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Abstract

This paper reviews the class of numerical schemes, known as Godunov
Methods, used for the solution of hyperbolic conservation laws. Such numer-
ical schemes can be characterised by the solution (exact or approximate) of
a Riemann Problem (classical or generalised) within computational cells in
order to obtain the numerical fluxes.

Since the original first order scheme, proposed by Godunov in 1959, there
has been much development of the idea; for example, the MUSCL scheme of
van Leer in 1979, the PPM scheme of Woodward and Colella in 1984 and the
Higher Order Godunov schemes of Bell, Colella and Trangenstein (1989).

As well as considering the original scheme and its later variants, we place
these developments in historical context, making links with other work in
the area.

1 Introduction

The title of this paper begs the question: What is a Godunov method? In
1983, Harten, Lax & van Leer gave a technical definition of Godunov-type
schemes in [17]. However, more recently, van Leer [45, 46] has given the
succinct definition:

... we define Godunov—type methods as non—oscillatory finite—
volume schemes that incorporate the solution (exact or approx-
imate) to Riemann’s initial-value problem, or a generalization of

It is this definition that we will explore.

In 1959 Godunov published his inspirational paper [10], based on the
work of his Ph.D.; in which he used the solution of the Riemann problem
as a building block for a finite-volume scheme for compressible flow. His
scheme, as originally presented, involved a Lagrangian step followed by an
Eulerian remapping. However, it may be recast (see for example [44]) into a
conservative Eulerian framework. Whilst Godunov used the exact solution
of the Riemann problem in his work, others (Roe [28], Osher & Solomon
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[27], Harten, Lax & van Leer [17] and Einfeldt [7] to name just a few) have
adopted approximations to its solution and thereby generated variants on
the original method.

Godunov’s method is only first order accurate but gives solutions which
preserve monotonicity of the data. Indeed it was in his paper [10] that
Godunov presented his now famous theorem, which states that monoton-
icity preserving constant coefficient schemes can be at most first order ac-
curate. It is this theorem which has led to much research in the area of
non-linear schemes for hyperbolic conservation laws, since it is through the
use of non-linear schemes that both monotonicity and high order accuracy
can be achieved. Pioneering work carried out in the 1970s by Boris & Book
[4], van Leer [39, 40, 41, 42, 43] and Roe [30] has been built upon by oth-
ers (for example [48, 34, 5, 19, 15, 1]) resulting in an abundance of high
resolution non-oscillatory schemes, many of which are based on Godunov’s
method. We now proceed to look at these.

In Section 2 we review Godunov’s original scheme and its various formu-
lations/interpretations. We then look at extensions to the scheme, firstly by
replacing the exact Riemann Solver with an approximate one in Section 3
and secondly by modifying the data representation to obtain higher order
accuracy in Section 4. Finally in Section 5 we look at some other advances
of the Godunov methodology.

2 Godunov’s Scheme

We are considering the numerical solution of the (system of) hyperbolic
conservation laws
u; + f(u)m =0. (1)
Godunov’s method considers the numerical values of the solution u? to
be the cell averages of the analytic solution u(z,t) at time level n,

Tit1/2
R I

W= A

u(z,nAt) dz, (2)
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where for simplicity of notation we assume a regular grid. We therefore
have a piecewise constant data representation (see Figure 1). At each cell
boundary, the resulting Riemann problem is then solved and the union of
all Riemann solutions averaged over each cell to give the updated numerical
solution values (see Figure 2). Since each Riemann problem is solved in
isolation, the need to avoid interaction suggests a CFL limit of %

For the special case of the scalar linear advection equation the scheme is
easily interpreted as advection of the cell averages (Lagrangian stage), which
are then remapped back onto the Eulerian grid (see Figure 3).

