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1 Introduction

The method of lines (MOL) is a technique for solving partial differential equa-
tions (PDEs) in which the parameters of a space discretization of the PDE
are advanced in time through the solution of an ODE system, normally using
a software package. The method can be applied to time-dependent or steady
PDES, in the latter case via convergence in pseudo time. Iterative procedures
are in any case necessary for steady nonlinear PDEs. The MOL has reached a
high degree of sophistication, as evidenced elsewhere in this volume, and has
produced impressive results.

The purpose of this chapter is to discuss the introduction of mesh movement
for steady PDEs in multidimensions, using mesh locations as additional param-
eters. In this way we may seek an optimal mesh at the same time as finding a
converged solution on that mesh. When the mesh locations are included in the
parameters of the space discretization, an extended system of ordinary differ-
ential equations (ODEs) or differential algebraic equations (DAEs) is normally
obtained which includes both mesh and solution parameters in a coupled way.
Integration of these equations may then be carried out using the MOL, although
there is a wide variety of approaches.

Adaptation via mesh movement is known as r-refinement. The underlying
idea is that the numerical solution of PDEs, particularly those that have rough
solutions, should use all available resources and the mesh is one of these re-
sources. In r-refinement the solution is adaptively improved by mesh relocation,
normally using a fixed amount of resource. In its simplest form the number of
nodes remains unchanged and provided there is no change in connectivity there
is a fixed data structure.

There are however a number of special difficulties with algorithms which
involve mesh movement. Firstly, there is generally no information within the
problem about how the mesh should be moved and so prescription of the move-
ment is very much in the hands of the algorithm designer. Although there is
sometimes an obvious choice for the mesh velocity, for example in Lagrangian
fluid codes where the mesh is moved with the velocity of the fluid, there is
in general no physically identifiable choice. Secondly, many PDEs are derived
from the application of a physical principle, for example conservation of mass,



in a fixed frame of reference. If the frame of reference moves, the PDE must
be modified and may not retain the physical properties on which it is based.
Thirdly, mesh movement algorithms are essentially nonlinear and exhibit a high
degree of complexity.

Another major difficulty is the possibility of mesh tangling. In one dimension
this simply means node overtaking. In two dimensions, to take an example, a
moving triangulation in which a node of a triangle crosses an opposite side may
lead to the breakdown of a method, either because of singularity at the point
of crossing or because of the inability of the method to function on an invalid
triangulation. Therefore constraints are often built in to a method to avoid
tangling.

There are two main techniques for the movement of nodes. The most well-
known technique in this area is that of equidistribution but we shall be mostly
concerned with techniques that use optimization, since they are valid in multi-
dimensions. The two techniques overlap in some formulations. Equidistribution
is a one-dimensional concept although there have recently been some significant
advances in generalizing the idea to two dimensions. Links with an approximate
form of multidimensional equidistribution are described in the penultimate Sec-
tion of teh Chapter. We shall consider two kinds of functional to be minimized,
normally associated with two different types of PDE. The first is a class of vari-
ational principles which generate PDEs of Euler-Lagrange type, which of their
nature are of second order. The second is the L, norm of the residual associated
with a discretization of the PDE, which can be used for first order equations and
systems. Both finite element and finite volume discretizations will be discussed.

The existence of a functional allows at least two different approaches to
generate solutions (and meshes). In the more standard approach the full (aug-
mented) ODE system of normal equations can be solved by the MOL, which we
shall refer to as the global approach. In the other approach we use a descent
method on the functional, which can be implemented in a local manner (node by
node) sweeping through the mesh, which we shall refer to as the local approach.

An early moving mesh method was the Moving Finite Element (MFE)
method ([1],[5],[4]), which uses piecewise linear finite elements and generates
the augmented ODE system from minimization of the Ly norm of the resid-
ual of the PDE over the time derivatives of both the nodal positions and the
solution parameters. The method is a Galerkin method in which the test func-
tions span the space of the Lagrangian time derivatives. The method is truly
multidimensional and has had some notable successes, particularly for parabolic
problems. However it also showed up one of the difficulties in using piecewise
linear approximation in a moving node context, namely an indeterminacy when
the solution and the mesh are simultaneously trying to represent a linear man-
ifold. This problem occurs when the local curvature of the solution manifold
vanishes. For this reason (as well as the difficulty of mesh tangling) regulariz-
ing terms were added to the Ls norm in the MFE method with a number of
adjustable parameters. However the effectiveness of the method was found to



depend crucially on the manipulation of these parameters and the method has
not found favour with practitioners.

Nevertheless, for a class of steady problems derived from variational princi-
ples, the MFE method gives an optimal solution and the time-dependent form
may be used as an iterative method to drive solutions to steady state (see Section
2 below).

We commence this chapter by considering the role of the MFE method in the
context of optimization. Although originally formulated as an L, minimization
the method is not an optimization method in the usual sense but simply an
extended weak form of the PDE. On the other hand, for steady equations of
variational type, it has been shown in [2] that the weak forms correspond to the
optimization of a minimization principle in a discrete space.

The MFE philosophy incorporates a global MOL approach to the solution of
the normal equations. An example of this approach for the steady MFE method
is given in [2]. However, if a functional is available, there is the alternative of
sweeping through the mesh using local descent methods. This is the central
theme of this Chapter. Such an approach to optimization using minimization
principles is given in [3] and is described in Section 3. A possible finite volume
formulation is also proposed.

