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Abstract

We review recent advances in the numerical approximation of solutions
to differential and algebraic equations on optimal grids in one or more
dimensions using variational principles. A unified approach to the prob-
lem is presented which clarifies the link between the different variational
conditions that have been obtained. The description incorporates iterative
algorithms which have the property that the functional tends monotoni-
cally to a limit. One such algorithm is related to the Moving Finite Element
method used as an iterative solver while another generates solutions via
a sequence of purely local problems. The latter approach has the advan-
tage that mesh tangling can be avoided. The extension to time dependent
problems and systems of equations is discussed.



1. Introduction

In this report we discuss the generation of both optimal meshes and optimal
approximations for a range of differential and algebraic equations governed by
variational principles. Currently the main approaches to variable meshes are via
element subdivision [18], equidistribution [19] and techniques for maximising grid
quality [20]. In each of these cases a separate solver for the approximate solution
is required. The idea of seeking both approximations and nodal positions that
minimise a discrete energy for a given number of elements has been considered for
example in [17], where the main difficulties are seen to be the complexity of the
algorithm and the problem of mesh tangling. However this approach has seen a
number of recent developments. Jimack [8] has used the Moving Finite Element
(MFE) method to obtain numerical approximations and grids with an optimal
property, while Baines, Tourigny and Hulsemann [5], [13],[16] have generated
numerical approximations and grids via sequences of local problems, again with
an optimal property. In this report we shall review and compare both approaches
from a variational point of view, seeking a unified approach to the two methods.

Variational problems of interest to the numerical analyst include those of
minimising an error norm in the approximation of functions [1] and minimising
a convex functional (an ”energy”) in the approximate solution of elliptic PDEs,
both within finite-dimensional subspaces [2]. The variational principles of fluid
mechanics and gasdynamics whereby equations of motion can be generated by
finding stationary values [3],[15] are also of interest since they can be used to
generate finite-dimensional approximations to the dependent variables [4]. Opti-
mal meshes can be generated in each of these applications using the techniques
reviewed here.

The layout of the paper is as follows. In Section 1 some standard variational
analysis is described in which we emphasise a monotonicity property of the func-
tional for certain choices of the variations. The analysis includes the situation
when stretching of the abscissa is allowed. In Section 2 finite-dimensional ap-
proximations are introduced and in Section 3 the analysis is extended to include
stretching of the mesh, giving rise to coupled variational conditions for the nu-
merical approximation and the mesh. In Section 4 the problem is approached in
a different way using constrained variations and new conditions obtained which
are local in character. Section 5 is concerned with iterative methods for the so-
lution of the variational equations which exploit the monotonicity properties of
the functional and the local character of the equations established in the previous
sections. One of these is an application of the MFE method used as an iterative
solver while another depends on a sequence of local problems. In Section 6 the
methods are generalised to include discrete time stepping methods for unsteady



problems, including a modified application of MFE .The extension to several de-
pendent variables is given in Section 7. Finally, in Section 8 we summarise the
results of the discussion.

1.1. Variational analysis

Let u(z) be a function twice differentiable in the space variable z and let F'(z,u, u)
be a twice differentiable function of its arguments. Define the functional

T(w) = /abF(x,u,ux)da: (1.1)

and consider the first variation

57 = /(———5u+ 6$)dx

d OF

assuming that du(a) = 6u(b) =0.

We emphasise two properties. First, by Lagrange’s lemma, if 6Z = 0 for
all 6u in the neighbourhood of u = u* then 7 is stationary and u* satisfies the
Euler-Lagrange equation

OF d OF
e om 0. (1.3)
Secondly, by choosing the u variation such that
oF d OF
du = (—8— + — - 8%) 6T (1.4)

within (a, ), where 67 is a positive constant, we have from (1.2)

b
0T = —/ (6u)?dzér™1 <0 (1.5)

with zero only if éu = 0, i.e. only if u = u*. Hence 7 is strictly decreasing under
the variations (1.4), in which case it is stationary and u = u* satisfying (1.3) .

In higher dimensions, if u(z) is a function twice differentiable in the compo-
nents of the space variable z and F/(z,u, Vu) is a twice differentiable function of
its arguments in some domain {} of z space,

T(u) = /Q F(z,u, Yu)dQ (1.6)

which has first variation

6T = / ( u+ —V5u) dn
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/Q——zﬁﬂ>mm (1.7)

provided that u = 0 on the boundary 9 of .
If 67 = 0 for all éu in the neighbourhood of u* then 7 is stationary and the
u = u* satisfies the Euler-Lagrange equation

oF oF
7 YLowe = 0. (1.8)
Moreover, if the éu variations are chosen to be
oF oF
du = ( e + V. BVu) ot (1.9)
within § (where 67 is positive), then
—/5wﬂwf4§o, (1.10)
Q

zero only if du = 0. Hence Z(u) is strictly decreasing under the variations (1.9)
unless éu = 0 in which case it is stationary and u = u*.

If the functional Z(u) is bounded below it approaches a limit under these
variations at which éZ = 0, corresponding to a solution u = u* of the steady
state Euler-Lagrange equation (1.3) or (1.8). In particular there is a unique limit
if the functional Z(u) is a strictly convex function of .

1.2. Examples

(i) The classic example of a functional Z(w) which is convex and therefore bounded
below in this way is given by the function

F(u,Vu) = u? + (Yu)® (1.11)
for which Z(u) is the Sobolev norm
I(u) = a(u,u) + b(u, u) (1.12)

where

a(u,v) = /QZU.Zde, b(u,v) = /qudﬂ.
The stationary value u* corresponding to 6Z = 0 Véu satisfies
V2u* —u* = 0. (1.13)
Moreover, if the du variations are chosen to be

ou = (22u — u) or,
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then Z(u) is non-increasing, stationary only if éu = 0 in which case v = u* and
(1.13) holds.

(ii) For the more general quadratic example
F(z,u,Yu) = p(z) (Yu)* + ¢(z)u’ — 2r(z)u (1.14)
the equation for the stationary value of u* is the self-adjoint equation
= V. (p(z)¥u") + g(2)u” = r(z) (1.15)
while the du for which Z(u) is non-increasing is
bu =A{¥. (p(z)Yu) — q(z)u + r(z)} 67.
(iii) If F is independent of u, or Yu, equation (1.3) or (1.8) becomes the
nonlinear algebraic equation
oF _
ou

while the variation for which 7 is non-increasing is

0 (1.16)

bu = ——90r.

du
An example from Shallow Water flow in a channel (in which u is the depth) is [4]

2

F(z,u) = B(z) (%- _ % W 4 E(w)u) (1.17)

where ), g are positive constants and B(z), E(z) are given (breadth and energy)
functions. The function F' is convex if u® — @?/g > 0 (supercritical) and concave
if u3 — Q%/g < 0 (subcritical) switching when this quantity passes through zero.
The stationary function u* satisfies the algebraic equation

—gu*+ E(z)=0 (1.18)

and the choice of §u for which Z(u) is non-increasing is

2

§u = B(z) (Q— +gu— E@:)) st

2u?

(in the supercritical case).
In all cases boundary conditions may be incorporated in F' as required.



1.3. Stretching of the abscissae

Suppose now that the = variable also participates in the variations, giving simul-
taneous variations 67u and §z. By analogy with ’differentiation following the
motion’ the chain rule gives

§u = bu + ugb e, (1.19)

i.e du is the Eulerian displacement which is converted into the Lagrangian dis-
placement 6%u by the addition of the u 6Lz term. Then with Z(u) defined as in
(1.1) the first variation becomes

d oF\ ,, 5
6T = / (a—u— - auz) (6%u — u,8z)dz. (1.20)

The right hand side of (1.20) vanishes when the stationary solutions u* and z*
satisfy (1.3).
Under variations defined by

oF d OF oF d OF
L, _ )= L s e e = -
5u—{ 3u+d:c8uw}67- o {( 5u+dx8ux)( um)}&'
where 67 > 0, (1.20) becomes
b
6T = —/ {(6%)2 + (5%)2} dzér~1 < 0. (1.21)

Hence Z(u) is non-increasing, stationary only if 6%u = 6z = 0 in which case
u = u* and z = z* satisfying (1.3).

