THE UNIVERSITY OF READING

Interim report on the application of non-linear
optimal control techniques in open channel
water management

by

I. Villanueva

Numerical Analysis Report 7/98

DEPARTMENT OF MATHEMATICS



APPLICATION OF NON LINEAR
OPTIMAL CONTROL TECHNIQUES

“IN OPEN CHANNEL
WATER MANAGEMENT

by

I. VILLANUEVA !

Supervisors

PROF. N. K. NICHOLS and PROF. M. J. BAINES *

Date: Sep. 1998

1Dpt. Fluid Mechanics, C.P.S., U. of Zaragoza, Spain
2Dpt. Mathematics, U. of Reading, U.K.



Abstract

Numerical techniques are applied to solve an optimal control problem oc-
curring in water supply in a channel. The problem considered here is that
of minimizing the difference between the water delivery requirements and
the real quantity of water supplied. The numerical model includes the ac-
tion of gates and offtakes in several pools. The dynamic of the channel is
governed by the Saint Venant’s equations, and the flow through the gates
and offtakes by non-linear functions. A numerical algorithm which couples a
gradient optimisation technique with a finite difference solution of the flow
and associated adjoint equations is described.



1 Introduction

We present here a mathematical model to assess the best operating strategies
in an open channel with several pools, gates and offtakes, used for delivering
water.

In order to use an Optimal Nonlinear Control Theory applied to the Chan-
nel Operations which includes the complete solution of the Saint Venant’s
equations of the flow, and does not discretize the objective function from the
beginning, the methods and conclusions of previous works [1},[2],[3],[4], which
were applied for maximizing the output of a tidal power station in a estuary,
have been adapted to the problem of minimizing the difference between the
required and delivered quantities of water through some offtakes.

We have studied two models, the first one with the purpose of understanding
the Optimisation Problem, and the second one for applying it to a more
realistic case.

2 The First Model

2.1 The Conservation Law

We consider that we have a channel with N flat pools, each one with a height
of water h;, one input flow gate, one output flow gate and one offtake, as we
see in the figure 1.

The state variables are the heights h;, and the control variables are oy;, az;,
being respectively the ratio of maximum opening of the offtake and input
gate of the pool ¢ , in such a way that

O<O{2i§1 (2)

The mass conservation equation for each pool is the ODE



Sihi = 03iQt; + a2ip1Qo; — i Qt; (3)

where S is the surface, Q¢ is the input flow, Qo the output flow and @t the
flow trough the take according to :

Qi; = Cg;Agi Bgin/2g|hi—1 — hilsgn(hi—1 — hy) (4)

Qo; = Cgiy1Agit1Bgir1\/29|hiv1 — hilsgn(hips — h;) (5)

which verifies Qo; = — Q141

Qt; = Ct;Al;Bt; Qg(h,' — Hti) (6)

where Cg,Ct are coefficients of discharge, Ag, At the maximum openings,
Bg, Bt the width of the gates, offtakes, and H? is a minimum height required
for having flow through the offtake.

In order to solve the evolution of this system we need to know the initial value
of all the state variables h; and the boundary conditions imposed for them,
ie. hi(t), hn(t). We will assume that all of these functions are periodic in
time, with a period 7.

2.2 Optimal Control Problem

The optimisation problem is then to determine the control functions ay;(t),
a2:(t), which minimize the quantity

— 1 T 9
M = TZZ:/O wi(aliQti — D,) dt (7)

subject to constraints (1), (2), and equations (3), (4), (5), (6), and where w;
is a weight value, and D; is the out fixed demand of water, typically a step
function of time.



For studying the necessary conditions for having a unique solution for ¢ =
(@11, @21, * 5 Quiy Qg -+ + 1N, a2y )T in this model see [1] and [2].

2.3 Necessary Conditions for the Optimal

We define the Lagrangian functional associated with the optimal control
problem as

Lla) = Z /OT [wi(aliQti - D)+ /\i(—Siili + Q1 + agip1Qo; — aliQti)] dt
Z ®)

Where J; is a Lagrange multiplier known as the adjoint state variable.

For « to be minimal it is necessary that the first variation 6 L(g, da) is posi-
tive, where 6L is linear in 6.

We can write this variation in the form :

6L(a, ba) = Z /OT [60niQti (2w; (i@t — Di) — Ai) + SagiQui(A; — Xi—y)] dt
| (9

after using integration by parts and taking A; to satisfy :

M(t) = Mt +T) (10)

X0, 09k _, 0Qis Qo
S; 851} ok, a7 £ Q541 ah.

