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ABSTRACT

The results of two problems, a spherically divergent infinite
shock and a converging cylindrical shock, are presented. The
method is Roe's flux difference splitting in one dimension, applied to
cylindrically and spherically symmetric geometries, with a technigue for
dealing with source terms. The numerical results compare favourably
with those in Noh's recent survey, and also with those of Ben-Artzi

and Falcovitz using a more complicated Riemann solver.



1. INTRODUCTION

The (linearised) approximate Riemann solver of Roe [1] has proved to
be very successful in its application to ocne-dimensional problems with slab
symmetry governed by the Euler equations, (see Appendix A, [2,3,4)).

We here seek to extend this technigue to one-dimensional problems with
cylindrical and spherical symmetry, and/or with source terms. The
resulting method is applied to some strongly shocked flows in cylindrical
and spherical geometry. The technique is simpler than alternative methods
(5,6] and the results compare favourably.

In 82 we derive in detail differential equations for the flow of an
inviscid perfect gas in a general orthogonal curvilinear co-ordinate system
for the general equations for fluid flow. This is in order to make clear
the origin of the non-cartesian terms in the subsequent equations. In §3
we describe the details of the flux difference splitting scheme for the
approximate solution of the equations given in §2 in the case of an ideal gas
whose flow can be described by one curvilinear space co-ordinate only.

In 584 we discuss the properties of the scheme given in 83 while in §5 we
describe two specific test problems that can be used to test such schemes.
Finally in 56 we display the numerical results achieved for these two

problems and compare them with solutions obtained by existing algorithms.

2. EQUATIONS OF FLOW

In this section we consider the Euler equations for maodelling the time
dependent flow of an inviscid, compressible fluid that is symmetric with
respect to one of the co-ordinates in g general orthogonal curvilinear

co-ardinate system (x1,x2,x3).



2.1 We first derive the system of differential equations for a fluid by
considering a fixed control volume &V with surface &S and ynit outward

normal n to this surface.

By considering the flow passing through this volume we obtain the

following integral form of conservation laws

Conservation p) o ~
of mass 5t JGV pdV IGS pu-n ds (Z
Conservation P - i
of momentum at Jav puav + JGS pulu-nlds = I5S E;_ﬁs (2
Conservation 3 _ _
of energy 3t }6V edV JGS [E-E)-QQS + [63 eu.nds (z

where p = p(x,t), u = ulx,t) = (u,(x,t], u,(x,t), us(x,t)]) and
e = e(x,t) represent the density, velocity in the three co-ordinate

directions and the total energy, respectively, at a general position in

space x = (x1,x2,x3] and at time t.

We assume that we are dealing with a perfect fluid, in which case

the stress tensaor is given by

I=-p1 ,

where I 1is the identity matrix, and p = p(x,t) 1is the pressure.

We note that the total energy is given by
e = pil + 3 pu-u (2

where 1 = i(x,t) is the specific internal energy, and we also assume

the equation of state for an ideal gas, namely

p=(y - 1) pi (2.

where vy 1s the ratio of the specific heat capacities for the fluid.
We now use the divergence theorem applied to both tensors and vectors
to write equations (2.1)-(2.3) together with equations (2.4)-(2.5) in

differential form to give the set of conservation laws



Pyt div (pu) = 0 (2.8
[pg}t *divlpuu - T) =0 (2.7
ey * div (eu - u-T) =0 (2.¢
together with
e=Y£_)1+%p5-g (2.
and
T=-pI . ' (2.

In the case of a perfect fluid, T =~-pl and using the result from
vector analysis+ that

div (aB) = o div B + (grad )l '

where a is a scalar, we obtain

div T = div (-pI) = - (grad plel = - grad p
since div I = G. Therefore equations (2.6)-(2.9) become
G div (pul) =0 (2.1
[pg]t * div (py u) = - grad p (2.1
e, * div (ule + p)) =0 (2.1
together with
e=Y'f1+%oy_-g . (2.1¢

We notice the emergence of a 'non-divergence’ term in equation

(2.12), namely grad p, which arises because the stress tensor is diagonal.

(t+) Expressions for div b, div B and grad a where b, B and o are vectors,

tensors and scalars repectively, for a general orthogonal curvilinear

co-ordinate system are given in Appendix B.