1.4. Higher dimensions

In higher dimensions the form of (1.20) is

6T = / ( avu) (8%u — Yu.stz) d0 (1.22)

so that 7 vanishes when the stationary solution u = u* and z= z* satisfy (1.8).
Under the variations

oF oF OF oF
L, — V. —— L — _—— V -V
. u—{ Erl OVu}é Oz {( u T 'BVu>( u)}é’r

it follows from (1.22) that

6T=- [ {(5%)2 + (5@)2} s < 0, (1.23)

zero only if 6¥u = 6%z = 0 in which case u = u* and z= z* satisfying (1.8).
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2. The Finite-Dimensional Case

Suppose now that the function u(z) of Section 1 is approximated in one dimension
by the finite-dimensional function U(z) which is expanded in terms of a finite
number of basis functions ¥;(z) (j = 1,2,...,J) as

z) = Z_:l Ujhi(z). (2.1)

Then, assuming that t;(z) is piecewise differentiable, the first variation of Z(U),
defined as in (1.1) with u replaced by U, is

6T = iaa[:]r §U; = ZaU/ ( aalljzp( )) de.  (2.2)

If 67 vanishes for all §U; then U is a stationary solution U* satisfying the weak
form

b (OF oF
[ (550 + g e =0 23)
of the Euler-Lagrange equation (cf. (1.3)).

2.1. Monotonicity preserving variations

Under the variations
b oF oF
5U] = /a (_W’L/)J(m) — WTJ)J(IE)) d.’L'5T (24:)
Vj it follows from (2.2) that

J
— Z U267 < 0.

i=1

Alternatively, using the Galerkin form, if 6U is given by

/ab 6Urpi(z)dz = /ab (‘2_5%(26) - g_éz‘p;(w)) deér (2.5)

Vi (2.2) becomes

Z&U/z/)J V6Udz = — ZZ&U {/¢ 2);(e )dx}5U5T—1<o

j=11=1
(2.6)



Vi. Provided that the quadratic form in (2.6) is positive definite, it then follows
in both cases that §Z < 0, zero only if éU; = 0 in which case U = U* satisfying
(2.3).

The quadratic form in (2.6) is positive definite if the mass matrix A = {4;;},

o Aij = {/ab ¢j($)¢i($)d$} ) (2.7)

is positive definite. If the ¢;(z) are the once differentiable piecewise linear finite
element hat functions, so that U in (2.1) is the piecewise linear finite element
approximation with nodal values U;(t), then the mass matrix A is positive definite

[6].

2.2. Higher dimensions
In higher dimensions, if F' = F(z,U,VYU) and
J
u~ U= Uia), (2.8)
J=1

where the 1;(z) are piecewise linear basis functions on linear simplexes such as
triangles or tetrahedra then as in (2.2)

6T = i gg §U; = ZW / ( a‘rgU wj(g)) (2.9)

If 67 vanishes for all §U; in the neighbourhood of U* then 7 is stationary and
U = U* satisfying the weak form

[ (Gute) + ) dn = 210

(cf. (1.8)).

Also, under the variations

§U; = / ( i(2) —&—FU.WJ-@)) dQ6T (2.11)

or, in the Galerkin form, with éU given by

sUpia)d = [ [=2Luia) - 2L wp@)) dasr  (2.12)
9) ) ou ovU’

Vi, then since the matrix A = {A;;} where

Aij = {/Q z/»i(g)z/)j(g)dﬂ} (2.13)

is positive definite [6], we may deduce in the same way from (2.9) that 6Z < 0,
zero only if §U; = 0 in which case U is a stationary function U* satisfying (2.10).
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2.3. Algebraic Forms

To put these results in matrix-vector form, denote by U, U* the vectors of coef-

ficients U;, Ur and by b(U) the vector of coefficients of the b;(U) defined by

b(OF oF
() == [ (Ggte) + gpdi(e)) e (2.14)
so that, from (2.2),
6T = —8§UTh(U) (2.15)

and the weak form (2.3) of the Euler-Lagrange equation becomes
b(U") = 0. (2.16)

It follows from (2.15) that b(U) may be regarded as a search direction for
the minimisation of Z over §U by the method of steepest descent (see Section 5).
More specifically, if §U is given by (2.4) or (2.11), i.e. in matrix form

§U = b(U)ér, (2.17)

we have from (2.15) that
§T=—||6U||2677" (2.18)

and 7 is non-increasing, stationary only if §U = 0 in which case U = U* satisfying
(2.16). Similarly, if in the Galerkin form §U is given by (2.5) or (2.12), i.e. in
matrix form

A8U = b(U)ér, (2.19)
where A is the matrix with elements (2.7) or (2.13), it follows that

6T = —§UTb(U)ér~! = ~6UTAUST! (2.20)

and again, provided that A is positive definite, T is non-increasing, stationary
only if §U = 0 in which case U = U* again satisfying (2.16).

Equations (2.18) and (2.20) are equally valid as equations which possess the
appropriate limit. Indeed, all that is required is an equation of the form of (2.20)
with any positive definite A. The unit matrix is the one used in (2.18) but this
choice lacks the scaling properties which are possessed by (2.20) [6],(7]. A good
compromise is to replace A by its diagonal in (2.20). We therefore also consider
variations for which

D§U = b(U)ér (2.21)

(cf. (2.19)) where D = diag{A}, which may be thought of as being brought
about by tampering with the test function ¢;(z) on the left hand side of (2.5),
which is permissible if only the limit is sought.



2.4. A special case

In the particular case where the function F' is independent of u, or Vu with
F,. > 0 we have an additional property. We can then show that if the components
of the matrix A in (2.20) are weighted by F, the monotonicity property of 7
is maintained and the order of the method increased, provided that the matrix
(2.13) is positive definite.

To see this return to (2.12), now in the form

/ SU(2)dft = - | g—gd),-(g)dﬂ&',
and weight the left hand side by the function Fyy giving
/ FousU(z)d0 = — [ 2Ly (@)dnsr (2.22)
Q o U
which leads to the weak form
oF

</¢ 2) Fyuh;(z)d )5UJ-:— [ Soi(z)ansr (2.23)

Vi. If the matrix (2.13) is positive definite, then by the convexity of F' the
weighted matrix

Hi; = {/Q wi(E)FUU%(i)dQ}

is also positive definite. In addition we have the bonus that the descent step is
approximately second order, because (2.22) is a weak form of Newton’s method
oF

— FypéU = — 2.24
vuoU 30 ( )

for the solution of % =0.

