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ABSTRACT

An approximate (linearised) Riemann solver is presented for the
solution of the Euler equations of gas dynamics in one dimension
with a general equation of state. The scheme is applied to a standard

shock reflection test problem for some specimen equations of state.



1. INTRODUCTION

The linearised approximate Riemann solver of Roe [l] was proposed
in 1981 for the solution of the Euler equations of gas dynamics where
the properties of the fluid are represented.by. the ideal equation
of state. We seek here to extend this scheme to the §olution of
the Euler equations in one dimension for a general equation of state.
At each stage we shall as far as possible draw a parallel with Roe's
scheme for the ideal equation of state. Results for the extended
scheme are presented for a particular problem of shock reflection

for three different equations of state.

In §2 we look at the Jacobian matrix of the flux function for
the Euler equations with a general equation of state, and in §3 derive
an approximate Riemann solver for the solution of these equations.
In §4 we give some particular examples of non-ideal equations of state,
and in §5 we describe a standard test problem involving shock reflection
together with a derivation of the exact solution. Finally, in §6
we display the numerical results achieved for this test problem with

three different equations of state.

A similar calculation with the same objective has been presented

by Roe [2] which, however, differs in both procedure and final form.



2. EQUATIONS OF FLOW AND STATE

In this section we state the equations of motion for an inviscid
compressible fluid in one dimension for any equation of state, and
derive the eigenvalues and eigenvectors of the Jacobian of the corres-

ponding flux function.

2.1 Equations

The Euler equations governing the flow of an inviscid, compressible

fluid in one dimension can be written in conservation form as

pt + (Ou)x = 0 (2.1)
2 =
(pu)t + (p + pu )x = 0 (2.2)
e + (ute + p)-)x = 0 , (2.3)
together with
e = pi+ zpu’ (2.4)

where p = p(x,t) , u=u(x,t) , p =px,t) , i=1i(x,t) and

e = e(x,t) represent the density, velocity, pressure, specific internal
energy and the total energy, respectively, at a position x and

time ¢t . Equations (2.1)-(2.3) represent conservation of mass,
momentum and energy, respectively. In addition, there is an equation
of state which is a macroscopic, thermodynamic relationship specific

to each particular fluid.

For most fluids we can assume a relation of the form

g(p,v, T} = 0 (2.5)



where V = 1/p 1is the specific volume and T is the absolute temperature.

However, since there is a direct relationship between specific internal

energy i and absolute temperature T , we rewrite equation (2.5) as

p = plp,i) . (2.6)
Moreover, we assume that the first derivatives %% ' and %% are
available. In the case of an ideal gas, equation (;.6) becomez

p = (y-1pi , (2.7)

where Y is the ratio of specific heat capacities of the fluid: this
is sometimes called a y-gas law. The relationship given in equation

(2.6) will usually be determined by experimental considerations.

In summary, we are interested in the system of hyperbolic equations

Y, +E—x = 0 . (2.8)
where
w = (p,pu,e)T (2.9a)
2 T
F(w) = (pu,p+pu®,u(e+p)) (2.9b)
e = pi+ zpu’ (2.9¢c)
with
p = plp,i) . (2.99)

where the particular form for equation (2.9d) is given.

22 Jacobian

We now construct the Jacobian, A , of the flux function, F(w) ,

given by



ok
A = a_'! ’ (2.10)

and find its eigenvalues and (right) eigenvectors since this will

form the basis for our approximate Riemann solver.

Defining the momentum m as m = pu we may rewrite the equations

in the form

w o= (p,m,e)T (2.11a)
2
F(w) = p+ 2, I 2.11b
F(w (mp + 5 5 p) ( )
and
p = P(prl) ’ (2.11C)
where
2
L = &.1D0 i (2.11a)
p 2 .
p
Now,
= [32' 9 o= ] (2.12)
ow op m,e om 5.8 de o.m

in particular, we will need to find

F %ﬁ;(p,i(p,m,e))

m,e p,e

%%(pli(plmle) )

5 By the chain rule for partial derivatives,
p,m

and %E(p,i(p:m,e))

however, we have

3 3

9P(n ; g1 9P~ (2.13a)
ap(p:l) + ap(prmle) al(prl)