Now for a general orthogonal curvilinear co-ordinate system grad and

div are generally different although they are identical for cartesian
geometry. Thus care has to be taken when we are working in a co-ordinate
system other than cartesian, e.g. spherical polars, since eguations
(£.11)-(2.14) do not appear in the standard conservation form for the

application of conservative finite difference techniques.

2.2 If we now consider flow that is wholly dependent on one of the
co-ordinate directions, say X4 then equations (2.11)-(2.14) become

3

1
p, * (hoh,pu) =0 (2
t h1h2h3 ax1 23
1 3 1 9p
(pu), + ———— — (h_h_puz) = - — 22 N
£ hyhohy Bx, 273 h, 8x, (2
A Fr%%——— *52— [h2h3u[e +pl)) =0 (=
1050y 16,
together with
e = = ? 7" ipu? (2

where h1‘h2’h3 are given as usual by the line element ds with

95 = h, dx, x, + h_ dx 52 + h3 dx

1 9% X4 X 3%

(ii is the unit vector parallel to the co-ordinate lines with X5
increasing), and p = p[x1,t), m = (u(xq,t),D,D], p = p[xq.t) and

e = e(x1,t]. Equations (2.15)-(2.18) cannot now, however, be written

directly in the standard conservation form
w w = 2.
—t * (E[_.) ]x"l E » [

with w = (D.pu.e]T and F a suitable vector-valued flux function.

They can, however, be put in the form
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[h1h2h393t * (hzhapu)x1 = (2.2

+ 2 = - _BL N
(h1h2h30U)t (hzhapu ]><1 h2h3 3x1 (2.2
[h1hzh3 e]t + (h2h3u(e + p]])< = 0 (2.2

1

Thus in the case h1 = 1, these equations can be written

(h1h2hap)t + [h1h2h30u]x1 =0 (2.2
(hhohgeuly + (hhoh (p + puth), s %1- (h,hhy) (2.2
(h1h2h38]t + [h1h2h3u(e + p]]><1 =0 (2.2

and it is these equations we now study together with
e =3 : T+ i oeu? . (2.2

Equations (2.23)-(2.26) are nearer to a "conservation” like form but with
an additional "source" like term on the right hand side.

Now in a general orthogonal curvilinear co-ordinate system

dv = h1h2h3 dx, dx. dx

1 2 3° and thus equations (2.20)-(2.22) could also

have been derived from the integral form given by equations (2.1)-(2.3)

where a quantity such as h.h h3 P dx, dx. dx represents the mass in a

12 1 2 3
control volume bounded by surfaces h1 = constant, h2 = constant and
h3 = constant.
2.3 An example of a flow described by the above equations when h. = 1,

1
and the flow is wholly dependent on x1 is that of an inviscid, compressible
fluid through a duct of smoothly varying cross-section, often referred
to as 'duct flow'. In that case we have

(S(r]o]t . (S[r]ou]r dJ (£.27)

(S(r)ou]t + (S(r)(p + puZJJr = pS'(r) (2.28)

o

[S(r]e]t + (S{riu(e + pJ)r = (2.29)



together with

| R g2

where we write Xq =T for notational simplicity, and S(r) represents
the cross-section of the duct at r. (S(r) - h.h.h ],

More importantly, equations (2.27)-(2.30) cover all one-dimensional
flows including, for example, cylindrical and spherical flows with axial
or radial symmetry. They also reduce to the correct form in the much
studied case S = 1 (slab symmetry).

Equations (2.27)-(2.29) can be written as the system

S(riw, + (S[r]ﬁ(y_)]r = glw) (2
where
W = o » Flw) = [ pu 1 and glw) = [ 0 (2
pu p *pu? pS! (r)
Le ule + p) 0

We notice that S(rlF(w) = F(S(rlw) and S[r)ﬂt = (S(r)ﬂlt, so that

equations (2.31)-(2.32) can be rewritten immediately in the more familiar

form

!t + [E(E]]r = glw) , (2
where W = S(r)Jw. This gives rise to new 'conserved’ variables R, M, E
where R = S(rlp, M = S(r)m and E = S(r)e. (Here m denotes the

momentum pul). It also gives a new 'pressure’ variable P = Sirlp.

