific heat of rock

specific heat of water

heat content per unit volume of steam zone
heat content per unit volume of liquid zone
thermal conductivity in cap and base rock
radius of reservoir

latent heat per unit mass of steam

rate of heat loss from steam zone to cap and base rock
radius of steam zone

saturation of oil in steam zone

saturation of 0il in liquid zone

saturation of steam

saturation of water in steam zone
saturation of water in liquid zone

initial reservoir temperature

temperature of steam zone relative to initial reservoir
temperature

Temperature of liquid zone relative to initial reservoir
temperature

time

final time of injection period
heat flux in steam zone

heat flux in liquid zone

rate of growth of steam zone radius

initial rate of growth of steam zone radius



wst

mass rate of steam injection through unit cross—section

mass rate of hot water injection through unit cross—section

porosity
density
density
density
density

density
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cap and base rock
oil

rock

steam

water
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