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' Introduction_

Many current world problems are concerned with the depletion of natural
resources; In the past decade there has been much interest in determining
optimal rates of depletion for both renewable (e.g. fish) and non-renewable
(e.g. oil and coal) resources. In the case of non-renewable resources,
optimal depletion rates depend on

(i) the discount given to future generations;

(i1) the time at which an alternative technology may become available.
Problems involving such factors have been investigated by Anderson [1],

Vousden [2], Dasgupta and Heel [3] and Davison [4].

In this article we consider a particular aspect of resource depletion,
namely: the problem of finding optimal depletion rates when the final time

is not specified, but is determined by fixing the capital required at the

time when the resource is exhausted. The model is described in section 2, the
equations governing the optimal path are given in section 3, a particular
analytical solution is determined in section 4, and numerical solutions are
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presented in section 5. The results are discussed and conclusions drawn in

section 6.

2. Model

We consider an idealised economy in which the production, F, depends on two
inputs, capital stock K and resourceldepletion rate R, and the output is
either consumed or used to augment the capital stock. These assumptions are

given in mathematical terms by the equation
= F(K, R) - C, (1)

where C 1is the consumption rate. The resource depletion is constrained by

dS

E = ‘R, (2)

where S is the resource stock. Initially capital and resource stocks are



specified, say K, and S, At the final time, T, which is not fixed,

we assume that all the resource stock is totally depleted and that the
capital stock takes a specified value, say KT. This level of capital can
be interpreted as the capital stock required to maintain a new state for all
time t > T, when an alternative technology is expected to be readily
availéble. To summarise, the appropriate boundary conditions for the

problem are:

K(0) K S(0) = S.; (3)

0’ 0’
K(T) = KT, S(T) = 0; {(4)
T not specified. (5)

We are interested in finding the depletion rate and consumption path which
maximises the welfare integral

T

W= | et v, : (6)

0

where ¢ 1is the discount rate and U is the utility function.

3. Equations governing the optimal path

The problem described in section 2 is an optimal control praoblem (see
Intriligator [5]) where K and S are the state variables, R and C the

controls, The usual procedure is to form the Hamiltonian
H= et + (e IFIGR) - ©) + (e %R ) (-R) (7)

where pk and p, are the shadow prices of capital and stock respectively.

The variables pk and Pg “Satisfy the equations
d . -8t aH _ -6t oF
Efte pk) =-5g = e P 3K (8)
d -6t _
Ef(e pS] =0 (9}

and the maximum principle gives

—= =0, .= =0. (10)



Using (7) and (10) we find

and

From (8), (9) and (12), it can be deduced that

d dFy ,8F oF
7 GR/er = % -

and substituting (11) into (8) gives

d_(dU -6t),du -8t _ _ 3F

gt'ac ° ac © ST

The optimal paths are thus governed by equations (13) and (14) together

with the boundary conditions (3) and (4)}.
H=0, at t =T,

must also be satisfied since the final time is unspecified.

We now consider solutions for the case of specific functions

We take the familiar forms

F =K%, (0 <a<1),
u=(C - C*)B, (0 < B <1, C* constant).
Defining a new variable x = K/R, (13) reduces to \
dx _ @
dt ’
which has solution
x = [(1 - a)g+ A11/01700
where A 1is a constant. Eda;%ion (14) now gives
C-C*=8B 8-61:/[1-8][[1 - o)t + A]a/[1-8?[1-a],

(B constant).
To find R, K and S, we note from (1) and (15) that

dx _d [K) 1]

dt  dt'\R

(11

(12)

(13)

(14)

(15)

(16)

(17}

(18)

(18]

The transversality condition

F and U.



and then from (17), we obtain

dR

Ft- -C/x

_Be—ﬁt/(1—61[(1 e A](a+8-1)/[1-83[1—a]

- O

_ o (1 - )t + ATV

In the speclal case, o + B = 1, we can integrate explicitly. We find that

the depletion rate is given by

B(1 - B) -8t/(1-8)

R=D+-‘——6—B +%*[[1'u]t+A]

-a/(1-a) (20)

(D constant), and then, using (2) and integrating again, we obtain the

stock level

A LI R B - S AT
S =
- B2} 8t/(1-
E -t + DU B 0/0-B) _yee 10g st + m, (@ = 1)

é
(21

(E constant). Finally, the capital K 1is determined from K = Rx, using

(18} and (20).

The constants A, B, D, E introduced into the solutions, and the final time
T, are determined from

K(Q) = KD’ S(0) = SO’ K(T) = KT' S(T) = 0\
and (22)

H=0, at t =T.

Numerical techniques may be used to find the constants for which conditions
(22) are satisfied. In the next section we examine the behaviour of the
solutions in the special case—a = B =1 and & = 0. The results obtained

are used in finding the numerical solution of the general problem for

a+ B #1. (See section 5).



4, The special case o = %, B = 3
In the special case o = § =8 and & = 0, the equations (18) and (19)
become
x = (3t + A2, (23)
C =C* + B(it + A2, (24)
Since
R __C . 5. e =2
e = -B C*(it + A) 7,
we can integrate to obtain
R=D-Bt+ 2C*(3t + A) (25)
then further integration yields
S =5, -Dt+ 1Bt? - 4c*1ogl(it + A)/A]. (26)
We can also determine the shadow prices from (11) and (12) to be
du -3 -1 -1
Pk @ " i(C -Cc*) * =1B 25t + A, (27)
and
oF -1 =l : a5
Py = Mg = 1B 20t + A} odx® = 1B73, (28)
To satisfy H=0 at t =T, (7) yields, after some algebra, B = -3i(D/A).