Godunov’s scheme can be recast into Eulerian form by integrating (1)
over the cell [z;_1/9, Ti11/2] X [nAL, (n + 1)At]:

tm ez ie t"Fl piiiye
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Figure 1: The piecewise constant data representation.
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Figure 2: The resulting Riemann problems and their averaging.

whence
x-’+1/2 = tn+l
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If we now define a numerical flux as

n+1
N T
f1/2 =f(uiy,uf) = E/ f(u(z;_1/2,t)) dt, (3)
t"
then we can write Godunov’s method in conservation form
At n
“;H-l =uj - E( in+1/2 - fi—1/2)' (4)

Looking at the numerical flux (3) we see that it does not depend on the
whole Riemann solution, but only the flux of the state at z;_; /2, and because
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Figure 3: Lagrangian stage plus remap for linear advection.

the solution of the Riemann is self similar along rays z/t = constant we can
rewrite it as
f'in—1/z - f(u?—1/2)' (5)

We now see that since the detailed Riemann problem solutions within
the cell are not important for calculation of the flux, they may be allowed
to interact so long as the solution at x;_;;, does not influence the state
at z;11/2 and vice-versa. Thus it can be seen that this form of Godunov’s
scheme has a CFL condition of 1.

Finally we note that using Jensen’s inequality (see for example [17]) it
can be shown that Godunov’s scheme is entropy satisfying, i.e. all shocks
are physically correct.

Godunov’s method solves the Riemann problem at each cell boundary
exactly. However variants of the method may be generated by utilising an
approximate Riemann solver instead. We now look at some possibilities.

3 Riemann Solvers

Whilst for some scalar conservation laws the Riemann problem is easily
solved, this is not the case for non-linear systems of conservation laws. Here
an iterative procedure is often required which, since this must be used at
every cell boundary at every time step, will make it the most computation-
ally expensive task of the whole method. To simplify the process and reduce
this overhead approximate Riemann solvers, which do not employ iteration,
are often used. This can be achieved either by approximating the Riemann
states and applying the physical flux, or by approximating the numerical flux
directly. In this paper we look at the latter, and outline the distinguishing
features of some of the approximate Riemann solvers used. A full discussion
of approximate Riemann solvers can be found, for example, in [37].



3.1 Roe

Perhaps the simplest approximate Riemann solver is that due to Roe [28].
The system of conservation laws (1) may be written in quasi-linear form

u; + A(u)uz =0,

where A(u) is the Jacobian matrix 6 . Roe linearises this form of the equa-
tions in each interval (zi—1,%:) by replacmg the Jacobian by interval-wise
constant matrices A(u;-1,u;) which, for any two adjacent states uz, ug
satisfy

1. A(ur,ug) is diagonalisable with real eigenvalues (hyperbolicity);
2. A(ur,ur) = A(u) as uz, ur — u (consistency);
3. f(ur) — f(ug) = A(ur,ur)(ur — ug) (conservation).

The first two conditions are readily satisfied if A is taken to be the Jacobian
evaluated at an averaged state, i.e. A(ur,ur) = A(@). However a straight
arithmetic average will not, in general, satisfy the final condition and instead
a geometric average is often used (in the form of the form of the arithmetric
mean of an auxilary vector, known as the parameter vector — see [28, 31, 9]).

Once an A has been obtamed it is diagonalised XAX ™! which results
in a set of decoupled linear advection equations in each interval. The flux
differences fr —f7, in each interval are decomposed onto the local eigenvectors

Af =fr —f, = Za““’,'\"“)i(’“)
k=1

where A®)| x®) and &*) are the eigenvalue, eigenvector and coefficient for
Au, respectively, corresponding to the kth characteristic field of A.

Whilst Roe’s original scheme updated the solution by upwinding and
directly adding these flux difference components, it may be placed in the
framework of intercell fluxes by integration around the half cell (2;_1/2, %) X
(t™,t" 1) (see [17]) resulting in the flux

LS g 50
(fi—1+fi)"§ @ 1/21)‘@ 1/2|x1 1/2°
k=1

fi—l/Z .
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In this formulation the A can be seen to be identified with the cell interfaces.

Because the resulting individual approximate Riemann problems are lin-
ear, their solutions contain only discontinuities and not expansion fans. For
this reason Roe’s original method is not entropy satisfying, although a num-
ber of entropy fizes have since been proposed (see for example [16, 29, 31]).