Section 4 of the chapter is devoted to least squares minimization, of partic-
ular relevance to first order equations and systems. The Least Squares MFE
(LSMFE) method [11] and a corresponding finite volume method [7] are de-
scribed, which use global and local approaches to the solution procedure, re-
spectively. For the important case of conservation laws the finite volume proce-
dure may be extended to systems [15], and a description of this technique forms
Section b of the Chapter.

Finally, there is a section on the links with equidistribution (in one dimen-
sion) and approximate equidistribution (in higher dimensions), and a summary
section.

2 Moving Finite Elements

The Moving Finite Element (MFE) method ([1],[5],(4]) for the time dependent
PDE

O 1)

where u is a function of  and ¢ and L is a space operator, is a semi-discrete
moving mesh finite element method in which the node locations are allowed to
depend on time. It is based on two weak forms of the PDE which can be derived
from the minimization of the Ly norm of the residual over the time derivatives
of the parameters.

The approximate solution U is an explicit function of the X (t) (the nodal
positions) of the form -



U= Uiti(e) @

where U; are coefficients and the 1;(z) are piecewise linear basis functions.

Using the result
ou

(see e.g. [5]) the derivative of U w1th respect to ¢ becomes

ou oU dX
Ui = Elmovingi 8t |f1,a:edX Z
dU dX;
Y Zj:(_VU)d)j‘W
=U -VU.X (4)
where the independent U and X functions have time derivatives
_dU _ dU; _dX  —dX
_E_Z —%i, X‘_TJT_]ZT% (5)

which are taken to be continuous functions, corresponding to the evolution of a
continuous piecewise linear approximation.
From (1) and (4) minimisation of the square of the Lo residual ||U; — LU||Z2

over the coefficients Uj,j_( ; then takes the form

(6)

min‘ -

and, using (5), gives the MFE or extended Galerkin equations
(43,0 V0. X ~LU) =0 (™)
((-VU) 3,0 ~VU. X ~LU) =0 (8)

Substituting for [/ and X from (5) gives a nonlinear system of ODEs for U;
and X; containing an extended MFE mass matrix. The system may be solved
globally for the unknowns U; and X; by a stiff ODE package, as in the MOL.

The basic method has intrinsic singularities, however. If the gradients VU
have components whose values are equal in adjacent elements (dubbed ”par-
allelism” in [1]), the system of equations (7)/(8) becomes singular and must
be regularized in some way. If the area of an element vanishes (i.e. a triangle



becomes degenerate) the system again becomes singular and special action is
required. In Miller’s MFE method penalty functions are added to the Lz norm
of the residual in (6) (see [1],[4],[5]).

Although a full understanding of the MFE method is incomplete, in the
steady limit the resulting mesh has a significant optimal property. We now
consider this limit.

2.1 MFE in the Steady State Limit

In many cases the MFE method may be used to generate weak forms for the
approximate solution of the steady PDE

Lu=20 9)

by driving the MFE solutions to convergence in pseudo-time, although not al-
ways. For scalar first order PDEs the MFE method is known to move the nodes
with characteristic speeds [5] which do not generally settle down to a steady
state.

From (6) the MFE method in the steady case implements the minimization

min ||LU|1Z, (10)
Ujvlj

and the steady state solution satisfies the weak forms

(Loy ) vt =0 (1)

Although U and X no longer appear in LU, the minimization is over the
span of their time derivatives | which is the space spanned by the functions

{5, (=VU)¥%; }.
In order to describe the optimal property of the steady MFE method we
recall the origin of PDEs of Euler-Lagrange type.

2.2 Minimization Principles and Weak Forms

A standard result in classical analysis is that minimization of the functional

J(F) = / F(u, Vu)dz (12)

over a suitable class of functions yields the PDE

oF oF



By a similar argument minimization of the functional (12) over the finite
dimensional space spanned by the {¢;(z)} (i.e. over approximations of the
form (2)) on a fixed mesh yields the weak form

oF oF
(4150 + (705, o7 ) =0 (19

2.3 An Optimal Property of the Steady MFE Equations

It has been shown in [2] that minimization of the functional (12) over functions in
the MFE approximation space, spanned by ;(z), —VU)9;(z), yields the steady
MFE equations (11). Hence the steady MFE equations provide an optimal U
and X for variations of the functional (12) within this space.

These weak forms are

) oF oF
30, /F(U VU)dg = <¢,, 8U> + <v¢,-, ﬁ> =0 (15)

as in (14) and

5%, /F(U VU)dz <¢J, 6F> <w], <F vU. 86VFU)> 0 (16)

where the identity

oF aF  oF oF
V. <F vU. GVU) 9z + 8UVU <V BVU) vU (17
has been used to derive a form of (16) which is formally suitable for piecewise
linear approximation. In carrying out the integration by parts to arrive at (16)
we have used the fact that the continuous piecewise linear finite element basis
function 1; vanishes on the boundary of the patch. The result in [2] is that (15)
and (16) are identical to the weak forms (11).

It may be possible to use the time-dependent MFE method as an iterative
procedure to generate locally optimal meshes in the steady state. This approach
has been used in [2] to generate optimal solutions with variable nodes to a
number of examples of PDEs of Euler-Lagrange type. A partially regularized
form of the MFE method is used in order to avoid singular behaviour and a
global MOL solver employed to extract the solution. For further details see [2].
However, since the iteration need not be time accurate, the MFE mass matrix
may, if desired, be replaced by any positive definite matrix.

We now come to the central theme of this chapter, which is to consider the
role of descent methods in generating solutions of problems of this type using a
local approach.



3 A Local Approach to Variational Principles

Since minimization principles provide a functional to monitor and reduce it is
possible to take advantage of standard optimization procedures in generating
local minima. For example, procedures based on descent methods give the
freedom to use a local approach to iteration, which significantly reduces the
complexity of problems involving mesh movement. First we recall the nature of
descent methods.