(N.B. the velocity u = U, sound speed a = %F—= /%;- and enthalpy

h=1(e+ p)l/ = (E + P) = H remain the same).
0 /R

Using these new variables the Euler eguations for duct flow become

[ R) =+ RU B [ 0 ] (2.:
RU P + Ru2 S'(r)
Sy b
E U(E + P)

t r L



with

E=r o7t iR 2.

Equations (2.34)-(2.35) represent a system of hyperbolic 'conservation’
laws similar to equations (2.31) for slab symmetry, i.e. when S =1, g =0,
with an additional source term on the right hand side. This additional
term is due to the difference between the divergence and gradient operators
in a non-cartesian co-ordinate system, in one dimension. Mareover the
extra pressure term is due solely to the non-parallel nature of the sides
of a control volume in the duct, i.e. on the non-cancelling of pressure terms
on either side of the duct.

In the next section we describe a finite difference approximation

that models equations (2.34)-(2.35) using the linearised Riemann solver

of Roe [1].

3. FLUX DIFFERENCE SPLITTING

In this section we consider a finite difference approximation for

the solution of equations (2.34)-(2.35).

3.1 In the case of slab symmetry, S = 1, equations (2.34)-(2.35) reduce
to the one-dimensional Euler equations in a single cartesian co-ordinate,
which can be solved by flux difference splitting using the approximate
Riemann solver developed by Roe [i]. Roe's approximate Riemann solver,
combined with the 'Superbee’ limiter has been used very successfully to
give a second order method for the Euler equations in one dimension.
(See Appendix A, [2,3,41). It is found that the first order part of the
method captures shocks crisply over a single cell and the second order part
gives good accuracy in smooth regions, while the use of a limiter gives
sharp contact discontinuities. The scheme is also conservative.

We shall use the similarity of equations (2.34)-(2.35) with the
cartesian case to develop a corresponding method for duct flows keeping

as far as possible the abaove valuable properties.



3.2 We consider a fixed grid in space and time with grid sizes

Ar,At, respectively, and label the points so that rj = + AT,

rj_1
t =t + At and W, W denote the approximation to W(r.,t J,

n n-1 =i, =i - j n
E[rj,tn] respectively. (We note here that it is a simple matter to take
non-constant time steps Atn: it may be useful, for example, to choose
Atn so as to be able to take the maximum time step consistent with the CFL

condition. It is, however, more difficult to generalise to variable space

steps Arj and preserve accuracy, but it is hoped to deal with this aspect

in a later report).

Using the relationship ﬂ(rj,tn) £ S[r.]yﬁrj,tn], we may write

wh o= é.wq , (3.
=J J5d

-

where Sj represents an average value of S(r). Assuming that at any

time tn = nAt yg represents a piecewise constant approximation to
ﬂ(rj,tn] in the interval (rj - Ar/2, Tyt Ar/2) (as in the usual Godunov

approach], éj is given by the volume integral+

i
( J+Ar/2

5, = — J S(rldr (3.
rj-Ar/Z

This enables us to project our initial data w {r,0) onto a set of piecewise

0
constant states !j approximating W(r,0), march forward in time, and obtain

an approximate solution
= W, 2 (3..
J

for wir,,t )} at time t =t
_ J n

Consider the interval [rj—1’rj] and denote by EL' !R the approximaticr

to ﬂ at r

3-1° rj respectively. We now rewrite equations (2.33) as
(T, *Ar/z
(+) N.B. J J S(r) dr 1is the volume of an elemental control
rj -Ar/c

volume in the duct.



We t o Moo= oglw)

and solve approximately the associated Riemann problem

Et + Aﬂr = glw) (3.