3.2 Osher

Whereas Roe’s approximate Riemann solver approximates the solution of
the Riemann problem using only discontinuities, Osher (Engquist & Osher
[8],0sher & Solomon [27]) approximates the Riemann solution using only
simple waves. The numerical flux for Osher’s scheme may be written as

i I
foya= 36 +8) -7 [ AWy



where |A(u)| is defined to be X|A|X ™!, (A is the matrix of eigenvalues of A
and X the corresponding matrix of eigenvectors) and the integration path
between u;_; and u; is taken in phase space over simple wave solutions.
That is, for a system of n conservation laws, n — 1 intermediate states are
found, connected via n simple waves. In his original scheme Osher took the
paths to be in order of decreasing eigenvalue, however the reverse order may
also be selected (see [20]). Since the approximation uses only simple waves,
not discontinuities, it can be shown to be entropy satisfying.

3.3 Harten, Lax & van Leer (HLL)

For a system of n conservation laws, both Roe’s and Osher’s approximate
Riemann solvers use n intermediate states, connected in the case of Roe by
discontinuities and in the case of Osher by simple waves. In 1983 Harten
Lax & van Leer [17] proposed a much simpler approximation which assumes
a Riemann solution consisting of just two waves separating three constant
states. If s& /2 and sk, /2 are upper and lower bounds, respectively, for
the largest and smallest signal velocities resulting from the solution of the
Riemann problem centred at «;_;/5, then the approximate solution is taken
to be

wi—y i 2L 8y

~ HLL . L @ "
Gz, t) =< wli, if s, <F<siym ,

u; ]f H;‘t‘._lfg E ‘JF

where the intermediate state is obtained from conservation to be

R L i
HLL _ Sic172Wi — 8 q/oWi-1 f; ~fi1 (6)
Ui_1/2 = SE 7 TSR — gL g

i1/2 — Sil1/2 im1/2 T 8il1y2

Integrating this solution substituted into the conservation law over the half
cell (z;_1/2,2:) x (t",t**!) results in the HLL flux

5322 B L ¢S SiL_l/zR
fio12 =4 L7 if Si—1/2RS F<sl10
fi if 3i—1/2 S %

where

R L : L R .
HLL _ 3i—1/2fi—1 - 31‘—1/2fz + si—l/ZSi—l/2(u1 ui-1)
i—1/2 = .

sf—l/z - 31'L—1/2

Harten et al. noted that the intermediate state, as given by (6), is a mean
value of the exact Riemann solution, and it therefore follows from Jensen’s
inequality that the scheme is entropy satisfying. They also note that if the
two states u;_; and u; can be connected by a shock of the first or nth
family, then the correct shock speed is obtained and the solution is exact.
They then proceed to derive a scheme with two intermediate states which
has the additional property that if the end states can be connected by a
shock or contact discontinuity of eny family, then the approximate Riemann
solver does so. Toro, Spruce & Speares [38] also modified the original HLL
approximate solver restoring missing contact or shear waves, naming it the
HLLC solver.



It now remains to specify the upper and lower bounds sf_l/z and siL_l/z.
One possibility is to evaluate them directly, or, as suggested by Davis (6] to
use the maximum eigenvalue evaluated at the right state and the minimum
eigenvalue evaluated at the left state respectively, or to take the maximum
of the largest eigenvalue at either state, and the minimum of the smallest.
Another alternative, also suggested by Davis [6] and Einfeldt [7] is to use
Roe’s averaged eigenvalues as estimates.

4 Higher Order Extensions

First order methods such as Godunov’s tend to be very diffusive, smearing
the discontinuities that often arise in the solution of conservation laws. How-
ever, classical higher order methods (for example Lax—Wendroff [23]) whilst
giving sharper features also produce spurious oscillations around discontinu-
ities, possibly resulting in unphysical values (for example negative density)
and/or violation of stability bounds thus causing a breakdown of the solu-
tion. Godunov [10] proved that this was inevitable for constant coefficient
schemes, which could not be both monotonicity preserving and higher than
first order accurate. This led to much work on non-linear schemes, both
practical and theoretical.