3. Adaptivity in the Finite-Dimensional Case

We consider now adaptive mesh methods which are finite-dimensional versions
of the variational methods with stretched abscissae considered in Section 1.3. In
one dimension let X; (7 = 1,2,...,J) be the coordinates of J nodes, across which
the approximations U or U, may have reduced continuity, which are to be varied
in a Lagrangian manner in addition to the variations of the abscissa described
in Section 1.3. Then, in one dimension, taking Z(u) to be defined as in Section
1.1 with u, z replaced by U, X and taking account of the variation in the nodal
points, we have (cf. (1.20) and (2.2))

5T =6 Z/ F(X,U,U,)dz

KXr—1
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—Z/ ( +§U )dm—l—Z( ~FF)etx;  (3.1)

where K is the number of elements (= J + 1) and F'* refer to the values of F on
either side of node j. Therefore, using (1.19),

6T = Z/

Xk—1

oF

6L .6
{ U - U.5X) + g

J
(6%U — U.6"X) } dz — Y [F]; 6V X;
Jj=1
(3.2)
where [F]; denotes the jump in F in crossing the point j.
Assuming now that [F];6%X = [FéFX];, as is the case for piecewise linear
approximation, the last term may also be written as the integral

Z/X — (F§MX) da
ot

and the §¥X terms in (3.2) are

OF OF d
Ly _ L L L
}j/xkl{ ( =6 X 8U(6 X)) UmaUxé X-|-dm(F6X)}d:v

or

Z /xk 1 { SU (5LX)z} da. (3.3)

Hence, from (3.2) and (3.3),

oF oF oF\ , .
6T = Z/X{ 57 (V) + 5550 X—|—< 8U)(5 X), b do.

3.1. Ritz expansions

It is convenient to expand each of the functions u ~ U and z ~ X (in the
Lagrangian frame) in terms of the same set of piecewise linear basis functions

¢j(x)7 as : i
- ;Uﬂba’(w), X= ;Xﬂf}j(ﬂf) (3.5)

Then (3.4) becomes
J Xj+1 oF oF |, L
o= 3 fo { (Gt + i) o
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+ (g—§¢j(w) + (F — Umg—i) ¢;(m)> 5LX,-} dz (3.6)

(cf. [5]) and if 7 is stationary we obtain the weak forms

Xit1 [ OF oF |
AFI(EUW@y+azﬁ@ﬂdw=m (3.7)

and = o o
/Xj_1 (ﬁd’a(w) + (F — Uxa—U$> 1/)J(m)) de =0 (3.8)

Vj of the Euler-Lagrange equation (1.3) for the simultaneous solution of the
stationary values U} and the X7.

3.2. Monotonicity preserving variations in 1-D

If we define
Xjt1 8F aF '
(0= [ ( S+ bi(a)) b (3.9)
Xj41 3F 8F '
CJ'(U,X) e _/X._l (6—X¢J(.’IZ) -+ (F — Uxﬁ) 1/)](m)) dz, (310)
then under the variations
§EU; = b;(U, X)ér, (3.11)
6L X; = ¢;(U, X)ér (3.12)

V4, we find from (3.6) that, as in (1.21), 6Z < 0, zero only if §*U; = 6YX; = 0 in
which case U = U* and X = X* satisfying (3.7) and (3.8).
Similarly, if 67U, 67X satisfy the Galerkin forms

_/;Hl U i(z)dz = b;(U, X)é, (3.13)
[ (U@ = (U, X)ér (3.14)

Vi, where §U = 62U — U, 6" X, then 61 has the same property, provided that the
resulting quadratic form in (3.6) is positive definite.
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3.3. Algebraic forms in the adaptive case

For the matrix-vector forms in the adaptive case, write also X, X* as the vectors
of coefficients X;, X}. Then setting

§EX = (61 X1, 60 X,, ..., 67X )

and

b(U,X) = {5;(U, X)},  ¢(U,X) = {¢;(U, X)}
and using (3.9),(3.10) it follows from (3.6) that
§T = —b(U,X)6%U — ¢(U, X)6"X. (3.15)
Further, introducing the composite notation
Y = {Uy, X1, Us, Xo, ..., Us, X537, (3.16)
Y* = {U;, X1, Uz, X5,.., U3, X337,
§VY = {6*Uy, 6¥ X1, 67U, 68 Xy, ..., 67U, 64 X 1},
g(Y) = {b1,c1, by, c2, b1 er}t, (3.17)
equation (3.15) may be written concisely in the form
6T = — (8°Y)" g(Y). (3.18)

Thus if 67 = 0 for all §#U and %X surrounding U*, X*, the algebraic forms

of the equations for the stationary values U* and X* are, from (3.15),
b(U*, X*) = ¢(U*,X*) =0,
or in the composite notation, from (3.18),
g(Y") =0. (3.19)

It is clear from (3.18) that g(Y) is a search direction for the minimisation of 7
over LY by the method of steepest descent.
Choosing the variations to be

§'Y = g(Y)é1 (3.20)
ensures from (3.18) that
2
67 =—|s"Y| Art <.
Alternatively, the Galerkin forms (3.13),(3.14) give rise to the matrix system

A(Y)6YY = g(Y)ér, (3.21)
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where A(Y) is the mass matrix with components

( S5 bis(@)dn [ (Un{e)i(z)ds ) (3.22)
[x4 (CUi(@)i(a)dz [y (=Us)ebi(e)s(a)da
which is block tridiagonal. Then we have from (3.18) that

6T = —(8YY)TA(Y)(6YY) 677! (3.23)

which is non-positive provided that A(Y) is positive definite. In both cases 7 is
then non-increasing, stationary only if Y = 0 in which case Y = Y* satisfying
(3.19).

A third alternative to (3.20) and (3.21) is to define the variations by

D(Y)6*Y = g(Y)ér, (3.24)

where D(Y) is the 2 x 2 (block) diagonal of A(Y) given by (3.22), corresponding
to modified basis functions on the left hand side of (3.13),(3.14), which facilitates
inversion while keeping the right scaling properties [6].

The preconditioned form D(Y) 1 A(Y) is also useful for the purpose of in-
verting the mass matrix A(Y) in (3.21) [6],[7].

3.4. Higher Dimensions

In higher dimensions (3.1) becomes

oF 7.9
§T = E/ ( 5U+ﬁ5w> dn+j§8& | Fag (3.25)

where [, denotes integration over the elements k and where K is the total num-
ber of elements, J the total number of nodes. Then, using the higher dimensional
form of (1.19), the K sum in (3.25) becomes

Z j { (61U — YU.6"X) + ;TF V(éLU—ZU.SLX)}dQ. (3.26)

Now let U and X belong to the space S of piecewise linear functions, in which
case VU is a constant vector. Using the Ritz expansion §YX = ¥ 60X 4;(z),
where the 1;(z) are piecewise linear (pyramid type) basis functions, éZ becomes

Z e {f”'aLU VU8 X, )i(z) + (;gU Vi )(W’*Uj—ZU-éL?ij)}dﬂ

+Z/ FUi(@)8" K nads, (3.27)
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carrying out the differentiation with respect to X; [13], where Ay; is the patch
of elements surrounding node 7 with boundary 0Ag;.

Since
/3 ., Fi@nads = Z / Y (Fips(z

the 6 X; terms in (3.27) are

Z /A { (VU6 X, ), (z) — (vaU Vii(z )) (vv.6X;)
+ Y(Fi(z)) .6"X,} dO. (3.28)
Hence from (3.27) and (3.28) we have
§T = Z /A . {( bi(z) + ;VU Vii(z )) (6'U; - VU.62X;)

+VX,;. Y (Fip;(z)) } d2. (3.29)

The functions U* and X* corresponding to a stationary value of 7 therefore
satisfy the weak forms

/Akj (g_g‘/’j@) aavFU Voilz )) dft = 0 = —b;(U, X), (3.30)

and
/Ak,. {_ (gg%@) OGVU Vi(z )) yu +Z(F¢j(£))} d0 =0 = —¢;(U, X),
(3.31)

say. Differentiating the V(F'¢;(z)) term, the latter equation becomes

oF oF
/Ak]- {ij(z) +oxtile) - (WU V(2 )) zU} dQ =0 (3.32)
since locally V2U = 0.