,» (and linearise by

with data !L'HR either side of the point rj

i
2

considering A as a constant matrix). We use the approximate form

W L L
it + A i = glw) (3.2
where A 1s the Roe matrix (3.8) given below, é is an approximation
to 5(&] and P may be L or R. The Roe matrix A is an approximation
oF
to the Jacobian A = 35 and is given by
~ f )
A = 3] 1 0
lléél U2 (3-yJU -1 (3.6
e ‘3 -~ -~ ~ -~
{ PE R A - el 40
\ 4
where Y denotes a square root mean of left and right states, namely,
- ROY O+ /RDY
Y omom b R R (3.7)
R R
for all variables other than R and p, in which case we average
R = RR W o = /oo . 3.8
R RLRR p PLPR ( )
The eigenvalues of A are
A1 =U +a, A2 =U - a, Aa = U (3.9)
with corresponding eigenvectors
e, = [1 e,. = [1 e, = (1
AR N T P I Tl (3.10)
U+ a U-a u
H «+ Ua) H - Ua k%U’

(as in the standard cartesian case when S

1), where H is calculated
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using equation (3.7) and the mean sound speed & is calculated from

at = (y - 131 - 502 . (3.
233
(N.B. since l(91‘32’98)l " {y-1) - the eigenvectors are linearly
Independent IF ang wnly 2F g ¢ 2 a

We now use one of the propertiesT of A to write equations (3.5)
in the form
!2” —E; e —=1-1 5 2 N
& " T e e
where é(ﬂn) is a suitable approximation to the term glw) on the right

hand side of equations (3.4). We thus obtain

+1 ~
W oW et g ™ - R E ) (3.
—-p - = = Ar =j  —j-1
Before we describe the mechanism used to update yg to y3+1 we look
at the approximation é[!h] used for g(w).
Now, giﬂ] = [ 0 ] and we only need to approximate the second
St(r)
S(r)
0
component. For this middle component gz{ﬂ) we notice first that, since
. . YP YP .
the sound speed a 1s given by a2 = :r =g » we may therefore write
S'(r) S'(r) Ra? pa?
5 P = = 1 —
g, (W) = 5 Sy O W

The reason for doing this is that gz[ﬁl now has a more "natural”

PN

approximation in the framework we have set up in the sense that S is averagec

in the same way as R , 1i.e.

t i -
(t) By construction ER
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(S, =S, ,) ==,
W) = —L_Jm1 ea
2 = Ar Y
where ;2 is as before, and
VR R

LPR /~
S, S

wt | A

J

We now project AFE = K. - Ej—1 and g[gh] from equations (3.12)

onto the local eigenvectors given by equations (3.10) and update E?
n+1
to ﬂj as follows. Suppose
)
AW=W, -W = a.e,
r— -j j-1 121 i—i
so that
3
8= 1 oaghe
i=1
Since A has eigenvalues Ai with corresponding eigenvectors e.,
and
~.n 1 .
glw) = -qp 1 Bey
i=1
we may write equations (3.12) as
3
n+1 _ N At
o T E ar Z1 Y184
where
Yi T % T B,
i
n n+1
and P may be L or R. To update W to W we use the method of
upwind differencing, i.e. for each cell I[r. .1 we add éE—A.y.e. to
Jj=1""3 Ar i i—i
W) when A, > 0 and add éE-A Y.e to W) when X. < 0, see Fig. 1
—j i Ar "i'i=i —j-1 i ' '
At At
g Ar *1Y184 N+ ar MiYi8
n n
J-1 J J=1 J
Ai > 0 Al <0

FIG. 1

(3.-

(3%

(3.

(3.

(3.

(3.7
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This gives exact shock recognition for the Riemann problem giver oy
equations (3.4) within the resolution of the grid provided that we use the
previously defined local averages given by equations (3.7)-(3.8).

If we follow the algebra through, we obtain

6, = —— (AP + Rah_U) Bk
1 . r r
2a?
°, - 1oap - RAAW (3.2
~ r r
2a*
= - ‘-2 ~
oy ArR ArP/a (3.2
RA S N
81 = F~ ((y=1)u - a) (3.2
2yS
RAPS .
52 = — ((Y-1)u + a) (3.2
2YS
(Y-1)§GAP§
63 = T T . (3.2
YS
(Note that the quantity Aré/é is independent of time, and therefore has
to be worked out only once).
The expressions in equations (3.20) (a-f) have been written in terms
of 'primitive' variables for simplicity and in doing so we have made use
of the following identities
A (RU) =RA U + UAR
r r r
A _(RU?) = U2A R + 2RUA U
r r r
We also note another identity, namely,
o p) v=1)R(A-
32 % Y|E , Ly=1)R(A-u)? (3.:
(R)