Together with the relation K = Rx, the remaiﬁihg.boundary conditions give
A\

three equations which determine A, D and T:
(1) K=K, at t =0 AZD + 2C*A = K, (29)
(11) K =K; at t =T: %K{T + 2A)3 +.C*(T + 2A) = K., (30)

.. _ N _ D72 . T + 2A
(iii) S =0 at t = T: A DT + SU 4C*1log g = 0. {31]
Values of A, D and T satisfying these equations may be determined numeri-
cally.

We may also use equatidns (29)-(31) to determine an upper bound for the

possible values of KT.

Clearly if Kf were considerably greater than K

DJ



then it would not be possible to control the economy at all, and so there
would be nc optimal solution. The solution fails explicitly when the shadow
prices become zero, i.e. when B = 0, which implies D = Q. In this case,

(28), (30) and (31) yield

A =
2C*A &D’
* =
c [T + 2A) KT’
SU - 4C*1log[(T + 2A)/2A] = O,
» : = * - = * * =
with solutions A KD/ZC , T [KT KDJ/C and SU/4C log[KT/KD].
Hence, the limiting value of KT is given by
SU/4C*
KT = KUe » (32)
and the corresponding time to reach this value is
K, S./4c*
Tecte 0 - 1. (33)

Equation (32) shows that the maximum valus of KT is dependent on KU’

S0 and C*, The linear dependence on KD is expected, but the exponential

dependence on SD/C* is more interesting. It means that the maximum value

of KT is very sensitive to the values of S0 and C*. A small increase in

S, will provide a relatively large increase in K

0 \whereas a small increase

Tl
in C* will give a relatively large decrsase in KT' The following table

shows the dependence of KT and the time T on the parameter A = SD/4Cf:

A 0.5 1.0 1.5 2.0 3.0
KT/KU 1.65 —2.72 4.48 7.39 20.09
TC*/KD 0.65 1.72 3.48 6.39 18.09

5. Numerical results

To solve the general problem of finding the optimal path which maximises (6)



subject to the state equations (1) and (2) and boundary conditions (22) we
use the "finite element” technique. The application of this technique to
optimal control problems in economics with fixed end time is described in
(6] and [71]. In the case of free end time, we transform the independent
variable onto the fixed interval [0, 11, and introduce T as a further
state variable. Taking & = t/T, and denoting scaled variables by k, g,

n, n
R and C, the problem becomes

’
max e_GTE[B - C*]BdE,
0
subject to
d/de = TRORT™® - B,
dS/dg = -TR,
dT/dg = O,

and boundary conditions

R(0) = K d0) = s Re1) =k 1) = 0.

D’ o’ T’
This is now a fixed end time problem which is solved as in [6]. We observe
that the transversality condition on the new adjoint variable associated
with T is equivalent to the transversality condition H =0 at t =T 1in
the free end time problem. Details of the transformation and numerical
techniques appear in [7]. The solutions obtained in the special case

o =B =13,68 =0 are used to provide initial approximations for the general

The problem has been solved for a wide range of the parameters o, B, § and

C* of the model and the boundary parameters K S and KT. For the

0’ "o
results illustrated in Figures 1 and 2, we have taken:

B =%, C*=5, 6=0.1, KD = 1unit, 8= 10 units.



We have determined the optimal paths for various values of the terminal

capital stock, K and the préduction exponent, o. Figure 1 illustrates

T°

the variation in the optimal paths for stock, capital, consumption and

depletion rates when o = 0.65 and KT = 1.00, 0.75 and 0.50. Figure 2

illustrates the same variables for fixed terminal capital, KT = 0.5, and

¢ = 0.5, 0.65 and 0.85.

5. Interpretation of results

(1) Varying terminal capital stock

The most striking result is that varying the ferminal capital stock, KT’
although not fundamentally altering the depletion paths, does give a sub-
stantial change in the terminal time, T. For example, decreasing the

terminal capital from 1 to 0.5 more than doubles the time interval.

Decreasing KT means that more capital is available for transferance to
consumption and so more time is allowed for consumption of the available
resource. This, of course, means a slower depletion rate, R, for the

resource stock, although the rate of change of R appears to have fairly

constant level.

The results indicate that a knowledge of the capitél level required at
the changeover to an alternative technology makes it possible to plan the
present consumption and resource depletion rates. The smaller the
required level, KT, the slower the.resource depletion rate.

(ii) Varying production exponent

It ig important to determine how robust the model is with respect to
changes in the basic parameters. The most important parameter is o,
the exponent of the capital in the production function. As in (i) the
most striking result is the rapid change in the time horizon, T, as o

changes. As the value of o becomes smaller more capital is available
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1.

for transference to consumption, and so longer time is allowed for the

depletion of the resource. For a = 0.5, the capital stock is even abhle

to increase initially (above the final prescribed value KT = 0.5) before
it is transferred to consumption. On the other hand, for o = 0.85, the
capital stock rapicly decreases to KT = 0.5.

(iii) Varying discount factor

Another important parameter of the model is &, the discount factor,
Rather surprisingly, changing &, where ¢ is small, causes little
variation in the paths. For example, there are virtually no changes
from the zero discount level solution when 6 = 0.1 and § = 0.2. One
possible explanation for this is that the initial conditions on K and

S give rise to relatively small values for the final time, T.

In conclusion, we stress that although changing o and KT does not alter
the form of the optimal solutions, it does cause rapid changes in the time
horizon, T. The model is sensitive to change in the capital exponent, o,

and terminal capital, KT’ whilst it is insensitive to changes in the dis-

count factor, ¢, provided it remains small.
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