One of the theoretical advances was the adoption of total variation as a
monitor of spurious oscillations. This stems from the fact that, for the scalar
conservation law, the analytic total variation,

TV(w) = / e de,

does not increase (and only decreases across shocks) [22]. Harten [13] pro-
posed that schemes should mimic this behaviour with their discrete total
variation,
TV(u"™) = Z i —ui—1],
i
ie.
TV(u™) < TV(@™),
and christened such schemes Total Variation Diminishing (TVD). He also
gave a set of algebraic criteria for the (non-linear) coefficients of a scheme to
satisfy which are sufficient to show the scheme to be TVD. These algebraic
conditions are more commonly used for non Godunov-type schemes, with
a geometric approach being used for Godunov-type methods. Conservative
schemes which are TVD can be shown to converge to a weak solution of the
conservation law.

Some of the non-linear schemes developed, such as Flux Corrected Trans-
port (FCT) [4, 48] and Flux Limiters [34], can not be considered as Godunov—-
type schemes except possibly for the linear case. Others however are either
direct extensions of Godunov’s method or at least use the same methodology
in their construction.

‘We now look at a set of modifications to Godunov’s method which result
in higher order accuracy.

As already mentioned, Godunov’s method assumes the data to consist of
piecewise constant cell averages which are advanced in time by solving the



Riemann problems at each cell interface and then re-averaging. This results
in a first order method. To achieve higher order accuracy we must change the
data representation. For clarity we describe here the data representations for
the scalar non-linear conservation law. The methodology is usually extended
to systems via characteristic decomposition of the states.

4.1 MUSCL and variants

Van Leer[42, 43] in his MUSCL? scheme replaced Godunov’s piecewise con-
stant representation with a piecewise linear one (see Figure 4).

/ H-H‘HH
=

Ti—1/2  Ziga/2

Figure 4: The piecewise linear data representation.

This piecewise linear representation was constructed to maintain conser-
vation by defining the cell representation to be
Aju
ui(@) = uf + <—(z - ),
where u]" is the Godunov cell average (2) and the slope %‘zﬁ must be defined.
Van Leer [42] gave three possibilities for Aju,

1. centred differencing of the piecewise constant cell averages A;u =
3 (i1 — uim1);

2. differencing of the underlying continuous function Aju = (w(zi41/2,t")—
u(T;_1/2,t")), i.e. a difference of the unaveraged values — this leads to
the necessity to evolve A;u as well as u;

3. maintaining the first moment of the underlying analytical solution
Aju = %7 :"“//zu(:c,t")(w—zi) dz. Again this leads to independent
i—1/2
updates of the slope and cell average.
If we calculate the slopes in any of these fashions there is the potential
of producing a data representation which has a higher maximum or lower

2MUSCL - Monotonic Upstream—centred Scheme for Conservation Laws - was actually the
name of Paul Woodward’s computer code incorporating van Leer’s ideas, but the name has stuck
with this type of scheme



minimum than the piecewise constant average (see Figure 5), i.e. increasing
the total variation of the data representation. Viewing the Lagrangian plus
remap interpretation of Godunov’s scheme, it can easily be seen that this
increase will be maintained, and spurious oscillations may ensue.

Increase in Total Variation
T ol

Ti-1/2 Tit1/2

Figure 5: An increase in total variation.

To avoid this increase in total variation, van Leer limited the gradient of
his slopes. He achieved this by defining a monotonised slope as

min{2|Aw;_1y2/, |Aiu|, 2| Ay 1/2|}sgnd;u
(Asu)mono = if sgnlu;_1/5 =sgnAuir1/r =sgndu
0 otherwise

which may be applied to any definition of A;u and where Au;_y/ = u; —
ui—1. This prevents the linear function taking values outside of the range of
the neighbouring mesh averages and reduces the slope to zero, i.e. reverting
to piecewise constant, where there is an extremum of the data. For his first
choice of slope, van Leer also gave an improved limiting of

28ui_1/98uiq172 . ] _ ]
(Aiw)mono = Aui_1/2tBuit1)z if sgnlui_i/z = sgnltisi/z , (D
0 otherwise

which has the effect of taking the harmonic mean of Awu;_y/5 and Auiyyge
instead of their algebraic mean as in the non-monotonised slope.