2(/EL * /ﬁR)
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which ensures that a2 ig non-negative for real data. Moreover it

gives conditions for the local sound speed to vanish, ”amelytgj = 0, Aru = 0,

i.e. DL = pR = 0, uL = UR' This corresponds to special data for which

~

we obtain equal wavespeeds, U and equal eigenvectors (1,U, G’)T, so that

Ni—-

in this case our scheme reduces to

1
wn+1—wn+A—tUAR(~ - g (3.
- - Ar r U =
N

representing an advancement of ﬂg entirely due to changes in the

density profile. Although computationally this case would appear to be

-~ ~

difficult to handle we notice that, when a = Q, by changing a2 to a non-
zero value the scheme reproduces equations (3.22). (The non-cartesian

geometry is still present since W = S[r]ﬁ).

3.3 If we consider the special case of constant data pg = pn

r

uq = un, pg = pn for all j at time t = ndt, equations (3.18)-(3.19)

reduce to

n+1 n nn
w = -~
25 Ej AS R
AL + T pn[unJz =0 (3.2
un[en+pn)

giving a direct finite difference analogue of equations (2.31)-(2.32) with

u = 0 (corresponding to APE = 0). Equations (3.23) have the solution
~ K
nek o atu"a s
0. =p {1 = ———17-—1 (3.24:
J ATS
nrhoLn (3.24t
J
Ny &, k
- n ! Atyu APS
P . = p 1 - = (3.24c
J Ars
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for Kk 2 U, which are approximate solutions to the exact colutions of

equations (2.31)-(2.32) with this given data, namely

-katu” S'(r)
0(jbr, (n+k)At) = o o s(r) (3.2
2(jbr, in-kyany T
n <
-kAtyu  S'(r)
pljar, (n+kJat) = p'e S(r) (3..
In particular, with T 0, no flow and constant density and pressure,
0", pn, respectively, equaticns (3.24)(a-c) yield the correct physical solutior
+K
namely un+k =g, p""" . o", pn+k = p"

To solve equations (2.27)-(2.3C) using the finite difference
approximation given by equations (3.18)-(3.19) we use the method of upwind
differencing on the three waves with wavespeeds K1.A2.A3 and wavestrengths
Y1,Y2,Y3 {(which will differ from the usual wavestrengths in slab symmetry
due to the variation of S(r)). This gives the first order approximation
mentioned earlier. We can then calculate second order corrections by transferr
fractions of the increments described in Fig. 1. If we limit these transfers
using a suitable flux limiter or B-function, [2,3,4], our scheme will be seconc
order almost everywhere, oscillation free, and will sharpen up certain features
that will be smeared by using the first order method only.

In addition, we can easily incorporate into the scheme a device
to disperse entropy-violating solutions and treat expansion fans correctly.
This is done by considering the one-sided scheme described in Fig. 1 as a two-
sided scheme, sending increments to both ends of a cell, (see [7]).

In the next section we note the properties of the scheme described

in relation to the type of problem we wish to solve.
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4, PROPERTIES OF THE SCHEME

In this section we briefly discuss two properties of the scheme proposed
here for solving equations (2.27)-(2.30) in relation to the features that

we expect to occur in this type of problem.

(i) The scheme is 'conservative’ in the following sense. Equations (2.27)

and (2.29) represent conservation of mass pS(rldr and energy eS(r)dr,

but conservation of momentum pu S(r) dr is not maintained in equation

(2.28). This is because the pressure term arises as S(r]pr which is not
derivable from a potential, however, (S(r)p]r is derivable from a potential,
but leads to a non-zero right-hand side term S'(r)p (since in the non-Cartesiar

case S # 1). Thus, integrating equations (2.33) gives

3
r r,
3 |3 J Ty
3 J Wdr| = - F(w) I + J St(r)pdr (4.
rJ_1 rj_1 j=1
0
Therefore, in the region 0 s r < 1
0
3 ([ L
— - - 1 ;
T [ W dr [54 EO] + [ S'(r)pdr (4.
0 J 0
l c
Thus, the first and last components of W are conserved, and if
S'(r) = 0, so is the middle component.
We now show that the scheme given by equations (3.18)-(3.19) is
'conservative' in a finite difference sense. Since, by construction
A AW =AF we have
Ir— - r
0
n+1 n At L'~
=) W - =2 . )
W Wo - gp OF + ot g, (w ) (4.3}
0
Thus
n+ n At n
W, = W, -— (F -F t o 4.4)
Z =J Z =J Ar =N —0J voa Z é’2(ﬂ ] (
J J [ J }
0
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where NAr = 1. Thus, our finite difference scheme is 'conservative'
in the sense that the first and last components of yﬁ are conserved, and

the second component will be caonserved if S'(r)