3.1 Descent Methods

Descent methods are based upon the property that the first variation of a func-
tional J with respect to a vector variable Y,

oJ T
say, is negative when
§Y = —1g = __T(')_J (19)
Y=-rg=-T3%

for a sufficiently small positive relaxation parameter 7, and therefore reduces J.
Choice of 7 is normally governed by a line search or a local quadratic model.

The left hand side of (19) may be preconditioned by any positive definite
matrix. The Hessian gives the full Newton approach but may be approximated
in various ways.

In the present context of r-adaptivity a local approach is advantageous which
consists of updating the unknowns one node at a time (scalar Y), using only local
information. Moreover, U; and X; may be updated sequentially, which permits
close control of the mesh movement. The updates may be carried out in a block
(Jacobi iteration) or sequential (Gauss-Seidel) manner. Descent methods of this
type have been used by Tourigny and Baines [6] and Tourigny and Hulsemann
[3] in the Ly case and by Roe [7] and Baines and Leary [8] in the discrete case.

First we mention a local approach to Ly best fits with adjustable nodes.

3.2 A Local Approach to Best Fits

A minimization based on a local approach was used in [9] to generate algorithms
to determine best discontinuous piecewise constant and piecewise linear L, fits
to a given function in one or two dimensions, with adjustable nodes. The con-
vergence of the one-dimensional algorithm was subsequently investigated in (6]
and the method shown to reduce the Ly norm of the residual error monotoni-
cally. The two-dimensional algorithm was modified in [6] and a procedure for
improving the connectivity introduced. Convergence of the method was also
considered in [6] for successively (globally) refined meshes.



A special feature of these algorithms is their local nature, the nodal and
solution updates being carried out a node at a time within sweeps through the
mesh. This approach not only reduces the complexity of the problem but also
allows mesh tangling to be avoided relatively easily using a limiter (see e.g. [19]).
Moreover, owing to the existence of a functional to minimize, edge swapping and
node removal are readily incorporated.

We now turn to the approximation of PDEs and consider minimization prin-
ciples using the local approach.

3.3 Direct Optimization using Minimization Principles

An early attempt to include mesh adaptation into a minimization principle was
due to Delfour et al {10] who sought a finite element solution with free nodes
for a variational formulation of an elliptic PDE but found significant problems
with the complexity of the equations and with mesh tangling.

More recently, an iterative algorithm with variable nodes for the finite el-
ement solution of minimization problems has been described in [3] using the
local approach. The criterion is that the mesh should be such that a variational
”energy functional” evaluated at the finite element approximation is reduced.
Each node is treated separately in sweeping through the mesh. The nodal po-
sitions are updated by a steepest descent procedure, during which a sequence
of local finite element problems is solved, each involving very few degrees of
freedom. The order of sweeping through the mesh is based on the size of the
local residuals. The method is applied to a variety of minimization principles
in two dimensions.

We describe the essence of the method here. A finite element approximation
U is sought to optimize a convex energy functional of the form (12) in a subspace
Vi such that

J(U): min J(V) (20)

wheTélﬁ/}:ligw%@%flm%e&flys%fféatfrﬁ?ﬁc(efoﬁ%Vdgsnae&eaﬂem%lgﬁgmheﬁok
nghoﬂa Ritsles 9L Wianglss 17 } surrounding node j (see fig sweeping

through the mesh. Each local approximation U is computed using the normal
equations

/{Tj}@g( , VO, + VU(U ,VU). w,) dz =0 (21)

V)i € Vi, (cf. (14)). In a local patch such as that in fig. 1 the computation of I/

at node j on a fixed mesh involves the determination of only a single unknown,

which can be carried out cheaply using only local information on the patch.
New local nodal positions X = X 7°¢ are sought within the iteration, with

the corresponding solution U = Um®, such that J(U) is reduced. A steepest



Figure 1: A local patch of elements surrounding node j.

descent method is used. Thus if X j is an interior node, a new mesh location is
sought along the line given by

aJ

T@, (22)

X=X, -

where the relaxation factor 7 is chosen by a line search. Although this requires
the solution of a sequence of finite element problems of the form (21), these are
small local problems.

The sequence of nodal updates is carried out in a Gauss-Seidel manner.
Edge swapping is interleaved with the grid movement algorithm, an edge being
swapped if it leads to a lower energy. Global mesh refinement is also included
in the algorithm, refinement taking place after the algorithm for the current
number of nodes had converged. That is, starting from a coarse mesh the
algorithm is used to optimise the mesh: this optimal mesh is then uniformly
refined to provide the starting mesh for the next refinement level. The possible
occurrence of degenerate triangles is overcome by the use of a node deletion
algorithm. Convergence to the ”global” solution relies on the sweeps through
the mesh.

Convergence rates in a test problem on Laplace’s equation involving a re-
entrant corner showed that, whereas convergence on a uniform mesh was sub-
optimal, the approximation on the adapted meshes constructed in this way
converged at the optimal rate. Fig. 2 shows two of the meshes obtained using
the algorithm with successive globally refined meshes. There is an exact solution
of this problem of the form r%/7sin(2)6 (for full details see [3]).
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Figure 2: Two meshes for the the Re-entrant Corner problem.