]

%%(D'i(p:m:e) )

m,e i m,e P



%&(p,i(p,m,e))l = m(p,m,e) %‘%(p,i) (2.13b)
p.e p,e P
a .
—a‘g(o,i(p,m,e))‘ = %—;—(p,m,e)‘ (P, 1) (2.13c)
P,m p,m p
where
e 1 m?
i = i faLys = -~ - 5 T . (2.14)
i i(p,m,e) 5 5 o
This leads to the following expression for the Jacobian
[0 1 o |
2 2
) a u up . 12
A = p. 2u - — e (2.15)
- _l(H - uz) P P
P
2 2
u(a® - H) u'p, up
up. H - u+ —
- —Xg - u?d P p
5}
. J
where the entralpy, H , is defined by
B o= 2R - By o4du® (2.16)
p P
the 'sound speed', a , is given by
PP, (2.17)
= ——— .1
a o2 pp
- -3, - 3B,
and the shorthand notation P, = ap(D,J.) ¢ Py = ai(p,l) has

The eigenvalues, Ai , and corresponding right eigenvectors, ey

of A are then found to be



1 1
Ai =u+a, e = u + a = u+ a , (2.18a)
H + ua % + i+ % u? + ua
1 1
A2 =u-a, e =|u-a = u-a ; (2.18b)
H + ua % + i+ % u? - ua
and
1 1
A3 =u, ey = u ) = u - . {2.18c)
- gar i+ % u2 o i
Pi Pi

We note that in the case of an ideal gas the equation of state (2,11c)

becomes
p = (y-1)pi (2.19)
giving
p, = (y - 1)p , pp = (y-1) i (2.20)
and thus
2
a . 1 .2
?:T = §.+ i = H-3u i (2.21)

In particular, the eigenvector e, becomes

e = u _ (2.22)

In the next section we develop an approximate Riemann solver

using the results in this section.



3. AN APPROXIMATE RIEMANN SOLVER

In this section we develop an approximate Riemann solver for
the Euler equations in one dimension with a general equation of state.

We follow a similar course of reasoning as that used by Roe [3].

We consider two states W ¥ (left and right) close to an
average state w , and seek al, az, a3, such that
3
Aw = Z a.e. (3.1)
j=1 31
to within 0(A%) , where A(e) = (e)g = (9) . Writing equation (3.1)

out in full we have

M = al + a2 + a3 (3.2a)
A(pu) = al(u+a) + az(u—a) + 0gu (3.2b)
~ . 1.2 . 1.2
de = alfg + i+ 45 u” + ua) + azf% +1i+ 370" - ua)
Pp
: P
+ a3(1 +1w?- ;-i-) ; (3.2¢c)

From equations (3.2a-b) we have that

A(pu) - vAp = a(a1 - az) (3.3)

and from equations (3.2a), (3.2¢)

2
Api) - ibo + A(E-) - § uPao (3.4)

N

pPp
= B . I -
p(a1+0L2) + ua(a1 a2) a3pi

Using equation (3.3) together with ul + a2 = Ap - a3 equation (3.4)

yields the following equation for a3



Q. pp,
3 i . . P
—_—— 4+ = -
B, p ppe) iAp Alpi) + pAp
2 2
u pu
- 7 Ap - A(T) + UA(DU)
and since
pp.
2 i
= — 3
pa 5 Dpp
a3 is given by
%3
pa® = = jpp - Alpi) + B pp
Pi o}

']

2 2. }
- 5 b - AR + wa(pu) .

In addition, a, ang a2 can now be calculated from equations (3,2a)

1
and (3.3), i.e.

a, + o, = Ap - g
A(pu)-Ap
& =0y = S

We have made the assumption that the left and right stateg !i' W,

are close to some average state W to within O(Az) ’

this approximation

A(pu) = ulp + pAu

idp + pAi

A(pi)

A(pu?) u?Ap + 2puAu

In that case equation (3.7a) gives
3
pa’= - Bpp _ pp;
P, p

and using equation (3.6) we obtain

—-R
so that, to

ATEY 0w

(3.5)

(3.6)

(3.7a)

(3.7b)

(3.7¢)

;(3.8a)

(3.8p)

(3.8¢c)

(3.9)



3 a2
But
= + i
Ap ppAp piAl
to within 0(A2) , and therefore
- _bp
g Ap 22

Finally, equations (3.7b-c) now become

)
a, +a, 2
and
- - Pbu
%y = Gy a !