3.5. Monotonicity preserving variations in higher dimensions
The choices of variations corresponding to (3.11) and (3.12) are
§PU; = b;(U, X)67 and 6°X; = ¢;(U, X)ér (3.33)

Vj, where b;(U, X), ¢;(U, X) are given by (3.30),(3.31), while the Galerkin weak
forms corresponding to (3.13) and (3.14) are

/A SUi()dQ = bi(U, X)6r (3.34)
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and

/A SU(=NU)hi(z)d = ¢;(U, X)é7 (3.35)

Vi, where §U = §YU — VU.6YX. In either case 7 is non-increasing provided that
the relevant quadratic form is positive definite.

The algebraic forms are the same as in Section 3.3 with X in (3.15) replaced
by X. The mass matrix then takes the form A = {A;;} where the blocks A;; are

( Ja; %(&)%(1) S (=NU)i(z);(z)dDd )

Sa, (XU i) i(2)dQ [, (VU hilz);(z)dD (3.36)

3.6. Examples

If 7 is the convex functional

Z(u) = /Q (u? + (Zw)’) 40 (3.37)
(cf. (1.11)), the weak forms (3.30) and (3.32) become the familiar
/Ak, (Uy;(z)dQ + YU.Vip;(z)) dQ = 0 (3.38)
and the less familiar |
/Akj {2(U2 + (VU)")Vepj(z) — (ZU.Zz/aj(z))ZU} a0 =0 (3.39)

V7, to be solved simultaneously for U* and X*.
For the least squares best fit functional

I(w) = [ (u- f(2))? a0 (3.40)

(3.30) reduces to
Jo U= f@)wsda =0 (3.41)

V7, showing that U* is the best piecewise linear fit to f(z) on the optimal grid
in the L, norm, while for the best fit functional on the H'semi-norm

I(w) = | (Yu—Yy())*d0 (3.42)

(3.30) becomes
[, (90 - Tg()-Tpi(z)dn =0, (3.43)

V7, i.e. U* is the best piecewise linear fit to g(z) on the optimal grid in the H*
semi-norm.
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If Z(u) is the shallow water functional with F' as in (1.17), then (3.30) and

(3.31) reduce to the nonlinear algebraic equations

/ " B(z) <—% +9U* + B(z )) i(z)dz =0 (3.44)

Xj1

and

B Blayie) |2 - Lo — B)r) de =0 3.45
J, o BEwiE) (55 - 59 (2)U" ) do = (3.45)
Vj. Boundary conditions can easily be incorporated (see [16]).

Iterations for the simultaneous solution of such equations with the property
that Z is a non-increasing function are considered in Section 5 below. However,
there is an alternative interpretation of the variations which gives rise to local
problems, which we describe first.

4. Constrained Approximation

We now demonstrate a different approach to the use of the first variation in
generating optimal solutions and meshes, applying constraints to the Z variations
so as to be able to carry out Eulerian variations and nodal point variations
separately. Care is required when doing the nodal variations to avoid interfering
with the current approximation to the solution. The discussion will be confined
to linear and constant finite element approximation on simplexes.

Thus in one dimension, from (3.2) we may write

oF
6L 6LX L L
6T = Z/X“{ U~ Uab"X) + 5= (8U, ~ U6 X.)
o do — S[FL;6EX, (4.1)
(9UT T = 7 Je :
Substituting piecewise linear Ritz expansions (3.5) we obtain
or L L d 7
o1 = Z o (G + Gvie)) (0~ U8 X da— S, (42
=1

since locally U, = 0.
Suppose now that the Z variations are constrained by fixing the mesh, so that
6X = 0. Then the stationary function U satisfies the weak form

[ (%W’”) e >) dz =0 (13)

Xj1

Vj. We shall refer to this step as stage 1.
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Now in a separate step constrain the Z variations by freezing the current U
approximation, in which case 6U; = U0 .X; corresponding to U remaining on its
graph (or its extrapolation) as X varies. Then from (4.2) the stationary function
X satisfies

[F],=0 (4.4)

i
which we refer to as stage 2.

The solution of equations (4.3) and (4.4) may be sought via an alternating
sequence of approximations converging to a limit. First equation (4.3) may be
solved for U with X fixed and then (4.4) solved for X with U locally frozen,
i.e. constrained by variations §U; = U;6X;. The procedure is then repeated to
convergence. Each stage has the property that the functional Z is non-increasing
(see [13],[16]).

It is clear that equation (4.4) is a local form in which the X; may be solved
separately for each j. On the other hand equation (4.3) is global, giving a set
of linear equations in which all the U; are coupled together. However, in [16]
this stage is also made purely local by observing that the property 6/ < 0 may
be preserved when (4.3) is replaced by a local problem on the patch of elements
surrounding node j in which only U; is allowed to vary.

From (4.2) the Galerkin steepest descent step for (4.3) is

Xiq1 Xjt1 aF 3F
/X U;(x)dz = _/Xj_l (—aitb,(x) + oY 1’(:5)) dzé. (4.5)

7—1

4.1. Linear discontinuous approximation

In the case where F is independent of u, we may exploit equation (4.4) by
considering approximation of U by discontinuous linear functions, although we
shall still require that X remains continuous. The introduction of discontinuous
U’s allows solutions with jumps.

The expansion of U may then be written

U= iZWk,,qbku(a:), (4.6)

k=1 Vv
say, where ¢y, are the local discontinuous basis functions and Wy, are the corner
values of U in each element, k referring to an element and v to the ’corners’ of
the element. The one-dimensional form of §Z then becomes, from (4.2),

Z o 5 S Wabule dw—Z L (2)dz — S [F),68X;.

j=1
(4.7)
As in the previous section we consider variations which are constrained in two
ways, first by fixing X, so that the stationary value U satisfies the weak form

/k 18U¢k“( z)dz = 0 (4.8)

X
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Vk and v = 1,2 (cf. (4.3)), and secondly by constraining U to lie on its own
graph (or its extrapolation), so that §U; = U;6X;, so that

(7= 0 (4.9)

Vj again. Equations (4.8) and (4.9) are both local problems because the former
can be solved for the unknown coeflicients Wy, of U element by element. Note
that one solution of (4.9) is that U is continuous (notwithstanding the discontin-
uous approximation space) [5],[13].

The Galerkin steepest descent method for (4.8) is

U b (2)d TRy 4.10
[ U@z =~ | " Sn(e)da (1.10)
Vk,v. If Fyy > 0 then as in Section 2.3 this term may be inserted into the
integrand on the left hand side of (4.10) to increase the accuracy of the descent
method.

4.2. Piecewise constant approximation

We can repeat the above analysis using piecewise constant approximation. In
this case U is expanded in terms of the piecewise constant basis functions, mx(z)

say, in the form
K

U =Y Wem(z). (4.11)
k=1
Equation (4.2) then becomes
6T = Z b —7rk z)6 Wydz — Z[F]](SLX (4.12)
k-1 j=1

In the two separate constrained stages the approximations U, X therefore
respectively satisfy the local weak forms

Xe OF Xk OF
/Xk ap@)ds = /Xk g =0 (4.13)

Vk, corresponding to variations ¥ W) constrained by 67 X; = 0 (fixed mesh), and
[F]; =0 (4.14)

Vj, corresponding to variations 6¥X; constrained by 6“W; = 0 (in the case of
piecewise constant U).
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4.3. Higher dimensions

In higher dimensions consider the expression for 67 in (3.26) which may be written
as

OF oF
ii L L N L
}j/A ( (8U — QU6"X) + 555 V5" + (v BVU) U6 X) dn
J oF
_ L
j}zjl /aAk](VUé X) 5o meds (4.15)

using integration by parts. Substituting the Ritz approximations (3.5) we obtain
from (3.27)

6T = Z / {( (6°U; — VU.8*X,) + (V aav_FU) (ZU.éLL-)) bi(z)

aayFU Vi;(z) } df) + Z/ { ' X, — (YU.6*X; )a{gU} ni(z)ds.