0, i.e. ArS =40, i.e.
é’![_‘w_nj = O'

(ii) The scheme also 'recognises’ shock-waves. By this we mean AFE = SAPE

for some scalar shock speed s. By equations (3.15)-(3.16) s 1is an eigenvalu

-~ -~

of A. A projection of Arﬂ onto the local eigenvectors of A will be solely

onto the eigenvector which corresponds to s. In this special case, the

solution of the linearised Riemann problem given by equations (3.5), is exact.
The reason that this formulation alone recognises shocks is that

the right hand side term g(w) does not contribute to the shock wave, essentia

because it does not contain any derivatives in w, and therefore no jumps.

In particular, suppose that the pressure p Jjumps from pL to PR at
r = rO, then
I"U“' €
Lim S'(r)pdr = Lim (p, (S(r.)-S(r.-g)) + P, (S(r.+e)-S(r.))) =0
L 0 0 R 0 0
e~>0 rn= g e>+0
0
since S(r) 1is continuous, Thus,
ry*e
Lim glwldr = 0 , (4.
e>0 FO—E

[F(W)]
i.e. the shock speed is given by —?—\% , with the right hand side

making no contribution. Moreover, in terms of the three scalar problems

obtained by diagonalising the system given by eguations (3.5) with A a

constant matrix, we have

BVi avi
3% + Xi 5z = hi(ﬁJ i=1,2,3 (4.€
-1 -1
where V=X ﬂ » h =X g

and X 1is the modal matrix consisting of the eigenvectors of A with

eigenvalues Ai. Solutions to equations (4.8) can be represented in terms of a
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'shock solution', this being a solution of the homogeneous equation, i.e.
equations (4.6) with hiw} = 0, and a 'source solution', being the particular
solution of the inhomogeneous equations (4.6). In terms of our scheme, we
effectively solve equations (4.6) approximately, and thus the important
'shock solution’ is modelled as a conseguence of the construction of A.

In the next section we discuss two test problems that can be used

to test algorithms for solving equations (2.27)-(2.30).

ST TEST PROBLEMS

In this section we look at two test problems used to test the

Previously described algorithm for solving equations (2.27)-(2.30).

Problem 1
The first problem is concerned with infinite shock reflection, and

can be posed in slab, cylindrical or spherical symmetry, denoted by

d =1, 2 or 3, respectively.

We consider a region 0 g r £ 1 with initial conditions

plr,0) =1
ulr,0) = -1
p(r,0) =0

i.e. low energy gas (zero temperature) moving towards r = 0. This
represents shock reflection from a rigid wall (d = 1), an axis of symmetry
(d = 2), or the centre of a sphere (d = 3), all at r = 0. The gas is brought

to rest at r = 0, and denoting (0) initial values, (=) pre-shocked values,

and (+) post-shocked values, we have

d-1
0 - I+1\| 0 + Y+’]\ - (5.1a
p = 1: p = » = .
[Y-U Pre [HJD
uU = -1, u = -1, u+ =0 (5.1b
DO =0, p =0, p+ - L1 p+ {5.1¢c

and p = (1 + t/r)d_q, Uu=-1, p=0 for r/t > b

(5.1d,
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(y-1) I

<

The shock moves out from the origin with speed

Taking the spherical case as example with d = 3 and Yy = /3

monotonic gas), the solution at t = 0.6 is given in Fig. 2.

er-6Cu

6(’—/06 )

ulr, 06)

plroc)| "= b3 {06 LT =2

v
’
l.~\
¢4
~
w

o v F 0.2 [N

FIG. 2
The case d = 1 1s a standard test problem in shock reflection,
and the solution is not difficult to compute. However, the cases d = 2 and

d = 3 are much more difficult to model (See Noh [(5]).

It is the last case, d = 3, that we concentrate on here i.2. a

spherically infinite diverging shock, for various vy's. (N.B. S(r) = r?).