Ait1 0Qo;
+ vt (it ok )

iz Q1
+ _1(0‘2"(%)

Si-1
— (Zwi(athi - Di)ali% (11)




For a given control & the minimum condition is

<VM(a),B—a>>0 (12)

for all admissible controls g

Where the inner product < -,- > is defined as < a,b >= foT a’bdt

In our case we may write from (7),(8),(9),

< VM(e),B —a>=6L(a,b0)

with

V_M_(a) _ Qt; (2wi(a1¢Qti - Di) - )‘i)

= Q1i( A — Aiz1) (13)

For a given control a, state and adjoint variables, the gradient vector can be
calculated from (13), and since the values of the controls belong to a closed
interval [0,1], the inequality (12) is easily tested. Gradient methods can
therefore be applied to determine numerical approximations to the optimal
control problem.

2.4 The Numerical Method

We propose a constrained optimisation technique for determining the control,
together with a finite difference method for solving the state and adjoint
problems.

As it was concluded in [4], and during the course of this research, the Con-
ditional Gradient Method was selected for the sluice controls. It generates a
sequence of piecewise continuous controls o*(¢) approximating to a(t) such
that

M(gk+1) < M(gk)
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and
oM = of + 050"

with 0 < 0 < 1.
The iterative algorithm stops when the absolute value of the measure
mintmum (< Vﬁ(gk),ﬁ— oF >) , BeU

is less than a given tolerance .

2.4.1 Basic Algorithm

Supposing that we discretize the time T and all the functions depending on
it in Z intervals, we use the following steps :

1. Obtain the Kth approximation a(t) to a(t), i.e. to know the Z vectors

/0411\

(8931

Q14

o) = | oy (14)

Q1N
GoN

\ )

If k£ = 0 this matrix is an initial input value and we also must choose

6 € (0,1]

2. Solve the conservation of mass for the pools, i.e. for j=1,-+-,7 -1

B it
o = | ht? (15)
}Lg‘v A

3. Solve the adjoint equation for the pools (backward in time), i.e. for

jZZ,"',Z



bY] X!

N = | N (16)
Ny e
4. Evaluation of the quality @(c*) of the Kth approximation, i.e.

Q(gk) = mIinimum (< Vﬂ(gk),ﬂ —oF >) , BeU (17)

This minimum and 8 are obtained following the next criteria

R . = 1 k j
gi =) 0 if (VM(e ).)h_zo 1)

1 otherwise

. e (T (o))
g )0 if (VM(a ))21_20 (19)

1 otherwise

Stop if |Q(a)| < tolerance , if not continue with the next steps
5. If M(o*) > M(a*?) then 6 = ¢

6. gk“ _ gk e H(Qk _ gk)
k=k+1
go to step 1

As it was well explained in [4], the Conditional Gradient Algorithm can be
improved with slight changes, and we have used that modified version, which
only allows a new iteration for o if its function M is less than the previous
one .

2.4.2 Finite Difference Scheme for the State and Adjoint variables

Both of the equations (3),(11), are solved using a fixed iteration method.
That implies that for a system of the kind H = F(H) where H is the vector
of variables and F a functional vector of it, for each interval of time n of the
discretization n = 1,---, 7 — 1 we have



Hn+1 - Hn
= = (=) + T EH™), 0Ly <1

At the beginning of each step n we impose F™*! = F™*, H*! = H™ and with
the new obtained value of H™! we continue the iteration process until the
desired convergence for H™*'.

Two things must be noted :

e The adjoint equations are solved backward in time, because their ho-
mogeneous solution decays in that way, see [1].

o In the progress of the problem it was said that the state and adjoint
variables are periodic in time, that implies that we must repeat the
numerical integration over the interval [0, 7] until the values of A} and
A} differ by less than one small tolerance with hZ and A? .

2.5 Additional Term Added to the minimisation func-
tion

In order to obtain satisfactory results for the control, in fact we have for N
pools, 2N control variables, it is better to have more terms depending on the
control in equation (7). We added the next

Vi tg4

which implies that depending of the weight coefficient v; we minimize the
opening time of each gate.

We must also add to equation (13) the term v; for obtaining

w7 | Qti (Qwi(en:Qt; — Di) — X;)
VM(a) = Qii( N — ANi21) + i



2.6 A practical example

Just for checking these techniques we propose an example which has six
pools, with some demands of water. In the first pool there is an increase of
the height for satisfying that demands.