(4.16)

Now, applying the fixed grid constraint §£X = 0, we have from (4.16) that U
satisfies

'/Akj (g_g%(&) aavFU 21/)]@)) d1=0 (4.17)

Vj as in equation (3.30), while under the frozen solution constraint §LU; =

VU.6¥X; the equation for X is

oF
/Akj ( ENU) vile) W+ | {Fﬁ’“ B <8VU ”k) VU} Yi(z)ds =0
(4.18)
Vj. The U variations in (4.18) move along the graph (in two dlmensions on the
discontinuous planes) of U or its extrapolation as X is varied [5]. If V.2~ 8VU =0

(4.18) reduces to

/aa,”- {Fﬂk - (;yFU -ﬂk) YU} hi(z)ds =0 (4.19)

V4 which is true in particular if F' is independent of X and U since locally
VU = 0.
If F is independent of VU (4.18) also reduces to

-~ Fngp,(z)ds =0 (4.20)
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V5. In this case we may approximate U by discontinuous linear functions (with
X still piecewise linear continuous). Putting

U= i Z Wku¢ku(§)

k=1 V

the conditions (4.17) and (4.18) then reduce to the truly local problems

oF
/Ak o bn(@)df2 = 0 (4.21)

Vk,v, and (4.20) again Vj. In the case of approximation by piecewise constant
functions the conditions are
or
A 8UdQ =0 (4.22)
Vj and (4.20).

In each of these cases the procedure of solving for U and X alternately ensures
that Z is a non-increasing function, stationary only when éU = 0, 6X = 0. In this
context stage (4.17) may also be replaced by a local problem while still preserving
the monotonicity property 61 < 0, as in [16]. In this case equation (4.17) is solved
for U; only on the local patch Ag; with the remaining U; fixed (i # 7).

It is clearly possible to combine both continuous and discontinuous approxi-
mation in practice, in order to model a line of discontinuity, say.

4.4. Algebraic forms
Let b(U) = {6;(U)} be defined as in (3.30) and let ©;(X) be

A .k (z.a—az%) (YU.X4i(z)) d — /6 N {Fnk . (%.@k> zU} bi(z)ds

(4.23)
(see (4.18)), or in one dimension
0;(X) = [F].. (4.24)
Then defining @(X) = {0;(X)} (4.2) may be written
§T = —b(U)T6U — ©(X)76X, (4.25)
vanishing when
b(U)=0 (4.26)
and
®(X) = o. (4.27)



The Galerkin form of the solution procedure for (4.26) is (3.21) whilst a corre-
ponding steepest descent step for (4.27) is

6X = O(X)ér. (4.28)
In the case of discontinuous approximation let
W == (Wll, W12, ceey ng, Wzg, vy WKI; WKZ, )T

where K is the number of elements. Then, defining

_ [ oF
Ay OU

(see (4.21)) and d(W) = {dk, (W)}, an algebraic form for (4.7) is

de (W) = i (2)dOY (4.29)

§T = —d(W)T6W — @(X)76X. (4.30)
Equations (4.8) and (4.9) then become
d(W)=0 (4.31)

and (4.27) again.
A Galerkin form of steepest descent for the solution of (4.31) is

ESW = d(W)ér (4.32)

where F is the positive semi-definite local elementwise mass matrix having diag-
onal blocks

Eyy =/ﬂ¢ku(£)¢ku(l)dﬂ, (4.33)

where both v, 4 run over the corners of the element k.
In the piecewise constant case the algebraic forms are unaltered except that

(4.29) is replaced by

OF
4W(W) =~ | 550 (4.34)

(cf. (4.22)) and F is then a diagonal matrix.

4.5. Relationship between algebraic forms in the linear case

The relationship (1.19) between Lagrangian and Eulerian variations, when ap-
plied at each point of the grid may be written algebraically as [7]

X8Y = §W (4.35)
where X is a block diagonal matrix whose blocks are

1 —(uf) (4.36)
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where 1 is a vector of ones and ZUJ-T is a vector of gradients in elements sur-
rounding the node 7; in one dimension (4.36) is

( 1 __([(]Z“)”J)il ) : (4.37)

In conjunction with (4.32) this leads to
EX8Y =d(W)ér
and hence we find that

XTEXSY = XTd(W)éT (4.38)
from which, by comparison with (3.21), we can identify the relationships
A(Y) = XTEX (4.39)
and
g(Y) = xTd(W). (4.40)
Moreover D(Y), the diagonal of A(Y), is given by
D(Y) = XTdiag{ E}X. (4.41)

In the relationship between the algebraic forms in the piecewise constant case the
blocks (4.37) of the matrix & are replaced by the single column 1.

4.6. Examples
If T is the convex functional (3.37), the weak forms (4.3) and (4.4) become the

familiar

| (Udi(2)dn + YUT9;(2)) 42 = 0 (4.42)

J
and the less familiar

U2+ (2U)2]j =0 (4.43)

V7, where in calculating X from (4.43) U is constrained to remain locally on its
graph or the extrapolation of its graph.

For the best fit functionals (3.40) and (3.42) U is still the best fit on the
optimal grid in the appropriate norm.

If Z(U) is the shallow water functional with F' as in (1.17), then (3.30) and
(3.31) reduce to the nonlinear algebraic equations (3.44) and

Q@ 1 .,
B — — —gU* - E(z)U ||l =0 4.44
500) (5 - 5007 - W) | (1.44)
Vj where again in (4.44) U is constrained to remain locally on its graph or the
extrapolation of its graph..
Iterations for the sequential solution of such equations with the property that
7 is a non-increasing function are considered in Section 5 below.
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5. Iteration Procedures

The property of each of the previous sections, that under certain conditions Z(u)
is non-increasing and tends to a limit, holds only in an asymptotic sense. In or-
der to obtain a practical algorithm for reaching the limit, a finite displacement is
necessary which may invalidate this property. However, the monotonicity prop-
erty of the variation can still be used as a guide in the construction of iterative
steepest descent algorithms which may converge (in the sense that 7 converges)
to a stationary point and hence to a corresponding solution of the weak form of
the Euler-Lagrange equation.

There are two types of iteration suggested by the analysis. In the stretched
abscissa approach of Section 3 the iterations for U and X are carried out simul-
taneously, while in the constrained variation approach of Section 4 the iterations
are sequential. As we shall see, in the latter case the local nature of the normal
equations means that inexpensive algorithms can be constructed and used with
advantage.

In the case of fixed grid approximation using the finite element method of
Section 2 the aim is to solve the weak form (2.10) which in its algebraic form
is (2.16). From (2.15) it follows that b(U) gives a steepest descent direction for
the minimisation of Z. A steepest descent iteration based on the Galerkin form
(2.19) is

A(UPL —UP) = b(U)Pér (5.1)

(p =1,2,...) or its diagonal variant
D(UP! —UP) = b(U)ér, (5.2)

these iterations effectively altering the descent direction in order to improve the
conditioning. To choose §7 we may seek a minimum of the function b(U)? along
the descent line before repeating with a new descent direction. The process is
continued until a minimum of 7 is reached to within a satisfactory tolerance.

It is well known that steepest descent iterations converge progressively more
slowly as the limit is approached. Since it is desirable to be able to take as
large a pseudo-time step 67 as possible, consistent with reaching convergence,
the standard approach is to accelerate the convergence by switching to Newton’s
method when possible. Newton’s iteration is

- J]”(U”"'1 —U?) = b(U)? (5.3)
where J is the Jacobian matrix
B 0b(U)
J = 30 (5.4)

Although the iterations (5.1),(5.2) guarantee the reduction of 7 for sufficiently
small 67, in general (5.3) does not. Switching to Newton therefore may require a
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check that 7 is decreasing: if that fails we should consider returning to steepest
descent (see [13]). (Exceptionally, we have seen that in the case of F' independent
of ugz or Yu with Fy, > 0 the weak form (2.23) of the iteration (5.3) does result
in a monotonic Z.)