1
a, = —s(Ap + padu)
1 2a2 p p
o, = —l—(Ap - palu)
2 2a2
and
- _bp
g Ap 2 .
We have found al F a2 . a3 such that
3
bw = ] ae,
j=p I3
to within 0(A?) , and a routine calculation verifies that

3
AF = J Aoe.
52 37

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15a)

(3.15b)

(3.15¢)

(3.16)

(3.17)
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to within 0(A2) . We are now in a position to construct the new

approximate Riemann solver.

As in Roe (3], we consider the algebraic problem of finding average

~ ~ ~

eigenvalues A, , A

A and corresponding average eigenvectors e

1 226 73
e, r &5 such that the relations (3.16) and (3.17) hold exactly for
arbitrary states w_ , w, not necessarily close. Specifically,

L

~ ~ -~ ~ ~ ~

we seek averages p , u , pi : pp
’

states w. , w such that

- ' =R
3 ~ -
bw = ] ae,
3=t
and
§ - e s
AF = €.
j=1 3733
where
A(e) = (-)R - (')L
T
w = (p,pu,e)
2 T
F(w = {(pu,p+pu®,u(e+p))
e = pi+ 5 pu?
p = plp,i)
A1'2’3 = u+a, u-a, u
r 1 3 . 1 3 r
31'2'3 = a + ;. r :’1 - g. r
Boi+la?+0a| |B+ivda?-ua| |
\ p 7 \ p / -
~ 1 o~
a, = ——(Ap + palu)

p and 1 in terms of two adjacent

(3.18)

(3.19)

(3.20a)

(3.20b)

(3.204)

(3.20e)

(3.21a)

(3.21b)



a0 1 -
a2 = —:;(Ap - padu) (3.22b)
2a
oy = to - £ ' (3.22c)
and a is given by
— pPp. -5
pa? = —= + pp . (3.23)
0 p

The problem of finding averages 5, E'Ei' 50, 5 and 1 subject
to equations (3.18)-(3.23) will subsequently be denoted by (*).
N.B. The quantities Bi and Bp denote approximations to the

partial derivatives p; and Pp ¢ respectively.)

The solution of problem (*) will be sought in a similar way to
that adopted by Roe [3] in the specialised, ideal gas case. We note,
however, that problem (*) is equivalent to seeking an approximation

to the Jacobian, A , namely A with eigenvalues Ai and eigenvectors

Ei » which is an alternative approach also used in the ideal gas

case by Roe [1].

The first step in the analysis of problem (*) is to write out

equations (3.18) and (3.19) explicitly, namely,

Ap = o, +a, + oy (3.24a)

A(pu) = al(u+a) + az(u—a) + agu (3.24b)
. pu? ~ b . . e
Ae = A(pi) + AC—E—J = alfg + i+ % u?+ ua)
~ = -~ ~2 -~

+ az[% +1i+3u ua) (3.24c)



A(pu)
A(p+pu?)

and

A(u(e+p))

- " e

al(u+a) + az(u—a) + a3u

Ap + A(puz) = + &3;2

~ v~ ~ o~ o~
al(u+a) + az(u-a)

= Apui) + A(BS) + Acup)
] al<;+;)(§+;+%;z L3
@i -
G-y

Py

Equation (3.24a) is satisfied by any average we care to define, while

equation (3.24b) is the same as equation (3.244); thus we have to

solve equations (3.24c-f).

A(pu)

'From equation (3.24d) we have

~ ~ ~ ~ -

and from equation (3.24e) we obtain

A(pu?)

u(a1 +a, +.a3) + a(a1 - az)
EAp + BAu R

~2 ~ R d -~ -~ ~ ~

u (a1 +0, + a3) + 2ua(a1 - a2)

u?Ap + 2uphu .

