THE UNIVERSITY OF READING

Robust Eigenstructure Assignment in Quadratic
Matrix Polynomials: Nonsingular Case

by

N.K. Nichols & J. Kautsky

Numerical Analysis Report 6/99

DEPARTMENT OF MATHEMATICS



THE UNIVERSITY OF READING

Robust Eigenstructure Assignment in Quadratic
Matrix Polynomials: Nonsingular Case

by

N.K. Nichols & J. Kautsky

Numerical Analysis Report 6/99

DEPARTMENT OF MATHEMATICS



Robust Eigenstructure Assignment in Quadratic
Matrix Polynomials: Nonsingular Case

N.K. Nichols' J. Kautsky

t Department of Mathematics
University of Reading
Reading, RG6 6AX

Great Britain

e-mail: n.k.nichols@reading.ac.uk

Abstract

Feedback design for a second order control system leads to an eigen-
structure assignment problem for a quadratic matrix polynomial. It is
desirable that the feedback controller not only assigns specified eigen-
values to the second order closed loop system, but also that the system
is robust, or insemsitive to perturbations. We show that robustness of
the quadratic inverse eigenvalue problem can be achieved by solving a
generalized linear eigenvalue assignment problem subject to structured
perturbations. Numerically reliable methods for solving the structured
generalized linear problem are derived that take advantage of the special
properties of the system in order to minimize the computational work
required. In this part of the work we treat the case where the leading co-
efficient matrix in the quadratic polynomial is nonsingular, which ensures
that the polynomial is regular. In a second part we will examine the case
where the open loop matrix polynomial is not necessarily regular.

Keywords Second order control systems, quadratic inverse eigenvalue
problem, feedback design, robust eigenstructure assignment, structured
perturbations.



1 Introduction

The time-invariant second-order control system
J% — Dz — Cz = Bu, z(0),2(0) given, (1)

where z(t) € R?, u(t) € R™, J,D,C € R"™", and B € R"*™, arises naturally
in a wide variety of applications, including, for example, the control of large
flexible space structures, earthquake engineering, the control of mechanical
multi-body systems, stabilization of damped gyroscopic systems, robotics, and
vibration control in structural dynamics [1],[2],[12],[13],[19],[5],[21],{10],[11],[3],
[22],(28],[20]. The control problem is to design a proportional and derivative
state feedback controller of the form

u=K1z-|—K2é+r, (2)
where K, Ky € R™*" and r(t) € R™, such that the closed loop system
J%z— (D + BK3)z — (C + BK;)z = Br (3)

has desired properties. The behaviour of the closed loop system (3) is governed
by the eigenstructure of its associated quadratic matrix polynomial

Py()\) = A\2J — M\(D + BK;) — (C + BK3). (4)

The response of the system can therefore be shaped by selecting the feedback
gain matrices K; and K, to assign the eigenstructure of the quadratic polyno-
mial (4). The control design problem is thus formulated as an inverse quadratic
eigenvalue problem. In practice, (if m > 1) there is additional freedom in the
solution to the problem and it is desirable to choose the feedback to ensure
that the eigenstructure of the closed loop system is as robust, or insensitive to
perturbations in the system matrices J, D + BK,, C + BKj, as possible.
Few computational techniques are available for treating the quadratic eigen-
structure assignment problem directly. In [2],[12],[19], methods based on modal
decompositions, which require the simultaneous diagonalization of the system
matrices, are proposed. This approach is not generally applicable since the
open loop system matrices may not always be diagonalizable. In any case,
the technique is not numerically reliable because modal decompositions can be
highly sensitive to computational errors. Two methods that are numerically
reliable are described in {4]. The first of these is a modification of a technique
proposed in [13] and the second is a generalization of a feedback stabiliza-
tion procedure given in [6]. Both of these techniques aim to ensure that the



(augmented) matrix of eigenvectors is well-conditioned for inversion, which is
a desirable property of the design. These procedures do not, however, ensure
the robustness of the closed loop system.

In the majority of methods that have been proposed for solving the robust
quadratic eigenvalue assignment problem, the second order control system (1)
is rewritten as a first order system and techniques for treating the generalized
linear feedback design problem are applied. There are two difficulties in using
this approach. The first is that the measure of robustness for the linear problem
is not the same as for the quadratic problem, since the allowable perturbations
in the linear system are more general than in the quadratic problem. The
second difficulty arises because the linear system has double the dimensions
of the original quadratic system and, hence, the computational work used to
solve the problem is greater than necessary.