If F'is quadratic the matrix equation (4.26) is linear and it is straight forward
to find U* such that b(U*) = 0. However, in all the adaptive cases, as well as
(1.17), equation (4.26) is nonlinear.

We now apply these arguments to the problem of generating optimal grids
with optimal approximations in practice.

5.1. One step iterations

These are iterations using the theory of Section 3 in which we seek limits U* and
X* by varying U and X simultaneously. The aim is to solve (3.9),(3.10), i.e.

g(Y") =0, (5.5)

for Y*. A possible method of solution is to use one of the Galerkin forms
A(YP)(YPH —Y?P) = g(YP)ér, (5.6)
D(YP)(YPT! —Y?) = g(YP)ér, (5.7)

where 7 > 0, for which 7 possesses the monotonic descent property provided
that A(Y) is positive definite.

It was noted in Section 3.4 that the matrix A(Y) in equation (5.6) is the MFE
mass matrix [9],(7]. Indeed, the iteration (5.6) is an explicit time discretisation
of the standard MFE equation [7]

AV = (V) (5.8)

The link is seen clearly from (3.2) which in the piecewise linear case, apart from
boundary terms, can be put into the form

J Xin (OF d OF
oU dz oU,

yﬁm—m#&wmwx (5.9)
which in MFE notation is equivalent to

dZ Xiy1 (OF d OF . )
= Z/ (@ - EH_U) (U; aj(z)+ X; Bi(z))dz. (5.10)

7=1 Xj—l

As observed by Miller [9] and confirmed by Jimack [11], in many cases equa-
tion (5.5) gives a local optimal Y (i.e. solution plus grid) for minimisations
governed by (1.1). The solutions may be reached by iterations of the form (5.6)
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or (5.7). However, the MFE-type matrices A(Y) and D(Y) are only positive
semi-definite because two rows may be identical if components of VU coincide
in adjacent elements [7]. In that event 7 fails to decrease and a modification
is required. In the approach of Miller [9] and Carlson and Miller [10] penalty
terms are added in order to prevent A(Y) becoming singular. These authors
subsequently apply a Newton method to the nonlinear equation arising from the
implicit time discretisation of (5.8) in the form

— () ()™ - yn) = (A (YT - YE) - Atg()
(5.11)
where J(Y) is here the Jacobian matrix of the right hand side vector. This
approach has no obvious monotonicity property, however.

A regularised version of the MFE method with the monotonicity property
intact has been used by Jimack [11] to drive g(Y) to zero via (5.6) with a regual-
rised mass matrix. Although the path to the limit is altered by regularisation the
limit is unaffected. In this way locally optimal solutions and meshes are obtained
for a particular example of a self-adjoint problem (cf. (1.14)). The results show
the feasibility of deriving optimal grids and solutions in this way although the
size of 7 required to avoid tangling of the grid means that the method converges
rather slowly.

A feature of solutions in one dimension is the generation of grids which asymp-
totically equidistribute properties of the solution U in the limit of large numbers
of nodes [7]. For example, in the case of Poisson’s equation uzz = fzs, for which

I(u) = / <%ui + f(ac)u) dz (5.12)

(cf. (1.14)) the steady state grid equidistributes |f|2/3 and there is a correspond-
ing result in the case of the convection-diffusion equation {7]. It is also known [8]
that the resulting grid in the case of Poisson’s equation is optimal in any number
of dimensions in the sense that U is to the best L, fit with adjustable nodes by
piecewise linear functions to the steady state solution in the H! semi-norm. A
similar result holds in the case of best fits to continuous functions by piecewise
linears in the Ly norm [10]. In the asymptotic limit of large numbers of nodes,
therefore, there is an equivalence between best fits and the equidistribution prin-
ciple. Away from this limit the equivalence is only approximate, although it may
be used to generate grids which give a first guess for the iterative algorithms
discussed in this section.

5.2. Constrained iterations

We have seen in Section 4 that an optimal solution for U and X may also be
sought via separate constrained minimisations of the functional Z, each of which
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has the property that the value of the functional is non-increasing. The approach
leads naturally to an alternating two-stage iteration scheme on these pairs of
equations, that is we solve (4.17) (or (4.3)) for U with nodal positions held fixed,
and then solve (4.18) (or (4.9)) for X; keeping U on the piecewise linear graph
of the current solution. The two stages are then repeated to convergence.

The equations can sometimes be solved outright but where that is not possible
each stage may be replaced by a single steepest descent step which preserves the
monotonic behaviour of Z. Since the resulting problems are local, the stages of
the iteration are cheap and a bonus of the steepest descent approach is that é7
can be chosen to control the behaviour of the grid [13],[16].

If in one dimension F' is a function of U only with a unique minimum then
there exists an ordering property for the nodes of the grid under the two-stage
iterations. From (4.8) we deduce that 27 vanishes twice in the interval (X;_1, X;)
so that the function is stationary at two interior points. Since F' has a unique
minimum it takes the same value at all these interior points. It follows that the
jump [F']; in F' considered as a function of = is positive at the rightmost such
interior point in the interval (X;_;, X;) and negative at the leftmost such point in
the interval (X, X;41). Hence [F]; vanishes at least once in the interval between
these two points, at * = zy say. By choosing zy as the new nodal position we
ensure that all such new nodal points belong to disjoint intervals and the grid
remains ordered. The new nodal positions may be easily found, for example by
bisection.

Unfortunately there is no such ordering property in higher dimensions and the
mesh is prone to tangling. Indeed mesh tangling is a fundamental difficulty in grid
optimisation of this kind. However, one of the benefits of the local conditions
obtained as a result of the constrained approach is that the updates can be
organised in such a way as to avoid grid tangling. As explained in [16], by careful
choice of é7 in the steepest descent method and taking a ” Gauss-Seidel” apprach
to the updating of the nodal positions, it is possible to avoid mesh tangling
altogether.

5.3. Best fits using direct minimisation

In [5] and [13] the problem of obtaining best fits to continuous functions with
adjustable nodes is treated by the methods of Section 5.2 using piecewise linear
and piecewise constant approximation both in one dimension and in two dimen-
sions on triangles. In the one-dimensional case both the linear system (4.3) and
the jump condition (4.9) may be solved outright. In the piecewise linear case the
stages are

Xk
L7 (0= 1@)(a)de =0 (5.13)
k-1
Vk,v = 1,2, to be solved for U on the fixed grid, and
(U~ f())*); =0 (5.14)
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VJ to be solved for X with U confined to lie on the graph of the current approxi-
mation (or its extrapolation). The procedure used in [5],[13] is to solve (5.13) for
U and then to solve (5.14) for X (picking the solution which moves the node the
least distance), always reducing Z, and repeating to convergence. The converged
solution gives continuity of U almost everywhere with no tangling of the grid.
Convergence of the iteration may be accelerated by Newton’s method as long as
the monotonicity property of Z is preserved..