Problem 2

The second test problem is concerned with a converging cylindrical

shock. Here, we consider a region 0 £ r £ 200

for the cylindrically symmetric

case given by equations (2.27)-(2.30} with S(r) = r.

Initially, a cylindrical diaphragm of radius r = 100 separates two

uniform regions of an ideal gas at rest (y = 1.4, i.e. a diatomic gas, e.g. air)

The initial conditions are p =p = 4 1in the outer region, and p =p = 1 1in

the inner region. When the diaphragm is removed at t = 0, a converging shock
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wave followed by a converging contact discontinuity move towards the axis,
r = 0, and a diverging rarefaction wave moves outwards.

The shock accelerates as it approaches the axis of symmetry, is
reflected from the axis, interacts with the contact discontinuity {(still
converging), which results in a transmitted shock, a converging contact
discontinuity, and a weak converging reflected shock. This problem has
been treated by Ben-Artzi and Falcovitz (6] using a more complicated Riemann

solver, In the next section we display the numerical results for the two

problems described abave.

6. NUMERICAL RESULTS

In this section we exhibit the numerical results obtained for the two
test problems described in §5 using the scheme described in §3. In both cases

we apply a reflection conditicm+ at r = 0.

Problem 1

Figures 1-6 refer to Problem 1 using either first order, or second
order with the 'Minmod’ limiter or the 'Superbee’ limiter (see Sweby [4]).
We vary the ratio of specific heat capacities Yy and the output times but

the number of mesh points remains fixed at 100.

Figure 1 y = 5/3 t = 0.6 First order
Figure 2 y = 5/3 t = 0.6 Superbee limiter
Figure 3 y = 5/3 evolution to t = 0.6 Superbee limiter
Figure 4 vy = 1.4 t =0.9 First order
Figure 5 y = 1.4 t = 0.9 Minmod limiter
Figure 6 y = 1.4 evolution to t = 0.9 Minmod limiter

(+) A reflected boundary condition at the left hand end can be implemented
by considering an 'image' cell at the boundary and imposing equal density and
pressure, and equal and opposite velocity at either end of the cell. This
results in no net movement in the cell. A similar argument applies for a rigt

hand reflected boundary condition.



We note that because the incoming flow at r = 1 1is supersonic we have
imposed the exact solution there: however, this condition can easily be

replaced by introducing a low energy gas at the right hand end.

rroblem o

Figures 7-12 refer to Problem 2 using the second order scheme with the

'Superbee’ limiter. We have used y = 1.4 and 200 mesh points.

Figure 7 t = 54 the converging shock approaches r = Q

Figure 8 t = 56 the shock is about to hit the axis

Figure 3 t = 58 the shock has been reflected from the axis

Figure 10 t =70 the diverging shock, (followed by a rarefaction we
is headed towards the converging contact discontir

Figure 11 t = 80 the interaction of the shock and contact discontir

Figure 12 t = 10 the interaction results in a diverging transmittec

shock, a converging contact discontinuity and a we
converging shock

For Problem 1 we note the extremely good representation of the solution,
and propagation of the shock in time. Although it is a simple test problem,
it has been found difficult to achieve good results (see Noh {5]). Since the
only feature in the the solution is a shock discontinuity, the first order
method works well, with a slight lack of resolution in the smooth part of the
flow.

For Problem 2 we have found that the first order method is not as
accurate since the solution has a number of features that require good resolutic
However, the second order scheme applied with the Superbee limiter compares
well with the solutions computed by Ben-Artzi and Falcovitz [6], especially
the weak converging shock present at t = 110.

The c.p.u. time required to compute the results on an Amdahl V/7A was
found to be as follows:-

(i) Problem 1, with 'Superbee’ and 100 mesh points takes G.0157 c.p.u.
seconds to compute one time step, and a total of 1.2586 c.p.u. seconds to reach

:glreal time of 0.6 s using 80 time steps.
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(ii) Problem 2, with 'Superbee’ and 200 mesh points takes 0.04 c.p.u. seconds
to compute one time step and a total of 8.64 c.p.u. seconds to reach a real
time of 54 s using 216 time steps. The reason for the amount of C.p.u. time
used per time step per mesh point being higher in Problem 2 is that we needed
to include the entropy modification mentioned in §3.