3.4 A Discrete Variational Principle

A discrete form of (12) (obtained by quadrature) is
Ja(F) = Z SrF(U,VU)p (23)

T

where the suffix T runs over all the triangles of the mesh, St is the area of
trangle 7', and the overbar denotes the average value of the argument over the

vertices of the triangle T
Differentiation of (23) with respect to U; gives (see [22])

0Ja 1 oF oF

— =S I a /v i) 24

aU; ; l3 T (E?U)J. a(VU)p QJ] (24)

where n; is the inward normal to the side opposite node j scaled by the length
of that side. Setting this gradient to zero gives the finite volume weak form

corresponding to the finite element weak form (14).
Differentiation with respect to X; gives (see [17])

L4 [1 (ap) < oF aﬁ)
o = ol | | ==t = ] AW
0X; TZJ 3 oz ) p oUy " 0U: ) ;
oF
Tj
Setting this gradient to zero gives the companion weak form to (24), correspond-

ing to the second finite element weak form (16).

10



We may approximate (VU)y by the gradient of the linear interpolation be-
tween the corner values of U in the triangle T', given by (see [13])

SYYAU -5 XAU
(z’XAY’ Z’YAX) (26)

-Y'vAYy YUAXx
(VU)T = 7 ) 7

STXAY =3 'YAX
where the sums E' run over the vertices of the triangle 7' and AX,AY, AU
denote the increments in the values of X,Y, U taken anticlockwise across the
side of T' opposite the corner concerned (see fig.1). This is the same as the
piecewise linear approximation used in the finite element case. In the same
notation as above the area of the triangle 7' is

1« 1<
Sr=3 Y XAY = . > YAX. (27)

The expressions (24) and (25) with VU given by (26) provide gradients for
a steepest descent method for minimizing (23). Examples of this approach will
be given in the next section.

We turn now to Least Squares methods, which extend the applicability of
the techniques already described to first order equations and systems.

4 Least Squares Methods

The steady MFE and local minimization techniques are valid and useful if there
exists a minimization principle for the PDE, but are not available in other
cases where no such principle exists, in particular for first order equations and
systems. (Euler-Lagrange equations, by their nature, are of at least second
order.) However, the same minimization techniques can also be applied to least
squares methods, where the ”energy functional” is the square of the norm of
the residual. We describe two such methods, one of MFE type exploiting the
optimal property of the steady MFE method described in section 2.3 and the
other arising from a finite volume approach, similar to that in section 3.4.

In this section we shall assume that L is a first order space operator, de-
pending on z,u and Vu only.

4.1 Least Squares Moving Finite Elements
Although the Ly norm (6) was minimized in formulating the MFE method

described in Section 2, this minimization is only carried out over the velocities
U j and X, and is thus not a true minimization at the fully discrete level.

Variations in U; and X; are treated as independent of those in Uj and _Xj and
are ignored. It can therefore be seen from (6) that the method is simply a linear
least squares problem, generating the weak forms (7) and (8). It is more useful

11



to say that the minimization is carried out in the space spanned by the basis
functions {v;,(—VU)¥;}.

By contrast, a full minimization of the Ly norm in (10) may be carried out
in the steady case over the nodal coordinates X; and the coefficients U;. This
is the approach of the recent Least Squares Moving Finite Element (LSMFE)
method [11]. This is a nonlinear least squares problem so only a local minimum
can be expected.

Consider then the minimisation of (10) over these parameters, which leads
to the two weak forms

<LU, ((%LU» = <LU, (=VU) aiU,- (LU)> + f{ % (LU)? ;fids = 0 (28)

(@ is the unit normal) which may be written

<%,¢j>+<aé—@%,vw>=o (29)

8(LU)? i d(LU)? 3
<6—£,¢j>+<((LU) —(VU)-W) ,V¢j>—0, (30)

where the identity (17) has been used with F = £(LU)?.
Referring back to (15)/(16) we see that equations (29)/(30) are the steady
MFE equations for the PDE

and

8 (Lu)® 8 (Lu)®
T By i Ve OVu

which corresponds to the Euler-Lagrange equation for the minimisation of the
Least Squares functional ||Lu||ig. For the LSMFE method the optimal property
holds just as for the variational method in section 3.

It is natural to solve the nonlinear system of equations (29)/(30) using the
MFE time-stepping method, but any other convenient iteration can be used. In
[11] the mass matrix of the MFE method is replaced by a Laplacian regulariza-
tion matrix.

0= Uy = (31)

4.2 Properties of the LSMFE Method
The LSMFE method has the following properties:

e The weak forms (29)/ (30) arising from these variations correspond to

equations (15)/(16) with F given by %(LU)2 and therefore have the op-
timal property.

12



e In the LSMFE tests carried out in [11] on scalar first order steady equa-
tions the nodes no longer move with characteristic speeds but instead move
to regions of high curvature. This is to be expected because the least
squares procedure embeds the original first order equation in the second
order equation (31) and it is already known that, for Laplace’s equation
in one dimension, the final positions of the nodes in the MFE steady limit

asymptotically equidistribute a 2 power of the second derivative of |u]
[12].

e A third property is only stated here. In the particular case where LU
takes the form of a divergence of a continuous function, a modification
of the result discussed in section 6.3 below shows that, asymptotically,
minimisation of ||LU H%Q is equivalent to an equidistribution of LU over
each element in the particular sense described there. For example in the
case where

Lu = V.(au) (32)

with constant a, and u is approximated by the continuous piecewise linear
function U, the LSMFE method asymptotically equidistributes the piece-
wise constant residual LU = V.(aU) in each element. Within a coupled
iteration scheme this ensures that convergence proceeds in a relatively
uniform manner.

An illustration of the results of the method for a 2-D circular advection
problem is given in fig. 4 of section 5, the mesh being very similar to that given
by the least squares finite volume method described there.