The approach reveals relationships between successive element sizes for opti-
mal piecewise linear approximation (superseding the asymptotic equidistribution
properties of Section 5.1) given by

1 /Xj (—2¢,_1 +4¢,_1 p) (f(z) — f(X;))dz
:! X]—h Xj—l J_EvL J‘E)R J
= 1 Xj+1(4¢ —2¢ ) (f(z) — f(X;)) de (5.15)
T AXj Jx, i+5.L i+5.R Y ’ :

V7, where AX;_, = X; — X;_1.The corresponding relationship for piecewise
constant approximation is

1

AXC /XX (f(z) - £(X;)) dz = A)i(;h / X* (f(®) = F(X;))da.  (5.16)

In the two-dimensional case it is possible to solve outright only the linear
system (4.17) for U, in the form

/Ak(U — (2))rn(z)d = 0 (5.17)

Vk,v. Equation (4.19) for X, namely,
/ (U ~ f(2))*i(z)npds = 0 (5.18)
BA,

cannot be solved outright and in [13] is replaced by the steepest descent iteration
(4.28) with a limiter on 67 to avoid mesh tangling.

There are special problems with convergence in two dimensions in that the
error cannot easily be driven down to machine accuracy because of the inflexibility
of the grid topology. However, in [13] by using an edge-swapping routine [14] and
a technique for small element removal this is achieved in a number of examples.

5.4. Application to the shallow water equations

In [4],][15] variational methods have been applied to the problem of approximating
both the depth and the grid in channel flows governed by the steady shallow
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water equations. The variational principles are used in several different ways.

T ’U,m .’E, ( . )

where u is the velocity potential, is used to generate approximations and adaptive
grids by a one step iteration via Newton’s method. Similarly, (1.17), where U
is now the depth, is used in [4],[15] to obtain approximations to depths with a
single jump, using piecewise linear approximation with a single discontinuity at
one moving node, as well as piecewise linear local approximation with all nodes
varying.

6. Time Discretisation

All the problems considered so far have been independent of time. As is well
known, time dependent variational principles can invoke difficulties with the di-
rect application of boundary conditions at future time boundaries. However,
if the time derivative is already discretised the generalisation of the variational
principles in Section 2 is straightforward.

For example, the extended Euler-Lagrange equation

Ou oF - oF

s W 1
5t~ ou T ovu (6.1)
discretised in time using implicit Euler finite differences is
"t —yn OF oF

AL < o b 8VU) (6.2)

Writing u™*! = u(z), we may extend the function F(z,u,Vu) in (1.1) to

1 (u—um)?

G(z,u, Vu) = 5% + F(z,u, Yu), (6.3)

defining also the functional J(u) as
I(w) = [ Gla,u,Tu)dd = [ F(z,u,Tuw)dn + = [[(w—wrfd0. (6.4)
o 7T Q 2A¢

If 7 is a convex functional of « then so is 7.
The first variation of J(u) is then

oVu

—/{ (aagu>}5udﬂ, (6.5)
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vanishing for all du when u = u* satisfies
oG oG
9 V. (—8_V_u) =0 (6.6)

which, using (6.3), is readily seen to be equivalent to (6.2).
If the variations in v are chosen to be

_ [ Eigrsmt) | 9E OF
= ( AL EM + V. Vs xa (6.7)
where 67 > 0 then
§F = — 2d06T < :
7 /ﬂ §u?dQsT < 0, (6.8)
being zero only if éu = 0, i.e. when u = u* satisfies
(w*—w") _ OF oF
A - e Y o (6.9)

where u* is the required solution u™*! of (6.2). From (6.3), if Z is bounded below
then so is J. Hence J tends to a limit at which éu = 0 in which case u = u*
satisfying (6.9).

For example, if F(z,u,Vu) is given by (1.11) then G(z, u, Yu) is

_ L n\2 2 2
G(z,u,Vu) = AT (u—u™)* +u* 4+ (VYu). (6.10)
The first variation of J vanishes when
u—u" B 2
YR u+ Viu. (6.11)
and the variations éu which make J non-increasing are
. (u—um) 2
Su = ( N u+ Vu | 67 (6.12)

The approach is easily generalised to Crank-Nicolson and even explicit time step-
ping, in which case the problem reduces to that of best fits (see Section 5.3).

This procedure gives no information about the way in which to discretise the
differential equation in time but simply concerns the convergence of the solution
of the implicit equation resulting from the implicit time-stepping.

The independent nature of the extension allows all previous cases to be in-
corporated, including both fixed and adapting finite elements. In the finite-
dimensional case J becomes

7= [ {550 -V + Fle,U,90)} do. (6.13)
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For example, in the fixed grid linear finite element case the first variation vanishes
(U-U™) OF oF
At — | % ——.V1, dQ = ,
/ {( 4 BN @) + e O A2 =0 (614

which is the appropriate weak form of (6.2). Moreover, J is a non-increasing
function when 68U is chosen to satisfy the Galerkin form

when

Jsst@an = [ {- (L5545 vita) - s Tt s (6.15)

(cf. (2.12)). Similarly, in the adaptive case the first variation of J vanishes when
U,X satisfy (6.14) and, from (3.32),

/Ak,- {FZ%’(&) + (%dy(z) — (aaz—FU.Zz/;,-(g)) _V_U) } dQ = 0. (6.16)

If F is independent of Vu (6.14) reduces to

/n ((L;’tU_n) + %) Pi(z)dl =0 (6.17)

and if Fy,, > 0 we may use the modified Galerkin steepest descent iteration

/ FyubU;(z)dQ = /Q (-U ;tUn - g—[};) W;(z)dQ6T

instead of (6.15), which preserves the monotonicity property and turns the iter-
ation into a weak form of Newton’s method.

The MFE and GWMFE methods of Miller [9],[7] present another way of
treating time dependent problems in which the nodes are moved automatically
by seeking finite-dimensional approximations satisfying

min / (ue — L(w))2dQ2. (6.18)

A finite difference method such as implicit Fuler is then used to perform the time
integration. The method has been extensively developed to include penalty func-
tions (to prevent node tangling), implicit time stepping and fast matrix solvers.

The above considerations prompt another look at the Moving Finite Element
method. By discretising the time derivative in (6.18) before carrying out the
minimisation it is possible for iterations of the form (6.2) to maintain the mono-
tonicity preserving property of J. Thus, for the PDE (6.1), the minimisation

(6.18) becomes
. U—-Ur , OF oF \*
min | {( At )*@‘Y-az—u} & (6.19)
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and the weak forms (6.14) and (6.16) may be solved by a Galerkin steepest descent
iteration whose algebraic form is

A(Y) (Y = Y7) = g.(Y), (6.20)
where
8.(Y) = 8(Y) —h(Y), (6.21)
h(Y) being defined by
h(Y) = { [ -vmw@an, fw- U”)ZU@b(g)dQ}T. (6.22)

This steepest descent method (with regularised A(Y)) ensures that the functional
in (6.19) is non-increasing except at a stationary point. A(Y) may be replaced
by D(Y) in (6.20) without affecting the monotonicity property of 7.

For algebraic problems with F' independent of Vu and F,, > 0, we may
weight the elements of the matrix D(Y) by Fyy to obtain a higher order steepest
descent method.

