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Abstract

Extensions of the one-dimensional algebraic grid generation
technique of equidistribution are investigated in
two-dimensions. Firstly extensions producing quadralateral
grids are considered before proceeding to an approximate
equidistribution technique for obtaining unstructured

triangular grids.
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1. Introduction

The literature is full of numerical grid generation
techniques which produce quadralateral grids, see [7] for
an excellent compendium. One such technique 1is the
equidistribution of some density function, which when a
function of the data to be represented on the grid gives
rise to an adaptive or data~-dependent mesh.
Equidistribution is an essentially one-dimensional
technique, usually carried into two-dimensions by first
generating a non-adaptive grid (say wusing body fitted
coordinates) and then adapting this grid to equidistribute

the density function along its coordinate lines.

In Section 2 we first look at one-dimensional
equidistribuition and the choice of density function, one
proposed by Carey and Dinh [2] to minimise the error of
interpolation, in particular the L2 error of
piecewise-linear interpolation - the representation
commonly used in finite element methods and some finite
difference methods. In Section 3 some extensions to two
dimensions which do not require the generation of an
initial non-adaptive grid are presented. Section 4 then
extends the technique to the generation of unstructured
triangular grids, together with a post-processing
regularisation. Finally comments on the implementation of

techniques presented are given in Section 5.



All the techniques described here are illustrated with
example grids, and although the initial motivation for the
work was the generation of an initial grid for the Moving
Finite Element method [5] , [8], their applications are

much more widespread.



2. Equidistribution in one-dimension and choice of

monitor function

One algebraic technique of one-dimensional grid generation

is to distribute the nodal points, X; 0 according to some
(positive) density function p(x) . This is often referred
to as equidistribtuion with respect to p(x) (see e.q.

[1],[2],[71) since the nodes thus obtained are such that

X,
i+1
J p(x) dx = constant ¥Yi . (2.1)

X.

a
If the distribution of points is considered as a mapping
x(¢) where integer values of the parameter ¢ represent

the nodal positions (see Figure 1), we have

x(¢)
¢k = p(x) dx
x(o) .
where k is a constant. This constant can easily be

determined in terms of the integral of p over the whole

line giving

x(¢)
p(x) dx
: = N “x(0)
X
I p(x) dx g2l
Jxp
where X X are the end points of the region, and N+1

R



the number of nodes (we assume subscripting starts at 0).
Nodal positions X; can then be obtained by solving (2.2)

for x with ¢ = i; Figure 2 shows this pictorially.

There are various methods of solution of (2.2) ([2]) , most
of which involve numerical quadrature to evaluate the
integrals and an iteration to solve ¢-i = 0 . For example
Gauss quadrature or the trapezodal rule can be used for the
integration, and Newton or bisection for the iteration.

See Section 5.

It remains now to choose the density function p(x) . If
it depends in some way on the data, u(x), then it becomes
a monitor function for that data. The grid is then
distributed according to the function/data that is
represented on it. A common form of monitor function (see
e.g. [11, [7]) is

p(x) =1 + A}uxl (2.3)
for some constant A , however Carey and Dinh [2] obtained
an expression for the optimal monitor function which

minimises the H" seminorm
b
lel2 = Ia(e(m’)z dx

of the error when using kth order interpolation for u(x)

on the grid, namely

p(x) = [u(k+l)] 2/(2(k+1-m)+1) (2.4)



For the case of linear interpolation in the L2 nhorm
(k=1 , m=0) which we are interested in, this becomes

p(x) = [u"(x)] /® (2.5)
Some examples of grids produced using this monitor function

are given in Figure 3.



85 Extensions to two-dimensions - Quadraleteral grids

In two dimensions, without further constraints, an "area"

equidistribution, i.e. one of the form

JJ p(x,y) da = const , (3.1)
9]

will not be unique unlike its one-dimensional counterpart.
Also the analysis of Carey and Dinh [2] is not readily
extendable to two dimensions, and so we seek to extend the
equidistribution technique by applying it along "lines" in
two dimensions. We shall use a monitor funtion of the- form

(2.5) from now on.

3.1 "Dimensional Reduction"

Probably the simplest extension of the equidistribution
technigque to two dimensions is to equidistribute "slabs" in
the two coordinate directions [4]. That is, define slabs

in the coordinate directions such that

2
uxés(x,y) dy dx = constant (3.2a)



and

Y41 rxN 2/
J J u./®(x,y) dx dy = constant (3.2b)
V. b vy
3 o

See Figure 4.
The x and y coordinates of the slab boundaries are then

obtained by solving the independent equations

$(x,) = 1
1 (3.3)
n(yj) =
where
X Y
u °/s dy dx
- v ploe
£€(x) = N © ©
rxN MY 2/
i J Uyer 5 dy dx
) Yo
— (3.4)
v X
| i u °/s dx dy
d J YY
Yo %o
n(y) = M
\YM '\xN 2/
u 5 dx dy
J Yy
Yo "%,

As can be seen from Figure 5 this technique, being highly
one dimensional will distribute clustered grid lines across
the entire region due to a feature of the data isolated to
a small part of the region. Also, due to the averaging in
the orthogonal coordinate direction, this method can be
insensitive to some features of the data, giving sparsely

spaced grid lines, as observed by Johnson [4].