We now consider minimization of least squares functionals with moving
nodes in which the approximations are of finite volume type.

4.3 Minimization of Discrete Norms

The use of discrete norms with area weighting may be regarded as a simple
quadrature of the Ly norm used previously.

Let LU be the average residual in triangle 7' and the norm be the weighted
sum over triangles of the average residual, viz.

ILUN2 =Y S7IU; (33)
T

(cf. quadrature of the square of the Ly norm of LU). Here the suffix T runs
over all the triangles of the region, St is the area of triangle T given by (27)
and LUy is the average value of the residual LU over the vertices of T'.

This norm coincides with the Ly norm if LU is constant on each triangle.

For then
I1Lu|1z, :/ LU%@:Z/ LUde:ZW?p/ dz
Q T JT T T

13



=Y SrIUr = LU (34)
T

If the area weighting in (33) is omitted this link is lost.
The form (33) may be rewritten as a sum over nodes j, namely

1 —=2
ILUNg =323 5rLUr (35)
i T

where Tj runs over the patch of trangles abutting node j (cf. fig. 1).

When triangles become degenerate, however, the gradient is unbounded and
the norm of the gradient is also unbounded. But by squaring the weight S in
the norm in (33) SZ a second norm

—2
IIZUNIG = S#LUr (36)
T

is obtained which is always well-defined, even on degenerate triangles.

Two moving mesh methods based on discrete Least Squares minimisation
will be described here, that of Roe [7] for scalar PDEs which is applicable to
problems with continuous solutions, and that of Baines, Leary and Hubbard
[15] for systems of conservation laws which includes an algorithm which aligns

triangle edges with shocks when flows containing such discontinuities are mod-
elled.

4.4 Least Squares Finite Volumes

In [7] Roe included the nodal positions in the minimization of the discrete Least
Squares norm (33) or (35) of the residual of a first order PDE. Roe uses the
idea of a fluctuation instead of the residual [13], which we now define.

The fluctuation is defined as the integral of the residual in a triangle T

b= [ Lvas, (37)
T
or in its finite volume form, using quadrature,
¢r = S LU (38)

The discrete least squares norm of the residual, from (33) and (35), is therefore

given by
LU= :—d)% = EE ) i (39)
d = St 3 7T St

With the alternative weight SZ in (36) the discrete least squares norm of the
residual is simply the l; norm of the fluctuation,

IZUIB =161, = Y % = 3 35" 4% (40)
T i Ty

14



By including mesh variables in the least squares minimization of (39) Roe
in [7] alleviated the counting problems with the use of a fixed grid where, even
though the norm of the residuals over a patch may vanish, the element residuals
do not, leading to an unsatisfactory solution (see [8]). When nodal positions
are included in the minimization process the number of degrees of freedom is
increased and at convergence the element fluctuations are driven close to zero
and a much improved solution is obtained.

A steepest descent method was used in [7] in which local updates of the
solution and the mesh were made with a safe value of the relaxation parameter
7. The convergence of the algorithm is extremely slow but can be improved by
using a more sophisticated line search [14]. However, what enormously improves
the convergence rate is an updating mechanism which does not come from a full
least squares descent method but which takes updates only from the upwind
direction [8].

As an illustration consider the scalar two-dimensional advection equation

a(z).Vu=0 (41)
Then the fluctuation may be written

3
¢e = _% Z (aeiUeiAYei - beiUeiAXei) (42)

ei=1

where a = (a,b) = (a(Xes, Yei), b(Xei, Yei))-
The steady state residual is

a(z).VU (43)
and, from (38), -
5 9

s % (44)

Then the derivatives of (39) with respect to U; and X; reduce to

_ o (VU (@ vUu — 205
<g.VU,a (8UJ )>d < VU, —(aXT)>d+ {%:( vUT) T =0, (45)

subject to boundary conditions, where from (26) and (27)

8 (VZJ)TJ 1
ou; 257,79 (16)
0(@vU)n, b 1
2 T o Rk = 4

15



Recall that n; is the inward normal to the side of the triangle opposite node
J scaled by the length of that side and AUj is the increment in U across that
side, taken anticlockwise (see fig 1).

Equations (45) may therefore be written

> (@V0); @0y =0 (48)
T;

e ; {(@.VU)T N < o > - %(Q.VU)gw @} —0 (49)

We observe that (48) is identical to (29)) when LU = a.VU, noting that VU is
constant and V¢ = Sy n. However, (49) does not reduce to (30) even when a
is constant.

We show an example below taken from [7].

4.5 Example

Let a(z) = (y, —z) in a rectangle —1 < ¢ < 1,0 < y < 1. Then the solution of
(41) is a semicircular annulus swept out by the initial data, here chosen to be

(50)

g_[1 —06<z<-05
1 0 otherwise

// / g »:_ £ : J .4':.;5&"-‘ ;{-;5 T
B e
A7 “I | I\\'@'r f?'r ¢
A

Figure 3: Initial mesh and solution for the Circular Advection problem.

Results are shown in figs. 3 and 4 for a fixed and moving mesh, respectively,
taken from [15].

As expected the solution on a fixed mesh is poor. However, when the mesh
takes part in the minimization the norm is driven down to machine accuracy.
The redistribution effected by the least squares minimisation forces global con-
servation and equidistributes ¢ amongst the triangles (see Section 6.3) leading
to more uniform convergence. Cell edges have approximately aligned with char-
acteristics in regions of non-zero ¢, allowing a highly accurate solution to be
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Figure 4: Final mesh and solution for the Circular Advection problem.
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Figure 5: Comparison of convergence histories.