Substituting for 5 from equation (3.25) into equation (3.26) yields

the following quadratic equation for u

u2Ap - 2uA(pu) + Alpu®) = O

Only one solution of equation (3.27) is productive, namely

o

Alpu) - Y(Alpuw)) 2 - ApA(pu?)
Ap
o w, + /o ug

Yoy + Yoy

(3.2449)

(3.24e)

(3.24f)

(3.25)

(3.26)

(3.27)

(3.28)
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~

which, on substituting u into equation (3.25), gives

~ _ A{pu) "‘.NIAO = VYp_p . (3.29)
N L"R
We have now determined 5 and ; , and with these we can show that
By o @ pu’ (Au) °p?
puy _ 4 _ 3 Pu = (3.30)
Af 5 ) 5 0p -3 > fu _

2
20/, + Vo)

p p
7t ey
A Wp = pb ! s (3.31)
(up) - u = u ’ )
Vo' + Voo
L R
and
9 » -
gt PRR L pew? , (3.32)
S S 2
P * vPg '/5;+ PR)
all of which will be used later.
We are now left with equations (3.24c¢c) and (3.24f). Before we
deal with the general case, we focus attention on the consequences
of equations (3.24c) and (3.24f) in the case of an ideal gas.
Using equations (3.22a)-(3.23), the difference between the left
hand side and the right hand side of equation (3.24c), denoted by D ,
can be written
D = A(pi) - iMp - PAi + £ (B.AL + P Ao - Ap) (3.33)

i‘i

i

Now, for an ideal gas p = (y-1)pi , p;, = (y-1)p and P, = (y-1)i

so that
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and

(01 + 5pAp - Bp) = pAi + iAp - A(pi) ,

Lol
P,Ioa

and thus D = 0 , in this case. Therefore, for an ideal gas,
equation (3.24c) is automatically satisfied and only equation (3.24f)
remains. In particular, 5 is determined from equation (3.23), i.e.

~

a? = (-1

-~

+ i) (3.34)

oYJo

and we now show that in this ideal gas case, + i is completely

oo

determined in terms of pL,pR,uL,uR,pL and Pp - Furthermore, the

-

third component of e G

1~ . .
3 reduces to s u . Now, using equations

(3.22a)-(3.23), equation (3.24f) can be rewritten as

A(pui) - uilp - pidu + A(up) - uldp - pAu

3 ~e

;s ~
pu u 3 2
+AT)—EAp-5puAu

h O (SpAp -0p) = 0, (3.35)
Py

and using the relationships p = (y-1)pi , ﬁi = (Y-l)a ’ 5p = (Y-I)E
for an ideal gas, equation (3.35) becomes
—Y-ZT(A(up)—uAp] - pAu - pilu

~

3, 3 —
+ABR) - 380 - foutMu = 0. (3.36)

If we now use the identities given by equations (3.30)-(3.32) and divide

throughout by BAu , equation (3.36) yields
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~ ~ Lp Rp
Byi - L 8
P L sy
L R
2
pu’ + vp u .
+ L L R R _ % u2 , (3.37)
2(VOL + VOR )
which completely determines a , since from equation (3.34)
a? = (Y—l)(% + I) . In addition, if we define a mean enthalpy
ﬁ = % + I + % Gz and note that ——IE—— =B + i , then equation (3.37)
0 p(y-1) P
states that
Yo u_  + /p
g = L L R'R (3.38)
P * YRR
and so
a? = (y-1@E-1u) . (3.39)

The results are in accordance with those similarly derived by Roe [3].

We now return to the general case and endeavour to retain certain
results found in the ideal case.
We begin by rewriting equations (3.24c) and (3.24f), using equations

(3.22a)-(3.23), to give

. = - D
Alpi) - idp - {%12’- + 0P . (3.40)

pa P.

i

and
A(puij - GEAQ - SIAu + L (up) - GAp - géu
+ A(% u3) - % Ap - % EazAu
i ~ ~~ P

- _LEE~A2 + a3up ~_p = 0 . (3.41)
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Now, subtracting equation (3.40) multiplied by u from equation (3.41)

and using equations (3.30)-(3.32) together with the following identity

. . [/:'L + fﬁl ]
A(pui) - wA(pi) = pAu .
/—; /_;'

we obtain, after division by pAu ,

P
R
. 5 /5; {5— i+ 3 ué] + /B;(E— i + 7 uﬁ]
Ervisde? - = s (3.42)
p CARRTN
Therefore, if we define a mean enthalpy, E ¢ by
H =g+1+%52 , (3.43)
p
we find, from equation (3.42), that
" vo_H_ + Yp_H
H = Pr’n ¥ PRR (3.44)
P * VPR