3.2 "Dimensional Splitting"

Instead of equidistributing an averaged monitor function
over a slab, thus producing a rectangular grid, we could
perform a one-dimensional equidistribution along a line and
track the loci of the nodes as the line moves across the
region - see Figure 6. If this is done in both coordinates

directions a grid is formed on the region - Figure 7.

It would obviously be impractical to generate a grid in
this manner, but a simple iteration can be used to obtain

the nodes xij and yij as follows

X
2
Ix uxx/5 (x,y)dx
£(x,y) = N °
AN
2
I u, /5 (x,y) dx
%o
(3.5)
b4 2/
jy u,/® (x,7)dy
n(x,y) = M ©
YM 2/
. Uy ® (x,y) dy
o
then for each node 1i,j
1. Estimate xé?), yi?) e.g. by transfinite

interpolation [7] between equidistributed boundary

points.

2. Obtain xi?+l) by solving ¢(x

(k+1)

(K)y _
ij ryij)—l



3. Obtain y§$+1) by solving n(x.. ,
ij ij

(k+1) (k+1), _ .
Yij I B
4. Repeat from 2. until convergence.

Figure 8 shows some grids thus produced.

Grids generated in this manner do not equidistribute the
monitor function along the grid 1lines themselves, rather
along 1lines in the coordinate directions as shown in
Figure 9. A technique which can be used to equidistribute
along grid lines is the elliptic generator of Thompson [6].
Anderson [1] showed that by suitable choice of control
functions (i.e. source terms) Thompson's scheme acts as an

equidistribution scheme along grid lines.

The equations generating the grid are
V2€=P
(3.6)

v’ = 9

where P and Q are the grid control functions.

Interchanging dependent and independent variables gives

- - + - = -
G(Egg ¢£€) 25£€n v(gnn ?En) 0 (3.7)
where r = (x,Y)T ’
o = x2 + vy g = X.x_ + VY.V = X2 = Y
n n '/ £°n £°n ¢ ¢ !
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o Y
P=—, 0 Q = =,
J2 f J2
and
JOE XK ¥y T XY
. _1 aw
By choosing ¢ = = 37
1
(3.8)
1 ow
¥ ==
w2 an

Wy and w, are equidistributed along grid lines, and so

we choose

_ .2/s
Wl = ugg
(3.9)
_ .2/s
Y2 = Ui

which are easily calculated in the process of solving

(3.7).

Figure 10 shows a grid generated using this technique,
however for complicated u(x,y) solution of (3.7) seems

proned to divergence - and under relaxation is needed.

All of these techniques generate gquadralateral grids,
triangular grids can be produced by either Jjoining
diagonals, or by applying a triangulation routine, e.g.
Delauney [3], to the nodes of the quadralateral grid.

Figure 11 gives some examples. We can, however, use
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equidistribution techniques to generate a triangular grid
directlv, without starting with quadralaterals, as

described in the next section.



4. Triangular grids - Approximate Equidistribution

For triangular grids, there are no (unigue) paths croszing
the region along which to equidistribute, recalling that
the equidistribution uses the total integral along a line
as well as the local integral between nodes. This is a

consequence of the unstructured nature of triangular grids.

Therefore, instead of an exact equidistribution, we
approximately equidistribute along element (the triangles)

edges, i.e. if node i 1is connected to node j , then

S
J

I p(s) ds < &
Si

(4.1)

where s 1s a parameterisation of the line connecting the

two nodes and & > 0 is a "tolerance".

The density function used is the directional analogue of

(2.5), namely

2
—_ 2 O LR ] /5
p(x,y) = (cos®e U, t 2 cos® sin® uxy + sin®e uYY)
(4.2)
where

(v:-v;)

tan 6 = J -1 (4.3)
(xj-xi)

There are various ways to construct a triangular grid

pocessing such a property, we outline two such here.
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4,1 Subdivision of Elements

One approach to approximate equidistribtuion over element
edges is to start with a coarse mesh of a few elements and
then to subdivide recursively until (4.1) is satisfied on
all edges. If Delauney triangulation is used, the grid can
be easily and cheaply retriangulated after each subdivision
since the Delauney algorithm constructs the grid by adding
one node at a time to an existing grid. Also, since
Delauney can reconnect nodes during the course of
triangulation, one element edge (not its circumference) at
a time should be subdivided. Figure 12 illustrates the

process, and Figure 13 shows grids produced this way. Note
that a major drawback of this method is the tendency of
excessive clustering of elements, and the lack of

reflection of any one-dimensional behaviour of wu(x,y).