17



obtained. Essentially the same final mesh is obtained by the LSMFE method
of Section 3.

The left hand graph in fig. 5 shows the convergence of the solution updating
procedure on the fixed mesh using (a) steepest descent with a global relaxation
factor 7 = 0.5, (b) optimal local updates using a quadratic model, (c¢) optimal
local updates over downwind cells only. Convergence is much improved in (b)
and (c). Even though (c) is not monotonic it converges very quickly, albeit to
a higher value of the functional, due to the nature of the procedure.

The convergence rates obtained when the nodes are allowed to move are
shown in the right hand graph in fig. 5. The iteration is started from the con-
verged solution on the fixed mesh and uses (a) steepest descent with the global
relaxation factors 7 = 0.5 for the solution and 7 = 0.01 for the meshpoints,
(b) a line search using a Newton iteration, (c) a line search with updates over
downwind cells only.

A small amount of mesh smoothing was included in (b) and (¢). In particular,
(b) became stuck in a local minimum if more iterations are used. Node locking
was a problem with the full least squares approach. Node removal or steepest
descent updates may be used to alleviate this problem ([6],[3]) but when tried
in [14] still took over 1000 iterations so were not competitive when compared to
the upwinding approach, which yielded the best result.

Discrete least squares solutions of the Stokes Problem have been considered
in [21]. Here the two different discrete norms (39) and (40) were compared, one
with the area weighting and one without, but little difference was seen in the
results.

5 Conservation Laws by Least Squares

Finally we describe an advance in locating shocks in the solution of systems of
nonlinear hyperbolic equations. In [15] the least squares minimizationn tech-
nique has been used for systems, combining shock capturing techniques with
shock fitting,.

A general system of conservation laws is of the form

divf(u) = 0 = A(u).Vu (51)
where A is a vector of the Jacobian matrices (A, B)T. The integral form is
%f_’(u).ﬁdI‘ =0 (52)
i

where i is the inward facing unit normal.
It is assumed that f is approximated by a piecewise linear function F. Then
the fluctuation in triangle 7" is defined to be

$r = —/ divEdg:j{ F.nds (53)
T aT
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where 8T is the perimeter of T'. The average residual is also defined as

— 1 B
Ry = % F.inds = — 54
T80 Jor =" Sr (54)
where St is the area of triangle 7.
Since F is assumed to be linear in the triangle a trapezium rule quadrature

can be used to write the fluctuation in triangle e, from (53), as
1
8. =3 {(Eor + Epp)ones + (Bop + Fog)oney + (Eog + Fey)onen)} (55)
where n,; (i = 1,2,3) is the inward unit normal to the i*" edge of triangle e

(opposite the vertex ei), as shown in fig. 6, multiplied by the length of that
edge.

Figure 6: A general triangular cell e
It is easy to verify that, for any triangle,
Rey + De2 + De3 = 0’ (56)
so the fluctuation (55) may be written as
1
®. = ] {E.1 .m0+ Eopngy + Fogones} (57)

or, since n, = (AYe;, —AX,;), as

3
1
2= 3 3 (FulYii — GulX.:) (58)

ei=1

(cf. (42), where F = (F, G) and (A¢1 X, Ap1Y) = (Xeg — Xes, Yez — Yes) denotes
the difference in X taken across the side opposite node el in an anticlockwise
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sense (with similar definitions for (A.3X,A.Y) and (Ae3X, A3Y)) (see fig.
6). A useful dual form of the fluctuation is obtained by rewriting (58) as

3
1
e =3 Y (YeilFei — XeiAGe) (59)

ei=1

We aim to set the fluctuations ®, to zero in order to minimize a vector form of
(35).
Two special systems of interest are the Shallow Water equation system and

the Euler equations of gasdynamics. Details of these systems are given in e.g.
[14].

5.1 Use of Degenerate Triangles

In the presence of shocks least squares methods give inaccurate solutions which
are unacceptable. In [15] a way of combatting this problem is shown which is
to divide the region into two domains and introduce degenerate triangles at the
interface. The least squares method with moving nodes is then used to adjust
the position of the discontinuity, as in shock fitting methods.

An initial approximate solution to the equations can be found by any stan-
dard method. In [15] a multidimensional upwinding shock capturing scheme
is used. An initial discontinuous solution is then constructed by introducing
degenerate (vertical) triangles in the regions identified as shocks, using a shock
identification technique. This step is carried out manually in [15] although de-
generate triangles can be added automatically using techniques that exist in the
shock fitting literature (see for example [16]). The corners of the degenerate
triangles are designated as shocked nodes and these form an internal boundary,
on either side of which the least squares method is applied in the two smooth
regions where it is known to perform well. The position of the discontinuity is
then improved by minimising a shock functional which is derived from (40).

Consider the interface shown in figure 7. The fluctuations @4 and ®45 in
adjacent degenerate triangles dy and d on the edges i = (i, jr) and j = (¢r, jr)
are, from (57),

1 1
®, = -3 [Ez] ;. 4, = 9 [EJ] Bip (60)

respectively, where the square bracket denotes the jump across the discontinuity.
Then

mg’] le +(:§’£2(§d2 = % {([Ez]ﬂzL)T ([Ez]ﬂ”,) + ([Ej]‘ﬂjL)T ([EJ]HJL)} (61)
and the functional

> @7ar (62)

TeQp
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(cf. (40)) is minimized to improve the position of the shock, where Qp is the
set of degenerate triangles. This norm is always bounded, even at shocks where
U is discontinuous. On the other hand, the average residual, given by (39), is
not bounded at shocks.

u

Figure 7: Degenerate triangles dy, ds.