~
~

as in the ideal case. We have now specified p, u, § + i : thus, in
P
order to specify pi, pp, i (and hence p), we focus our attention on

equation (3.40) which can be written as
Alpi) - ifp - pAi

+ £ (5,01 + §pAp -80) = 0 . (3.45)
1

g

A number of choices can now be made, but it is clear that the most

natural choice is to take

Api) - idp - pAi = O , (3.46)
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. Alpi) - pAi ot + ogig
il 5 = ; (3.47)
CRERTN
in which case (3.45) gives
Ap = piAi + ppAp (3.48)
as a necessary condition. Therefore, all we need to complete our
approximate Riemann solver is to choose approximations Ei’ 50 to
Py pp such that (3.48) holds. This is a straightforward matter
to achieve as we now see.
We propose approximations Ei' 50 to p; and pp as follows
1 (1 ' , 1 , .
B1|2|PPrrig) ¥ PO ig)| - Z|P(Pgrip) + plpp.ip)
Py 7 if ML =0 (3.49a)
1 : . . - f . i o= 4
2[§i(pL’l) + pi(pR’l{] if Ai 0,1L i i (3.49Db)
and
.
11 3 . . .
'A_p[f[P(pR"R) + p(pR.lL)] - %[p(pL,LR) + p(pL,lL):”
Py = ] if Ap =0 (3.50a)
1 g . . - - -
2[pp(p,:LL) + pp(O,:LRJ] if Ap = O, P =Pp =P - (3.50b)

“

It is a simple matter to check that, for each of the combinations
arising from the approximations given by equations (3.49a)-(3.50b),
equation (3.48) is satisfied. In particular, if the equation of state
consists of a series of terms of the form p = R(p)I(i) where R , I

depend on p , i , respectively, then equations (3.49a)-(3.50b) become
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, A1 . .
( 3Z-A—i if AL %0 (3.51a)
R1'(i) if Ai =0, (3.51b)
L o =d
and
Yﬁ—ﬁ' if Ap =0 (3.52a)
;) = L —
P IR (p) if OMp =0 , (3.52b)
L pL = pR = p r
\ -] = () - o T - —1- B (-] L]
where A(e) (e)p =(e), as before, and zl(e) + (e)pl , the

arithmetic mean. Finally, we must note that if we are dealing with
an ideal gas, then p = (Y-1)pi where Y is constant, and we replace

equations (3.4%a)-(3.50b) by

~

Py

(y - 1)p (3.53a)
and

vy - i, (3.53b)

Py

where 5, i are given by equations (3.29), (3.47), respectively.

Summarising, we can now apply our one-dimensional Riemann solver
for the Euler equations with a general equation of state in a similar
way ‘to that of Roe [3] as follows.

Suppose at time level n we have data !L; LY given at eithe{

end of the cell (xL,xR) , then we update w to time level n + 1

in an upwind manner. Schematically, we increment w :



=19 -

n + 1 - AEX & ; - éE~ a ;
///» Ax" 37373 Ax 3733
1 1 1 1
L R L R 3 =1,2,3
A, >0 A, <O
J J
where Ax = Xp = X At is the time interval from level n to n + 1,
and X., &., g. i
3 5" &5 are given by
A1,2,3 = uyu+a,u-a,u
i 1 \ I'd 1 I 1
) 2 R R -
e = ~ ' B '
_1 2 3 ~ ~ ~ ~ -~ -~ ~p
o % + i+ %uz % + i+ %uz i+ %uz - pgg
P s o} L i
“ +ua ) . - ua P L 4
& = L ap + pabw), =l - padw), Ap - 2
23 T = i
Yo_u. + vp_u
~ ) raarem ~ LL R R
P = prR ' u = /__| /__1
pL i pR
- "Priy, * VPRrlp 5 = @{L *+ VPR
= ; =
Vo, t VPR Py, + VPp
s = . . PP, .
p = p(H-1- % u?) a = — +p '
p? :