The input data are :

Parameter Pool1l Pool2 Pool3 Pool4d Poolb Pool 6
Surface (m?) 60 60 60 60 60 60
ht (m) 1 1 1 1 1 1
e 0 0 0 0

o 0.5 0.5 0.5 0.5 0.5 0.5
Qs 0.5 0.5 0.5 0.5 0.5 0.5
Ag (m) 0.5 0.5 0.5 0.5 0.5 0.5
Bg (m) il 1 1 1 1 il
Cyqg 0.7 0.7 0.7 0.7 0.7 0.7
At (m) 0.5 0.5 0.5 0.5 0.5 0.5
Bt (m) 1 1 1 1 1 1
Ct Il 1 1 1 1 1
Ht (m) 1 1 1 1 1 1
w; 1 1 1 1 1 1
v; 0 0 0 0 0 0
to demand 0 0.2 0.7 0.8 0.9 0
ty demand 0 0.3 0.8 0.9 1.0 0
demand m?3/s 0 1.5 0.5 0.5 0.5 0

The period of time is T' = 600 s, the boundary conditions for the state and
adjoint variables are hq(t) = 1 + sin(4%), he(t) = 1 and A (t) = Ae(t) = 0.

We made the calculations using a number of intervals of Z = 600, a coefficient
= 0 for the finite difference scheme, § = 1 as initial value for the gradient
search, and 100 iterations with a final quality of 0.0016.

The most representative graphics with the heights, movements of the gates
and offtakes are in figures (3),(4),(5),(6), where we remark that the demands
are satisfied for each pool at the right times.



3 The Second Model

3.1 The Conservation Laws

In our second model we want to discretize in space the pools and use the
conservation of mass and momentum for a more detailed description of the
channel dynamics, including the effects of wave propagations, friction and
mass loss. We use the 1D shallow water or Saint Venant’s equations for each
pool

At o Qa: = —q (21)

Q: + (%2 + gh) = gA(S, — S5y) (22)

This is a conservative formulation where the state variables are A = A(z,t),
the cross sectional area and @ = @(z,t), the discharge. The term ¢; is the
lateral outflow loss per unit of length, in such a way that if Xt; is the location
of the offtake ¢ and its flow is Qt; from equation (6), ¢;(Xt;) = a;Qt:/Az.
I is the hydrostatic pressure force term (function of A), S, is the bed slope
and Sy the friction term (function of ()), as described in [5].

A finite difference method is applied for solving (21),(22), in each pool, and
we use the next notation for the discretized state variables

AL QY i=1,---.N j=1,---,8 k=1,--

137 % igo

Z

2

with N pools, S space intervals and Z steps of time.

For each bound of each pool we need two more equations for solving the state
variables. If the bound is a gate we use the equation (4), for its discharge

QGiv1

ngﬂ = Cgit1Agi+1Bgit \/2g|hi'cL - hf+1R|39n(hfL . hi'c+1R) (23)



and

QY = Qfir= Qg (24)

where L, and R, denote the left neighbour point of the i+1 th gate, and
the right one, respectively. The other equation comes from the theory of
characteristics, see [5].

For the first and last bound of the channel we must impose the area or the
discharge, or a relation between them, and use the theory of characteristics.

Basically the theory of characteristics for our hyperbolic system (21),(22),
implies that along the curves in the z — ¢ plane

dz
7 u+tc
it verifies that
dlu=2c)
A2 o(5, - 5y)

where u = %, ¢ = \/% and o is the width of the section. We can use these
curves for obtaining a relation between the state variables A?j"'l and Q;Lj"'l

knowing their values at time n.

3.2 Necessary conditions for the optimal

The lagrangian functional associated with the optimal control problem is now

defined by

L(.Oi) = Z /OT [wi(athi — Di)ﬂ dt
+ Z _/OT [V1i( QX fi) — a2i41Q9i+1) + 72i(Q(X fi) — Q(Xigq1))] dt
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S P e
.\ Z:/OT /Xfi } (—Qt . (—6124—2 _|_g_71) + gA(S, — Sf)) deidt  (25)

Xi;

Being X f the downstream end of the pool and X: the upstream one. We
remark that the Lagrange multipliers v4;, 72, depend only on time whereas
A and p depend on z and ?.

Integrating by parts and taking variations for L(a) we join the terms as
follows for making them to vanish :

Xfi
S [ [-A6A - uSQI] de, (26)
T .
Z/O [—A8Q — u (2usQ + (c* - uz)éA)]ij‘ dt (27)
Z Xf T
2. /X /0 04 [)‘f + pa(c? —u®) — SA] dz;dt (28)
1 Xfi T
P /X /0 6Q [pe + pa2u + Az — S, daidt (29)
with
_ A . e . OQti
$i = —(=Fg, + 2wieni(enQt — D)5
95y
— pg(So —(Sy + Am—)) (30)
05,
= 20 1
Sy pgA 50 (31)

It has been used that 20 = 4, see [5].
Equation (26) vanishes if the state and adjoint variables are periodic in time.

For the downstream bound of the last pool we impose that Q(X fn,t) = 0
and this leads to u(X fn,t) =0 .