A recent result of Nishikawa, Rad and Roe [28] somewhat surprisingly sug-
gests that the capability of fluctuation splitting methods to capture character-
istics or shocks depends on the quadrature used in defining the fluctuation.

A descent least squares method is used on (62) to move the shocked nodes
into a more accurate position. The procedure is interleaved with a descent least
squares method on (39) for the smooth solution on either side.

When updating the nodal positions X; and X, it is required that they
have the same update (so that the cell remains degenerate). The update comes
from minimization with respect to their common position vector. Degenerate
quadrilaterals can be used instead of degenerate triangles.

We reproduce here two results using this technique, taken from [15].

5.2 Numerical Results for Discontinuous Solutions

Results are shown from two problems which exhibit discontinuous solutions,
one for the Shallow Water equations and the other for the Euler equations of
gasdynamics.

The Shallow Water equations system can be used to describe the problem of
a transcritical constricted channel flow which exhibits a hydraulic jump in the
constriction. The computational domain represents a channel of length 3 metres
and width 1 metre with a 10% bump in the middle third. The freestream Froude
number is defined to be Fo, = 0.55, the freestream depth is ko, = 1m (and the
freestream velocity is given by (tco, Vo) = (1.72,0).) An initial solution is found
by the Elliptic-Hyperbolic Lax-Wendroff multidimensional upwinding scheme of
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Mesaros and Roe, see [17]. The hydraulic jump is then located and degenerate
quadrilaterals added at the approximate position of the shock. The best position
of the shock is then sought using a least squares descent method with degenerate
triangles, moving the nodes to improve the position of the shock.
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Figure 8: Mesh and Height Contours for the Shallow Water example.

Results are shown in fig. 8 which shows the meshes and solution depth
contours obtained. A bow-shaped hydraulic jump which is strongest at the
boundaries is predicted. This agrees with the solution obtained using a shock
capturing solution on a very fine mesh. Here it is achieved sharply at very much
less cost.

In the second example the Euler equations of gasdynamics are considered
written in conserved variables.

The example chosen exhibits the shock fitting capabilities of the method for
a purely supersonic flow which has an exact solution [18]. The computational
domain is of length 3 metres and width 1 metre. Supersonic inflow boundary
conditions, given by

U©,y) = (1.0,2.9,0,5.99073)"
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U(z,1) = (1.69997,4.45280,—0.86073,9.87007)}, (63)

are imposed on the left and upper boundaries, respectively. At the right hand
boundary supersonic outflow conditions are applied, while the lower boundary
is treated as a solid wall.

The boundary conditions are chosen so that the shock enters the top left
hand corner of the region at an angle of 29° to the horizontal and is reflected
by a flat plate on the lower boundary. The flow in regions away from shocks
is constant. The same strategy is employed as in the previous example, with
the results shown in figure 9 where the mesh and the density are shown. The
solution has a shock which comes in from the top left hand at an angle of 29.2°
to the horizontal and is virtually constant apart from the discontinuities, in
close agreement with the analytic solution.

N RN o \l[‘\N\SS
\ > NN N N\
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é N = e R
N :,\i‘

Figure 9: Mesh and Density for the Euler equations example.

The final section in this chapter highlights the links between the minimiza-
tion procedures discussed previously and the ideas of equidistribution.
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6 Links with Equidistribution

The well-known equidistribution principle (EP) in one dimension involves lo-
cating meshpoints such that some measure of a function is equalised over each
subinterval [22]. In one dimension, denoting by z and £ the physical and com-
putational coordinates, respectively, define a coordinate transformation

z = z(£) £€0,1] (64)

with fixed end points #(0) = a,z(1) = b, say. The computational coordinates
are given by )
@-:% . i=0,1,.,N (65)

where N is the number of mesh points

A positive monitor function function M(u) is chosen that provides some
desired measure of the solution u to be equidistributed. The integral form of
the EP is then given by

z(¢)
/0 M(u)dz = €0 (66)

where 6 = fol M(u)dz. Differentiating (66) twice with respect to £ gives the
alternative differential form

56—5 (M(u)g_‘g) =0. (67)

In practice a discretized form of (67)
Mj-1/2(2j = @j-1) = Mjs1/2 (25401 = 25) (68)

may be solved subject to the boundary conditions z(0) = a, z(1) = b.

The method has become very popular in many contexts. However, different
monitor functions are often required for different purposes [22]).

Since the monitor function depends on u, which depends in turn on z, an
iteration procedure is needed to solve (68). More specifically, the monitor func-
tion depends on the solution of the PDE, so equation (68) should be thought of
as just one step in an iterative algorithm for both the mesh and the solution.

In iteratively solving (68) a single step of an iteration for each equation may
be generated and the mesh iterations interleaved with the iterations for solving
the PDE. These iteration steps may be chosen to involve only one node at a
time (so that the iteration is tantamount to a sweep through the mesh) and
then we have a sequence of local problems as in sections 3-5 above.
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6.1 Approximate Multidimensional Equidistribution

Equidistribution was conceived as a technique for approximation in one dimen-
sion. Nevertheless there have recently been important developments in multidi-
mensional equidistribution, (see [23],citeBaines99b). However, we shall discuss
only approximate generalizations to higher dimensions here, since these are sim-
ple to implement and relate to other ideas in this Chapter.