A minor modification to our algorithm allows for a variable (adaptive)

time step and gives the ability to decrease the total amount of computing time

used.
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7. CONCLUSIONS

We have extended the one-dimensional version of Roe's scheme
to include cylindrically and spherically symmetric problems which give rise
to source terms, and that with the approach outlined in §3 we can achieve
good results on standard test problems.

We hope to extend our scheme to include variable meshes, and to

study problems with axial symmetry.
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APPENDIX A

We include here some computations done using Roe's linearised
Riemann salver together with the 'Superbee’ limiter on a one-dimensional
problem with slab symmetry. The problem is usually described as "Two
Interacting Blast Waves”.

The initial condition consists of three constant states at rest

between reflecting walls. The details are given in Fig. 3.

rp=1 p =1 p =1
u =20 u=20 u=20
p = 1000 p = 0.01 p = 100 [
0 0.1 0.9 1
FIG. 3

Two strong blast waves develop and collide producing a complex flow.
A detailed description of the time evolution can be found in (8].
We use the Superbee 1limiter and 400 mesh points. The results show

the essential features of the flow as described in [8] and compare well.
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APPENDIX B

Consider a general orthogonal curvilinear co-ordinate system

[x1,x2,x3] where a line element ds is given by

ds = h1dx1 X4 + h2d><2 X.

-~ ~ -~

and Xq0 X5s X5 are orthogonal. The vector X: is of unit length and

parallel to the co-ordinate lines with X5 increasing. Consider also a scalar

field a = a[x1,x2,x3) a vector field b = E[x1,x2,x3] = b1 Xq 0t b252 + b3§3 s

and a 3 x 3 tensor B = [Bij). Then the definitions of grad o , div b and

div B are as follows

1 da 1 da 1 da
grad o = — — x P omm— X, T om— X,
h1 X4 1 h2 9% 2 h3 Xy 3
. 1 3 3 d
div b = [ (h,hob,) + (h,hob,) + — (h,h,b,)
h1h2h3 8x1 2371 X 1372 ax3 17273

and

N 2 . o X
(div By ® g hs [jax1 (hohgByy) ax, (hyhgB,y) + 3% (h1h283i{

. 8. . ahi . B . ahi B. ahj i Bkk ahk
hihj axj hihk Bxk hihj axi hihk 3xi

where (ijk) 1is a cyclic permutation of (123).

If we now write D =aB , then (div E]i = [div[agl]i =

3 d )
(h.h_ aB,,) + (h,h.aB..) + — (h, h.aB_..)
hohohs  [3x, 273 T4 Ix, 1321 axg 12731

= . B, .
o ij ahl . aB, 4 ahi i aB,. 3h, i aBKh ii_
h.h, ij _ hihh Bxk hihj axi hihK axi
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and by carrying out the differentiation we get

g B1i da BZi da BBi d0,
o(div Q], + -= o= " -Tr-s;.+ il
I 1 1 2 2 3 3

(div g]i

= (o div B) + (grad a)- 1

= 21

BSi

Thus div D = div(a B) = a div B + (grad a)+B . In particular, if B=1,
B - - E s ) 333 S, e
the 3x3 identity matrix, then (div é)i- hihjhk . [hgth - hihj —Lum = hk.g

SO

div (el o div I + (grad a)-I

(grad al+I = grad a

If we specialise to cartesian, cylindrical or spherical geometries we have

(1) Cartesian Xq = X X5 =y, X5 = oz, h1 = 1, h2 =1, h3 = 1.
So grad o = (Ba/axi. aa/axz, aa/axaj

Bb1 3b2 Bbs

and div b = 3x1 + 3x2 + 3x3
(ii) Cylindrical Xy =R x, = ¢, Xg = 2, h, =1, hy, =R, hy = 1.
o (R R
o ctv = o o o3k 53
(1i1) spherdcal — xy=r x; =6, x5 =@, hy =1, h,=r, hy=r sine
S [g%% a_(; r;ine 3—3]
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’ ab

bl £ o ' s _1 g
S rz 9r i b1) T T sing 36 [51n6b2) ‘ r sin6 3¢
If we assume symmetry so that o = alx,) b =b(x), then div and

grad are only the same in case (i).