This slope limiting has much in common with flux limiters [34], except
that here it is the slope which is being limited. If we define r;_; /2 =
Aui_179/Au;yys it can be seen that (7) can be written as

Tic1/2 + [Pic 12|

= Ti_ s
1+ |T¢—1/2| Vi 1/2)

(Aiu)mono =
where ¢vr(r) is van Leer’s flux limiter [40, 34]. Indeed other flux limiters
can be used as slope limiters, for example Goodman & Le Veque [11] use
Roe’s minmod flux limiter [30, 34]. It is important to note however that,



even though slope limiter and flux limiter schemes are equivalent for linear
scalar equations, they are two distinct types of method, with only the former
fitting into the Godunov-type framework.

At the cell interfaces of the piecewise linear data representation we now
have a set of so—called generalised Riemann problems, i.e. a discontinuity
separating two linear states. These are not as easily solved as the basic
Riemann problem and the wave paths are now curves rather than straight
lines in x — ¢ space. This means that the Lagrangian advection step is not
so readily achieved except for linear problems, and in conservation form (4)
the numerical flux (3) no longer reduces to (5). Whilst some methods are
based on the generalised Riemann problem [2, 3], more often an approximate
Riemann solution is used, for example Goodman & Le Veque [11] approxim-
ate the flux by a linear function near the cell interfaces.

An alternative approach, due to Hancock [12] was noted by van Leer
[44] whereby a second order accurate scheme is obtained by evolving the
(extrapolated) cell boundary values

n,L __ 1 n,R __ 1
;" = ui — 5 (Ait)mono, and  w"" =w; + E(Aiu)mono)
obtained by the piecewise linear data representation, by a time %At. This
is achieved via a Taylor series expansion

n n At .
u] +1/2,L Y] ’L'I'TU»:,Z
A
= upl - -?t-fw,i using (1)
L At

1 n, n,L
- Eﬂ(f(ul H) = f(u™),

U;
and similarly

+1/2,R . nr 1AL R L

) ~up _Eﬂ(f(u? ) = ).
These advanced states are then used as piecewise constant data for a con-
ventional Riemann problem at the intercell boundary,

uT-L_-"ll/z’R, z <0,

+1/2,L’ 250,

w+fu)e =0  u(z,0)= { n

U;
to obtain the similarity solution w;_1,5(x/t) which is in turn used to obtain
the intercell numerical flux via (5) to be used in (4).

In their Higher Order Godunov method, Bell, Collela & Trangenstein [1]
extended this technique to general systems of hyperbolic conservation laws,
using Osher’s approximate Riemann solver, with additional modifications
needed to treat loss of strict hyperbolicity which arise due to eigenvector
deficiencies that may arise, for example in the black—oil model of petroleum
engineering.

4.2 PPM and ENO

Woodward & Colella [47, 5] extended the idea of MUSCL further by con-
structing a piecewise parabolic data representation. This representation is
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limited so as to avoid overshoots and undershoots and incorporates a dis-
continuity detection mechanism so as to sharpen any discontinuities of the
data. This piecewise parabolic representation is then advanced using either
a Lagrangian step followed by a remap, or in conservation form, resulting in
the third order Piecewise Parabolic Method (PPM). (For simple problems
the method is third order in space and time; however for more complicated
situations approximations in the Riemann solution can degrade the time
accuracy to second order.)

Harten, Osher, Chrakavarthy and Engquist [19, 18, 15] and later Osher
& Shu [32, 33] extended the idea of polynomial data representation even
further. The technique used is similar to that employed in the MUSCL
and PPM schemes, except that the data representation constructed from
the cell averages {u}} does not damp the values of local extrema, as in the
aforementioned schemes, and is even allowed occasionally to accentuate these
local features.