4.2  Contouring

An alternative approach is to generate a set of nodes and
then to triangulate. The choice of nodes is not usually
obvious, nor unique! The method we use here is to
approximately follow the contours of the data function

u(x,y). This is achieved in the following manner.
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1. Equidistribute nodes along the boundary of the
region
2. For each boundary node
(a) Determine the direction of the contour passing

-u
through the node using ¢ = tan~1 { x} (4.4)

u
Y
(b) If the contour is directed out of region delete
the node if it does not help describe the region
else

Approximate contour as straighline with parameter

s , of length such that

s
I p(s)ds = & (4.5)
node

where p(s) 1is given by (4.2). If the line lies

entirely within the region place a node at the
endpoint and follow new contour direction,
otherwise place node at intersection with boundary
and move onto next boundary node.

3. Triangulate.

Figure 14 illustrates the process. Improved results are
obtained if in step one, (4.2) is multiplied by
|8 . ¢ (4.6)

~

-~

where ] is a wunit vector in the direction of the

boundary, and ¢ 1is a unit vector in the direction normal
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to the contour. This helps to space the contours followed
so that (4.1) is satisfied (although not guaranteed) in
the interior of the region. Figure 15 shows grids generated

by this technique.

4.3 Regularisation

Finally, although the triangulation will produce a grid
with certain properties determined by the triangulation
e.g. with Delauney the no obtuse angle property - it may

not give the best representation of the data.

For example, consider a quadralateral as in Figure 16. A
triangulation may connect the diagonal normal to the
contours, which is clearly a worse representation than the
connection of the other diagonal. The characterisation of
these possible cases is that with the first connection, the
diagonal has the larger value of jp(s)ds. This suggests'
an iterative regularisation in which pairs of elements are
considered as a quadralateral, and if appropriate and

geometrically possible the diagonals are swapped.



The results of such a regularisation are contrasted in
Figure 17. Although this process can produce elements with
a large aspect ratio and/or obtuse angles, the improvement
of data representation can be significant when using
methods such as moving finite elements, where subsequent

adaption of the grid relies heavily on the initial grid.
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5. Comments on implementation

For equidistributing points along a line the most robust
method of solution of (2.2), and similar, is to use a
trapezoidal rule for the integration, "marching” from X
until ¢ > i and then interpolating back to find Xs such
that ¢ = i . For rapidly changing u" a large number of
evaluation points may be needed to accurately obtain the

distribution. For less pathelogical u'" Gauss quadrature

coupled with Newton iteration is fast and adequate.

All the techniques presented here involve the second, and
sometimes first, derivatives of the data. If that data has
a simple analytic form then calculation of these quantites
is straightforward, otherwise finite differences may be
used as an approximation. If the data is not available as
an analytic function then point values are needed on a grid
which is fine enough to characterise the underlying
function and finite differences are again used. This

approach has been very successfully used in practice.

For the contouring algorithm, problems arise if there are
internal extrema whose contours do not intersect the
boundary. In such cases additional boundaries in the form
of branch cuts should be introduced which do intersect

these features of the data (see Figure 18).



- 18 -

The tolerance & of (4.1) can be chosen semi-automatically
by specifying the ideal minimum number of nodes per side,
Nmin . Then we can use

& = min {Jp(s)ds /(Nm.n+1)} (5.1)

. i
sides

Again this technique works well in practice, and is easily
modified to cope with situations where a fixed number of
nodes (e.g. zero) is required on one or more individual

sides.

Finally, the Delauney algorithm triangulates a convex
region but this restriction is easily overcome to deal with
hon convex regions. The algorithm is applied as usual,
ensuring that boundary nodes are correctly connected within
the triangulation, elements external to the region are then
deleted. A simple test for an external element is to
connect its centroid to a known interior point and count
the number of boundary intersections - odd if element is

outside region, even if inside. See Figure 19.
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Figure 2. Nodal positions obtained by solving (2.2) with ¢=i
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Figure 6. Tracking the loci of a one-dimensional equidistribution.
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Figure 9. Equidistribution is along lines in coordinate
directions (dotted) and not the grid lines.
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Figure 10. Grid produced using Anderson's adaptation of Thompson's

grid generator. Data is (x2+y?)?Z.
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Figure 11. Triangulation of a quadralateral grid.



Figure 12. Subdivision of existing grid.



15— — = >~
Ny
N
= N
12 2N \‘\ N :
e
X N
L
N
N N\
\
\
\ N
-
—~
\
l'l
(a) u = (x* +y*)?
" e S
] N
-~ N
" ™ N
12
11
1
15 ‘
: / "
12
1"
4 - 7,
10
= e
- yo— — - e —
- 2 o 2
(b) u = 2e (16x2+100(y-%)°) _ x2 _ 4(Y'%)2

Figure 13. Grids produced by subdivision.



~fe=$

boundary

Figure 14. Approximate tracking of contours.



/
. '/
" i ~. e
\ .
v ~, r ..\_\_\““-\
- =~ )
< ~

Figure 15. Grids produced by cont

ouring.




Figure 16. Possible connections of diagonals.

Data contour shown dotted.
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Figure 17.

(b) Regularised grid.

The effect of regularisation.



Figure 18. The use of branch cuts to intersect features of the data.

Numbers denote ordering of boundary points.

Figure 19. The counting of boundary intersections to determine

external (odd number of intersections) points and

internal (even number of intersections) points.