Ei’ 50 are given by equations (3.49a)-(3.50b) and A(e) = (-)R - (-)L )
In addition, we can use the idea of flux limiters [4] to create a second
order algorithm which is oscillation free, and we can modify the scheme

to disperse entropy violating solutions, (see [5]).
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The Riemann solver we have constructed in this section is a
conservative algorithm, and has the important shock capturing property
guaranteed by equations (3.18)-(3.19). In the next section we give

examples of different equations of state.
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4. EQUATIONS OF STATE

In this section we give three different forms of the equation

of state for a fluid.

(a) Ideal gas equation of state

This can be written in the general form

p = (y- Lpi (4.1)

where Y is a constant and represents the ratio of specific heat
capacities of the fluid. Typical values for Y are Y = g for a

monatomic gas, e.g. helium, and Y = 1.4 for a diatomic gas, e.g. air.

(b) sStiffened equation of state

This is usually written in the form
p = B(E - 1) + (v - 1pi (4.2)
*Pg

where B 1is a constant, and p0 represents a reference density. This
form of the equation of state is a simple extension of the ideal gas

equation, and as such can be used in test problems originally designed

for ideal gases.

(c) General equation of state

A more general equation of state has been developed by R.K. Osborne

at the Los Alamos Scientific Laboratory, and can be written in the

e/
]

[1/(E + ¢0)]{C(a1 + a2|c|>

+ Elby + L(b, + by0) + E(cy + CIC)I} (4.3)

where E = Qol, T = po - 1 and the constants po, al, ay bO' b], b2,
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CO' cl, ¢0 depend on the material in question. Typical values for

the material constants for copper are given in §6.

Our algorithm requires knowledge of the derivatives pP., P which

can be explicitly calculated in each of the three cases (a), (b), (c)

The most general equations of state may be presented in tabular
form, but provided that data is available for P, pi and p_ , we can

always apply our algorithm as in cases (a)-(c).

In the next section we describe a standard test problem for the

Euler equations with a general equation of state, and derive the exact

solution.
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5. A TEST PROBLEM

In this section we describe a standard test problem in gas dynamics
and, using the Rankine-Hugoniot shock relations, we derive the exact

solution to this problem.

The test problem we look at is concerned with shock reflection
in one dimension of a gas governed by the Euler equations with a
< <

general equation of state. We consider a region 0 £ x £ 1 with

initial conditions (at t = 0) ,

p= 0
u = -y . (5.1)
i = i0

where Py = p(po,io) is given. This represents a gas of constant
density and pressure moving towards x = 0. The boundary x =0
is a rigid wall and the exact solution describes shock reflection
from the wall. The gas is brought to rest at x = 0 and, denoting
initial values by (0) , pre-shocked values by (-) , and post-

shocked values by (+) , we can postulate an exact solution of the

form
p=pt, u=u" =0, i=4i", (p=p+=p(p+,i+))
for =< 8 (5.2a)
t
p=p , u=u =- u, , i-= i = ig ¢ fp=p = Py = p(po,io))
for T>5 , (5.2b)

where the shock moves out from the origin with speed S , and

. + .+ . . .
s,p,1i,p =plp ,i) are given by the Rankine-Hugoniot shock
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relations. Thus

s - lpul _ [p+pu') _ [(ule +p)) (5. 3)
(p] [pu] [e] )

+ —
where ([v] = v -V denotes the jump in v across the shock. We
) + .+ + ,
therefore have to solve equations (5.3) for S, p , i, p subject
to the initial conditions given by equation (5.1), and a precise form

for the equation of state p = p(p,i) .

If we write out equations (5.3), using equations (5.1)-(5.2b), we

obtain
_ _Po%
s = '5“:‘53 (5.4a)
P - Py — Pous
s = 0 . 0.9 (5.4b)
PoYo
and

(P i + = pud + p)
N 5 1 2
Pi = Polp = 7 Po¥y

+ + + + . . .
where p, u, i, p denote p ,u , i , p for simplicity, and Py P

are given by

f(p,i) (5.44)

p

Py = f(po,io) (5.4e)

(N.B. The function f is used to denote the particular equation

of state and satisfies f(pO,O) =0, i.e. Py = 0 when i0 =0 .)