A formal generalization of (68) is

S Mz -2)) =0 (69)
e€{7;}
where Z7 is the centroid of triangle e, M, is a weight and {T}} is the set of
triangles surrounding node j. (see fig. 1). Although the formula is convex,
there are examples of meshes in which mesh tangling can take place in this case
[19].
The formula (69) is not a statement of equidistribution, but it does have an
interpolatory status, intuitively equidistributing in the two limits

(a) if M, = constant Ve, g; is the average of the centroids of the surrounding
triangles,

(b) if one M, dominates, say Mg, then the nodes cluster towards the centroid
of the element E.

The positions of the mesh vertices may also be interpreted as the solution
of the least squares minimization problem (see [24], [25])

e 2
min} | Me(; - 2.;)", (70)
7 e

6.2 A Local Approach to Approximate Equidistribution

Again, the use of iterative techniques facilitates a local approach in which the
iteration may be carried out a node at a time, sweeping through the mesh.
Consider the iteration in which mesh points are moved to weighted averages of
the positions of centroids of adjacent cells.
In one dimension an iteration for the solution of (68) is of the form
i1 Mioy(f 427 + Moy (27 + 2740)
J 2(M~_%+Mj+%)

(71)
which is convex, convergent, and does not allow mesh tangling [19]. In two
dimensions a corresponding iteration for (69) is

—n
Jr S ZeE{Tj} M.z,

z (72)
g ZGE {T5} Me
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6.3 Approximate Equidistribution and Conservation

A link between discrete least squares and equidistribution is described in [20]
where it is shown that least squares minimisation of the residual of the di-
vergence of a vector fleld is equivalent to that of a least squares measure of
”equidistribution” of the residual.

The conservation law (51) is considered where u is approximated by the
continuous approximation U. The fluctuation @, is defined as in (53) and the
average residual as in (54). Then the following identity holds.

(527 (smsrn)

N B A ) ) )
- (Z mi) +5 3 Y (RT - RT)Sn.5n,(Br, - Ry (79)
Now
N
> Sr =0 (74)
i=1

is equal to the total area of the union of the triangles 2 and may be taken to
be constant. Moreover, by definition,

T N
; ®; = — ; /e divFE(u)dx = l{m F(u).ds (75)

by internal cancellation, which is independent of interior values of F and interior
mesh locations.
We may then write (73) as

2
GRIE = (§_Eds) + IR (70
o
where

N
IR|I7, =) RISrRy (77)
i=1

corresponding to (39) and where

N N

_ 1 _ _ _ =

IIR||I2, = 3 > Y (R, — Ry;)T S1,Sr; (R, — Rery) (78)
i=1 j=1

which is a measure of equidistribution of the average residual R,
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A similar result can be derived for the norm (40). The identity

2
N = ( fﬂzd) TS (79)

holds, where N is the number of cells and

N
|7, = &7, &, (80)
i=1
proportional to (40), and
1 N N
N2 = 5 > > (@1 — 1) (P, — @) (81)
i=1 j=1

If we allow only interior mesh points to be varied, then (75) is a fixed quantity
and in any minimization procedure the two norms (77) and (78) (or (80) and
(81)) will be minimized simultaneously. The minimization of (77) (or (80))
(corresponding to finding a least squares approximation to the solution of (51))
is equivalent to minimising a measure of equidistribution over the triangles in
the sense of (78) or (81). This result holds in any number of dimensions and in
an iterative context encourages convergence to take place in a uniform way.

Finite volume methods of the type discussed here may not give very accurate
solutions. However, as far as the mesh is concerned, high accuracy is not crucial.
A finite volume approach may therefore be sufficiently accurate for the mesh
locations but for a higher order solution a more sophisticated method, such as
high order finite elements or multidimensional upwinding ([26],[27]), may be
required for the solution on the optimal mesh.

7 Summary

The MFE method is a Galerkin method extended to include node movement.
For the PDE

oF oF
Lu——a—u+V.8vu—0 (82)
the steady MFE equations provide a local optimum for the variational problem
mip / F(U,VUdz (83)

in a piecewise linear approximation space with moving nodes.
Solutions of such PDEs may also be obtained by direct minimization of (83).
A local approach is possible which is advantageous in reducing the complexity
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of the mesh location procedure and in applying constraints which preserve the
integrity of the mesh. An approach of this kind was described in section 3.

The Least Squares Moving Finite Element method (LSMFE) is a least
squares method for steady first order PDEs which includes node movement.
In the steady state the LSMFE equations for Lu = ( are equivalent to the
steady MFE weak forms for the PDE

8 (Lu)® 8(Lu)®\ _
~ du +V'(8Vu)_0 (84)

and therefore provide a local minimum for the variational problem

) 2
pip [ (20)d (85)
Moreover, if LU is the divergence of a continuous flux function then the flux
across element boundaries is asymptotically equidistributed over the elements.

A least squares finite volume fluctuation distribution scheme with mesh
movement, given by Roe in [7] is an adaptive mesh method based on min-
imisation of a weighted I3 norm of the residual of a steady first order PDE over
the solution and the mesh. It also uses a local approach and a steepest descent
algorithm. It lacks the optimal property of LSMFE but has the property that, if
LU is the divergence of a continuous flux function, then the flux across element
boundaries is equidistributed over the elements in the sense of (78) or (81), thus
proceeding to the steady limit in a uniform way.

For scalar problems convergence can be greatly accelerated by carrying out
the iterations in an upwind manner.

For problems with discontinuities the mesh movement technique enables im-
provement of the location of the discontinuity in a manner akin to shock fitting.
By minimising a measure of the fluctuation in degenerate triangles an initially
approximate position of the shock can be manoeuvred into an accurate position.
The descent least squares method may be used on either side of the shock to
gain good approximations in the smooth regions of the flow.
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