As an example consider the PDE

ur = YVu (6.23)

discretised in time by the implicit Euler method as

gt - ur 2rn+1
Al = VU™, (6.24)
The corresponding variational principle is
. (U —U™)? 2

where U = U™*! and the weak forms (6.14) and (6.16) become

/Q {WW(@) i EU-Z%(Q;)} 2 =0 (6.26)

and

/Akj { ((U—;A%Ti + (VU )2) Vi(z) — (ZU.Z«/)J-(;))ZU} =0 (6.27)

which taken together constuitute g.(Y) = 0. Then the iteration (6.20) may be
used to generate the solution U at time n + 1.
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7. Several Dependent Variables

The investigation carried out so far in this report has concerned only scalar
problems. Most problems contain several dependent variables, however, so we
shall here outline the theory for the case of two dependent variables. If u(z),v(z)
are functions twice differentiable in the space variable z and F(z,u,v, Vu, Vv)
is a once differentiable function of its arguments, the functional of two variables
corresponding to (1.1) is

I(u,v) =/QF(§,U,U,_V_U,Zv)dQ (7.1)

and the stationary functions u = u*,v = v* satisfy the equations

oF or orF oF
o0 Love Y Y

If the = variable also participates in the variations, giving simultaneous vari-
ations du, dv and éz, the chain rule gives

§fu = du + Yu.6"z, Av=6v+ Yo.6 'z (7.3)

and the first variation of Z is

/Q { (g_fj v agﬂ]) ((5L’U, _ Y_U(SLQ) + (%51_ - V. aaz‘Fv) (5L’U - Z’U(SLQ>} ds).
(7.4)

Expanding each of the functions u ~ U,v ~ V and z~X in terms of the same
piecewise linear basis functions %;(z) as

J J J
U= Z Uii(z), V= g Viv;(z), X =3 Xi(z) (7.5)

i=1

and with Z(u) is defined as in (7.1) with u, v,z replaced by U,V,X, it can be
shown that 67 vanishes for all 87U}, 6%V; and 6 X, if U = U*,V = V* X = X*

satisfying the weak forms

h (g_g”’j@) & a(;—FU-W:‘@)) a2 = —a(U,X) = 0 (7.6)
/Q (—g{;m) + ;Y—Fv-z¢j(£)) A0 = —b(U,X) =0 (7.7)

and

[ {- (%F) #3(2) - F¥34(2)
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+ ( oF Vzpj(z)) VU + ( oF Nz )) ZV} d=—c(U,X)=0 (7.8)

ovU’ ovv’
say, V7.
Also, under the choice of variations 6U, 6V, 6 X given by the Galerkin forms
/ §Ui(z)dQ = a(U, X)é7 (7.9)
/Q §Vepi(2)dS = b(U, X )67 (7.10)
/Q ((=NU)6U + (=YV)6V} 4i(2)dY = (U, X)ér (7.11)
Vi, where
6U = 61U — VU6 X, §V =6V —vV.etX

as before, it follows that

67 == [ (5°0; - YUSLX,) di(2)i(e) (6°U; — TU6X;) donr™

-2 /Q (6%V; — VV.67 X ;) i(2)(z) (6"V; — YV.64X,) dOAT™ <0 (7.12)

which gives the same monotonicity property as before provided that the quadratic
forms arising in (7.12) are positive definite. The solutions of equations (7.6), (7.7)
and (7.8) correspond to the simultaneous solutions approach of Section 3.4.

7.1. Constrained approximation

In one dimension, constraining the variations as in section 4, the stationary values
U;, V; satisfy the weak forms

/XX_+ (g—gmbj(w) gg Vi (e )) dz =0, (7.13)
XTHI 8_F¢J(x) 2 i(x) | dz =0 (7.14)
xj_, \0V ov,=—

(1 =1,2,...,J) with the X; fixed, while the X; satisfy
[F]; =0 (7.15)

Vj, where in the latter case variations in U or V are constrained by 6U; =
U,6X;,6V; = V,6X;. In the case where F' is independent of VU and VV, discon-

tinuous linear approximation for U and V yields the local forms

ol X 9F
. gptel@de=0, [ Zoe(e)dr =0 (7.16)
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for U,V and (7.15) again for X.

In higher dimensions the conditions are

/A (;?%w aaVFU Vipi(z )) d =0, (7.17)

/Ak], (g—€¢j(£) 68VFV NVej(z )) =0 (7.18)

Vj for U, V, while under the frozen solution constraints §*U; = VU.6%X;, 61V, =
Y_V.(SLXj, we have

N {(z.%) $3(2)VU + ( avv) $i(2)¥ }dﬂ

oF OF
" Joa, {Fﬂ" - (avzf ) YU - (azv-ﬂk) YV} Yi(z)ds =0  (7.19)

Vj for X. The U,V variations in (4.18) move on the graphs (in two dimensions
on the discontinuous planes) of U,V as X is varied.

If F' is independent of VU,VV, and if U,V are approximated by piecewise
discontinuous functions, then the U; and V; are given by the equations

8—F¢ku(£)dﬂ =0, ¢ku( )dQ =0 (7.20)
ou
Vk,v, and the X; are given by

-~ Fngp(z)ds =0 (7.21)

under the constraints that U,V remain on their graphs as X is varied.
An example from Shallow Water theory is as follows [15]. The equations

of incompressible irrotational quasi one-dimensional flow in a channel may be
generated by the principle

min/B ( 1gd2 + E(s)d — ¢’Q) di (7.22)

Q,d,¢

where () is the mass flow, d is the depth and ¢ is the velocity potential. The
weak forms of the variational conditions are

/XX_+ B(z) (% = ) p;(z)dz =0, (7.23)
/XX_+ B(z) (‘E; —gd+ E(w)¢') P;(z)dz = 0. (7.24)
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and

/;m B(z)Q";(z)dz = 0 (7.25)

J—1

to be solved for ), d and ¢, while that for the grid X is either

/Xm (B(z)i;(=)) (g; ;gaﬂ + E(z)d — ¢'Q) dz =0 (7.26)

Xj—l

in the case of the simultaneous solution approach of Section 3, or

lg - %9d2 + E(z)d - ¢'Q] =0 (7.27)

when the constraints are applied in a sequential way, as in Section 4.

8. Conclusions

In this report we have reviewed recent advances in numerical variational tech-
niques which generate optimal grids as well as optimal solutions. A unified ap-
proach to the problem of finding generalised Euler-Lagrange equations has been
described together with iterative schemes which have the property that the func-
tionals behave monotonically. One of the equation sets obtained is related to the
MFE method, to be solved for U and X simultaneously. The other, constrained,
set leads to local problems solved for U and X sequentially, which can be imple-
mented in such a way as to avoiding mesh tangling. Both methods are viable in
any number of dimensions,

In Section 3 the generalised variational conditions obtained in one dimension
were given by (3.7),(3.8) and in higher dimensions by (3.30),(3.31). In Section
4 the conditions were (4.3),(4.4) in one dimension and (4.17),(4.18) in higher di-
mensions. Since the first of each pair of equations coincide, there is an equivalence
between the second equation of each pair. That is to say

/XX+ (%¢j(w) it (F Us 885) ¥i(e )) dz =0 (8.1)

1—1

is equivalent to

[F]; = (8.2)

and
/Akj {— (3—5%(&) + aaz—FU.Wj(z)) VU + ¥V (Fipi(z ))} dQ =0 (8.3)

is equivalent to

/AM ( c’)VU) ;(2) VU +/ {Fnk — (ag] nk) VU} ;(z)ds = 0.
(8.4)
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To make this point clearer consider the manner in which these equations are
obtained. In Section 4 there is an implicit decoupling between the pairs of equa-
tions due to the application of the constraints. In Section 3 the pairs of equations
are sufficiently similar to formally be solved simultaneously although this is not
essential. They could just as feasibly be solved sequentially for U and X, as in
Section 4 where there is an implicit decoupling between the pairs of equations
due to the application of the constraints. It is in this sense that there is an
equivalence between the second of each pair of equations above.

Thus, the similarity depends entirely on the strategy of first constraining X
to be fixed, giving rise to the first equation of each pair, and then constraining
U to be either constant or to lie on its graph as X varies. In the first case we
are led to (3.8) or (3.31) while in the second to (4.4) or (4.18). In each case the
latter form is easier to work with because of its local character. In particular, as
we have seen in Section 4, the local forms provide the flexibility to control grid
behaviour and to avoid mesh tangling.

The approach may be extended to time-dependent problems discretised in a
finite difference manner and to problems involving several dependent variables.
Implementation will be carried out in a later report.
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