Since it is easily shown that equation (5.4c) can be deduced
from equations (5.4a-b), we concern ourselves only with the solution

of equations (5.4a-b), (5.4d-e). From equation (5.4a) it is possible
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to show that

H,LA -1 = - (5.5)

2 o
(® - By = Poug) (= - 1) - pguy = O . (5.6)

The solution of equations (5.5)-(5.6) now splits into two cases

, . - .
(1) i, 0 and (ii) iy 0.
Case (i) iO = 0
If iO =0, so P = f(po,O) = 0 then from equation (5.5)
p
= _ 0 . 1.2 _ 1 2

i = Hy = 5 tigtiuy = 7Y (5.7)

and equation (5.6) becomes
1 .2 FANAY 2 _
(0.3 u)) - pouo]caa - 1) - pguy = 0 . (5.8)
which can be solved iteratively, using the method of bisection, for
any function f . Thus, we obtain a value for p+ =p . and from
equation (5.7) we have that it=i= % ué . Finally, we find
+
p =p = £f(p,i) and the shock speed
S = Pguy/ (P - Py
Case (ii) iO =0
If ig = 0 and Py F(no,io? = ¢ then from equation 75.5°
p P p
- 0 - 0, 20
i = HO = = po +ip= 3 Uy 5 ’ (5.9)

and substituting this expression for i into equation (5.6) we obtain
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p p
0,1 2 . 0 2y P 2
—_ - —) - - - =
(f(p,DO §uy + i p) pouo)(po 1) PoY o, (5.10)
which can be solved iteratively for p , using the method of bisection,

. +
for any function f . Thus we obtain p = p , and from equation

+ po 2 po . .
(5.9) we have that i =i = —+ i+ 1 2 - 2 _ Finally, we find
po 0 2 0 o)

+ . _ _
p =p=f£f(p,i) and § = pouo/(p po)

A special case that can be solved exactly is when the equation

of state is of the form

p = f(p,i) = op +Bpi +6 |, {5.11)

and hence
p - po = a(p = po) + B(Di = poio) . (5.12)

From equation (5.5) we find that

pu?
Pi - Pyl = (- pyH, + % , (5.13)

and using equations (5.12)-(5.13) equation (5.6) gives the following
P

quadratic equation for -5— -1
0
(@ + BH.) B oz o .
0 rp B e :
-_— -1 +5-1Yyyl=-1 -1 =0 (5.14)
u(z) (po ) .(2 )(.po ]

Now, from equation (5.11) we can write

OL+BH0 [B+”p0_ s

2 2 2
Yo Pol Po%o

Therefore, the positive solution of equation (5.14) is

2z + 1 + % + /?% + 1) + 4z

Po 2z + B
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where
o (B + p, B
2 2
Poto Polo
Thus, we obtain a value for p+ = p , and from equation (5.9) we
& b
have that i = i+ - +i o+ 22 - e 3 Finally, we find
p0 0 2 0 o

p =p=0p + Bpi + §, and the shock speed S = pouo/(p—po)

In this section we have described a means of obtaining the exact
solution to the shock reflection problem for a general equation of

state, while for the particular equation of state given by equation

(5.11) we have given the solution explicitly. To obtain the solution

in the case of a stiffened equation of state we set Q= éi , B=vy-1
: 0

and 6§ = - B, and for the ideal gas equation of state we set

a=86=0, B=y-1.

In the next section we give the numerical results obtained for

the test problem described here.
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6. NUMERICAL RESULTS

In this section we show the numerical results obtained for the

test problem given in §5 using the Riemann solver described in §3.

Each of the figures refers to one of the equations of state given

in 84 with different values of the parameters and initial conditions.

(a) Ideal equation of state

We take Yy = and Y = 1.4 with the initial data

w Jon

p(x,0) = po = 1
u(x,0) = - Uy = - 1
and choose 1i(x,0) =:i0 such that the pressure jump across the shock,

+
i.e. E?pP_, takes the values ® , 10 or 2 .

(b) Stiffened equation of state

The parameters and initial data are taken to have the same values
as for (a) and we choose B = 1.0, Three pressure ratios are obtained

as for (a).