The Essentially Non-Oscillatory (ENO) scheme, as it is called, starts
from the cell averages @” = {u]'} and constructs the approximate function
uaz(2;t") = R(z;@"), where R(z;4") is a piecewise polynomial in z of
degree p — 1 satisfying:

1. R(z;3a") = u(z,t™) + O(Az”®) where the functions are smooth;
2. R(z;@") is conservative, i.e. = f:‘“/”R(m;ﬂ")d:c = ul
i—1/2

3. R(=z;@") is essentially non-oscillatory, i.e. TV(R(+;@™)) < TV(u(-,t"))+
O(AzP).
Both MUSCL (p = 2) and PPM (p = 3) fit into this framework, except that
they have the more restrictive condition of TV(R(-;@")) < TV(u(-,t")), i.e.
TVD.

Once the data has been reconstructed, the solution of the conservation
law (1) with initial data uas(-, ") is calculated and the solution re-averaged
to obtain updated cell averages ult.

The key step of ENO is in the reconstruction, the essence of which is
as follows. The interpolant R(z;%") is built up in stages using Newton
interpolation. Initially we may construct a local linear interpolant in the
cell (z;_1/2,%;41/2) either using w1 and u; or u; and u;—1. The pair with
smallest difference is chosen; this process being repeated for each cell. Next
a quadratic interpolant for each cell is constructed by adding an additional
interpolation point — this can be either the value to the left or right of the
previous stencil. For example, if u;11 and u; had been chosen to form the
linear interpolation for our cell, then we can add in either u;4s or u;—;. The
one which gives the smoothest interpolant (as monitored by comparison of
divided differences) is chosen. This is done for each cell and the method
applied recursively until the desired degree of interpolation is reached. A
variant of ENO is Weighted ENO (WENO) [25] where a linear combination
of the candidate stencils for interpolation is taken. Subcell resolution has
also been used [14] in order to sharpen contact discontinuities.

ENO can be shown to be Total Variation Bounded (TVB), i.e. TV(u") <
CTV(u®) which means theoretically that solutions still converge as for TVD
schemes, and practically that small oscillations on the scale of truncation
error may appear but usually vanish if the solution is adequately resolved.

11



4.3 WAF

Toro 35, 36, 37] achieves second order accuracy in a different way. Instead of
enhancing the data representation, as in the methods previously described,
he exploits more of the information provided by the full solution of the
conventional Riemann problem. Whilst Godunov’s method evaluates the
intercell flux only along « = x;_,,, (see (5)), Toro takes a weighted average
of the flux vector across the whole wave structure of the Riemann solution
at time t" + %. His intercell flux is defined to be

1 [* n, At
fi1y2= E/ F(wio1ja(e,t™ + =5)) da, (8)
Ti—1

where the integration is depicted in Figure 6.

tn+1
t] a®  \ u® u®/ 4@
112 Yo \UN1 Yaf U3/ Y4
t’n
X

path of integration

Ti—1 T

Figure 6: Calculation of the WAF flux.

If we consider first the case where there is no expansion wave (as shown
in Figure 6) we see that the integral in (8) may be evaluated to give

n+41

fi_1/2 = Zﬂkfi(f)l/z, (9)
k=1

where the fluxes fi(f)l /2 are evaluated at the constant states, i.e. fi(f)l J2 =

f(u®) and the weights B are the normalised lengths

U — Yb-—1
B = Az

The weighted sum (9) leads to the name of the Weighted Average Flux
(WAF) method. If there is an expansion wave present in the Riemann solu-
tion then Toro [37] suggests that the integral across it could be evaluated
exactly (giving an extra weight) or the expansion could be combined with
the closest constant state (taking the value of the state to be u;_;,5(0) for
a sonic rarefaction). In order to solve the Riemann problem to obtain the
solution at ¢"*1/? either the exact solution can be used or an approximate
Riemann solver employed.

As it stands the method is not TVD, however Toro applies a flux limiter
type device to the flux differences across waves of the Riemann solution - see
[37] for details.
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5 And there’s more...

In the previous sections we have only been able to give a brief description of
just some of the Godunov methods in the literature. Any literature search
will reveal a wealth of material on the subject, some of it extensions and new
applications of established techniques and some of it novel in its own right.
We conclude by looking at a couple of these developments.