11



For the upstream bound of the first pool the area is a known function, so it
gives A(X7y1,t) + p(Xi1,1)2u(Xir,t) =0

The terms inside the brackets in equations (28),(29), are a coupled system

of hyperbolic differential equations that we must solve, with source terms Sy
and S,

For every gate we have the next vanishing sum from (25),(27), following the
mentioned notation of L and R, (Xf; = L, X441 = R)

0Qy;
0AL (—’Yliazm%:l = ﬂL(C?: - U%))

0Qy;
+ 6Ar —71i012i+1—Q—gi1 + ,UR(C?Q - U%)
0Ar

+ 6Qr (v1i + 72 — A\ — pr2ug)
+ 6Qr(—7v2i + Ar + pr2ugr) =0 (32)

As 6Q1 = §Qr, equation (24), we obtain

Y1i = AL — AR + 2urpr, — 2URpR (33)

Yoi = AR + 2URKR (34)

For obtaining the values of the adjoint variables at each bound, we also
need to use the theory of characteristics for the hyperbolic adjoint system.
These are the same that we use for the conservation laws but with a different
propagated quantity

d(A+ (uscjy)
dt

ZS)\-I-SM(U:EC)

In [5] it is described how to obtain this equation.

After all these considerations we finally write

12



A(X;)
A:EZ'

T
6L(a, ba) = Z/o [5011iQti (2wi(a1iQti —D;) — ) - 5a2i+171ngi+1] di

(35)

3.3 The Numerical Method

It has the same steps that we described in the first model, but now in steps 2
and 3 we have two adjoint and two state variables coupled in an hyperbolic
differential system that must be solved by a finite difference scheme and the
theory of characteristics for the bounds. A schematic picture shows it in the
figure 2.

3.3.1 Finite Difference Scheme for the State and Adjoint variables

Both of the systems, shallow water equations (21),(22), and adjoint problem
(28),(29), are at first solved using a modified version of the Leap-Frog scheme
[1]. It proposes for a system with the aspect :

U, + F(U), =H(U)
the discretization :

n+ n—1 n n n+1 n—1
U= B — L 47+ H

2AL 2Az 2

which is constrained in time by the CFL condition, see [5].

3.4 Practical Example

In order to make a first test of the second model we propose a simple two
pools channel with only one offtake in the second pool and a front wave
traveling from upstream. The data are :

13



Geometrical Parameters | Pool 1  Pool 2
Length (m) 1000 1000
Width (m) 10 10
Manning 0.016 0.016
So 0.0008 0.0008
Ag (m) - 1
Byg (m) - 2.5
Cyg - 0.75
Xt (m) - 1500
At (m) - 1
Bt (m) - 1.5
Ct - 1
Ht (m) - 0
to demand - 0.625
ty demand - 0.75
demand m?/s - 15

The period of time is T' = 4800 s , Az = 10 m and CF'L = 0.5.

The upstream boundary condition is

ot
hia(t) = 0.6+0.75sin 607;0

= 0.6 otherwise

it 0 <t <3000

For the initial state all the gates and offtakes are closed, and the flow variables

are calculated using a Runge-Kutta approximation to the normal depth curve

g—z = %_—l%— , = *Z—A, with the bound values hoy = 2, Qon = 0 and by = 1.4,

Q@in =0

Z:MZ].:()

For the initial state for the adjoint variables we use A

With the initial values of oy = 0.5, age = 0.5, wy = 0.01, vy = 0, and for an
excessive demand of 15 m®/s | the results are displayed in figures (7),(8),(9).
The demand is not satisfied but we observe the movement of the gate for
having the maximum quantity at the offtake.

It was checked that with this control obtained for the gate, the amount of
water supplied was greater than using ay, = 1 over all the period, and very
similar to the one using asy = 1 only if hr, > hp.

We remark that in this case we have used both Conditional Gradient Methods

14



obtaining similar results. For an initial value for the gradient search 6 =1
and with 18 iterations the final quality was of 0.003597, for the basic version
and with 22 iterations and a final quality of 0.003341 for the improved version

4 Further Research and Comments

Further research :

Before adding new pools to the second model we need to

Make an analysis of the properties of the adjoint system, specially for
the source terms S and S,

Apply another finite difference methods for the flow-adjoint problem,
which allow longer steps of time

¢ Add new terms to the function M, including penalty terms

e Use a new gradient algorithm search for many controls

Comments :

e Study the behaviour of the gradients nearly 0

o Try the Projected Gradient Method [4] for the smooth variations of the
controls

o Try different initial guesses for the controls

o Check if reducing the steps of time the convergence improves
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Figure 2: The characteristic curves and time direction for the flow and adjoint
systems
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