(c) General equation of state for Copper

We considexr the general equation of state given by equation (4.3)

with values for the parameters corresponding to Copper, i.e.

Py = 8.90 , a, = 4.9578 , a, = 3.6884 ,
by = 7.4727 , b, =11.519 , b, = 5.5251
cg = 0.39493 , ¢, = 0.52883 , ¢, = 3.6000

together with the initial data

p(x,0) = Py = 8.9

[}
I

u(x,0)

e e A M e T e
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where uy, = 0.4, 0.7 or 1.0. Again we choose i(x,0) = i0 such

+
that the pressure ratio 9;— takes the three values « , 10 or 2.

In each case we take 100 mesh points in 0 S x £ 1 , and choose
the output time so that the shock has moved a distance of 0.3, All

computations have been done using the 'Superbee limiter', (see [4]).

+
Figure 1 Equation (a) Y = g p/P- =
+
Figure 2 Equation (a) Y = g p/p- = 10
+
Figure 3 Equation (a) Y = ; p/p— = 2
+
Figure 4 Equation (a) vy = 1.4 p/P— =
+
Figure 5 Equation (a) Y = 1.4 p/p_ = 10
+
Figure 6 Equation (a) Y=1.4 ‘P/P_ = 2
+
Figure 7 Equation (b) Y = g, B=1.0 ,p/p- = ®
+
Figure 8 Equation (b) 1y = g, B=1.0 p/P- = 10
+
Figure 9 Equation (b) Y = g, B=1.0 p/p- = 2
+
Figure 10 Equation (b) Yy=1.4,B=1.0 p/p- = o
+
Figure 11 Equation (b) vy = 1.4, B = 1.0 p/P— = 10
+
Figure 12 Equation (b) <y = 1.4, B = 1.0 p/p— =2
+
Figure 13 Equation (c) u, = 0.4 p/P- = o
+
Figure 14 Equation (c) uy = 0.4 p/p— = 10
+
Figure 15 Equation (c) u, = 0.4 p/p— = 2
y =
Figure 16 Equation (c) u. = 0.7 P, _



+
Figure 17 Equation (c) uy = 0.7 p/p— = 10
+
Figure 18 Equation (c) u, = 0.7 p/p_ = 2
+
Figure 19  Equation (c) uy = 1.0 p/p_ = ®
+
Figure 20 Equation (c) Uy = 1.0 p/p- = 10
N i
Figure 21  Equation (¢) uy = 1.0 P/p- = 2

In each case we can see that the approximate solution gives a good
representation of the exact solution, in particular the correct shock

speed has been achieved.

Finally, we compare the c.p.u. time to compute the results obtained
for the ideal gas case (a) using (i) Roe's original Riemann solver,
and (ii) our general Riemann solver applied to the ideal gas case.
(N.B. Although (i) and (ii) are mathematically equivalent, (ii) is
for the general case and would therefore expect to be more costly).
The comparison, using an Amdahl V7, is as follows: -
(i) Using 'superbee' and 100 mesh points takes
0.0142 c.p.u. seconds to compute one time step, and
a total of 1.6 c.p.u. seconds to reach a real time

of 0.9 seconds using 112 time steps.

(ii) Using 'superbee’ and 100 mesh points takes
0.0178 c.p.u. seconds to compute one time step, and
a total of 2.0 c.p.u. seconds to reach a real time

of 0.9 seconds using 112 time steps.

This shows that our general Riemann solver is only slightly more expensive

than Roe's original, as was to be expected.
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SOLUTION OF THE EULER EQUATIONS ¥ITH SLAB SYMMFIRY - Shock Reflection
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SQLUTION OF THE EULER EQUATIONS WITH SLAB SYMMETRY - Shock Reflection
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SOLUTION OF THE EULER

FQUATIONS WITH SLAB SYMMETRY - Shock Reflection
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7. CONCLUSIONS

We have extended the one dimensional version of Roe's scheme
to include a general equation of state, and we have achieved satisfactory
results for the problem of shock reflection. In addition, we have

seen that the algorithm is computationally efficient.

In the future we hope to extend our scheme to three dimensions

using operator splitting.
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