5.1 Source Terms

In the exposition of the various Godunov methods, we have restricted our
attention to homogeneous conservation laws. However, many models of phys-
ical situations involve source terms, giving the inhomogeneous equation

u; + fz(u) = S(z,u). (10)

Although much work has been carried out in the investigation of how
to incorporate source terms into numerical methods for conservation laws,
this is still an open issue. The simplest approach is to use fractional steps,
splitting the non-homogeneous equation (10) into the homogeneous equation
(1) supplemented by the ordinary differential equation

u; = S(z, u),

solving them alternatively for each timestep. This avoids incorporating the
source term directly into the numerical solver for the conservation law. How-
ever this approach can perform badly when solving near-steady state flows,
since the contributions from the two separate stages can be large but non-
cancelling. The most obvious inclusion of a source term into a Godunov
method would add extra complication to the Riemann solution and calcula-
tion of the intercell fluxes since the Riemann solution is no longer constant
on rays ¢/t = constant.

Le Veque [24], however, takes a novel approach. He introduces a new
discontinuity in the centre of each cell by decomposing the piecewise constant
data representation into two different states u; and u;, (see Figure 7). This
is done in such a manner so as to be conservative, and if possible so that

f(uf) - f(u; ) = S(z:,u;)Ar. (11)

This should then ensure that the effect of the source term in the cell is
exactly cancelled by the waves resulting from this new Riemann problem.
This has the implication that this new Riemann problem need not be solved,
nor the source term explicitly included in the scheme, except for choosing
the new states u; and uj, via (11), which are then used with the standard
Godunov approach or its high order extensions. If it is not possible to
choose the new states to satisfy (11) then an additional term accounting for
the discrepancy is added to the update for the cell (see [24]).

5.2 Central Schemes

In [26] Nessyahu & Tadmor introduced a central scheme based on the Godunov
philosophy, although it avoids explicit solution of Riemann problems. The

13
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Ti-1/2 Tit1/2

Figure 7: The additional Riemann problem.

first order case is a staggered grid version of the Lax~Friedrichs scheme, and
is constructed in the following manner. Like Godunov’s scheme the data
is taken to be the set of cell averages, resulting in a set of Riemann prob-
lems at their interfaces (Figures 1 and 2). However, instead of re-averaging
the solution of adjacent Riemann problems over the cell (z;_; /2, %iq1/2), the
solution of just a single Riemann problem is averaged over the staggered cell
(zi—1,x:), see Figure 8.

t+ At

Figure 8: Central differencing by Godunov type scheme.
Equations (4) and (3) now become
n At n
uijll/z = uz"L—l/2 - E(ftn - fi—l)a

and
t"+1

£ = ﬁ /t £(u(zs, ) dt (12)

n
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where

" 1 Ti—1/2 Ti
Uiz = 5 l:/ u;_i(z)de +/ u;(x) dm:' . (13)
Ti—-1 Ti-1/2

Of course, for the piecewise constant representation we are considering at
present, (13) reduces to uj_;,, = 3(uf_; +u?). The mid-points are evolved
according to the conservation law (1) with initial data u?(z) and integrals
in the flux definition (12) are evaluated using suitable quadrature. (The
evolved mid—cell values will remain continuous for small enough time.) For
the piecewise constant case, the mid—cell values remain constant, giving a
flux f* = f(u}) and the resulting scheme becomes

n 1 n n At n n
“i—+11/2 = 5(“1‘—1 +ui) - A—x(f(ui ) — f(uiy)),

which is a staggered Lax-Friedrichs scheme.

To extend this scheme to higher order accuracy, the MUSCL approach
is used, replacing the piecewise constant data by a piecewise linear repres-
entation, suitably limited to ensure TVD. For the higher order case, the
integrals in (13) are evaluated for the piecewise linear representation, which
will evolve in time, and the second order accurate mid-point quadrature rule
is used to evaluate the integral in (12).

The method is extended to non-staggered grids in [21].
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