In [14] we have developed numerical techniques for maximizing the robust-
ness of the feedback design in linear systems that are subject to structured
perturbations. We show here that the sensitivity of the eigenvalue problem for
the quadratic polynomial is equivalent to that for a generalized linear pencil
subject to a specific class of structured perturbations. The robustness of the
second-order closed loop system can thus be ensured by solving a generalized
linear eigenvalue assignment problem subject to this class of perturbations.
We extend the methods derived in [14] to generalized linear systems and show
how the special structure of the linear pencil derived from the quadratic poly-
nomial can be exploited to reduce the computational work needed to solve the
problem.

We consider here the case where the system matrix J is nonsingular and
the quadratic polynomial is thus guaranteed to be regular. In a second paper
we will consider the case where the system matrix J may be singular and
the quadratic polynomial associated with the open loop system may not be
regular. The aim of the feedback design is then to guarantee the regularity of
the closed loop system as well as to assign the finite eigenvalues of the system
robustly.

In the case where J is nonsingular, the quadratic matrix polynomial (4) can
be reduced to a monic polynomial by applying the inverse of J from the left.
In practice the inversion of J should be avoided to ensure numerical reliability.
The nonsingularity of J is assumed here in the theoretical derivation of the
robustness measures, but the computational methods derived here do not use
this inverse and rely only on numerically stable procedures. We begin by
presenting the background and sensitivity theory for the quadratic eigenvalue
problem. In Section 3 we establish the relation between the quadratic problem



and the linear eigenvalue problem subject to structured perturbations. The
robust eigenstructure assignment problem is defined and analysed in Section 4,
and a numerical method for constructing the feedback controller is described
in Section 5. The results are summarized in the final section.

2 Quadratic Eigenvalue Problem

2.1 Preliminary theory

The quadratic matrix polynomial
P\ =XJ-\D-C. (5)
and the corresponding second order system (1) are said to be regular if

det(P(A)) #0 for some X € C. (6)

We assume throughout that the matrix J is nonsingular. The polynomial
P(])) is thus regular and the system (1) is solvable in the sense that it admits
a classical twice-differentiable solution z(t) for all continuous controls u(t) and
any initial conditions z(0), z(0) € R™. This solution can be characterized in
terms of the eigenstructure of the quadratic polynomial P()).

For J nonsingular, the generalized eigenvalues of the quadratic polynomial
are given by the 2n values of A € C for which det(A\®2J — AD — C) = 0.
The corresponding right and left eigenvectors are defined, respectively, to be
nonzero vectors v and w satisfying

(\2J—AD-C)v = 0,

wH()2J-AD-C) = O "

Regularity of the polynomial ensures that there exist full rank matrices V,W €
Cr*?" that simultaneously satisfy

JVAZ - DVA -CV = 0, @)
ANWHEJ - AWED —wHC = o,
and
vwHEi=0, VAWHEI=1, (9)

where A € C?"*?" ig in Jordan canonical form with the eigenvalues of P())
on the diagonal. The columns of V' and W comprise, respectively, the right
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and left eigenvectors and principle vectors of the quadratic polynomial. The
relations (9) define a specific normalization of these vectors.

We assume that the modal matrix V satisfying the first of (8) is such that
V = [VT,(VA)T|T is nonsingular. Then, in the notation of [7], the matrix
V and the Jordan matrix A together form a Jordan pair of the polynomial
P()\). The matrix WH = V=10, I]TJ~! then satisfies the second of (8) and
the relations (9) also hold. The matrices V, A, W are known as a Jordan triple
of the quadratic polynomial. Conversely, we find that if V,A,W satisfy (8)
and (9), where A is in Jordan form, then V, A, W form a Jordan triple and we
can establish the following lemma.

Lemma 1 Let V,W be full rank matrices satisfying (8)-(9), where A is in
Jordan canonical form. Then the matriz V = [VT,(VA)TIT is nonsingular
and its inverse is given by

vi=[AwHs-wHD wH)). (10)
Proof. If (8) and (9) hold, then the conditions

VAWHE] - VWHD = 1,

11
V(AZWHJ — AWHD) =VwWHC = 0, (i
also hold. Therefore
|4 H H H
a AWH T -WHD,WH ]| = Ly, (12)

which proves the result. 0O
The solution to the second order system (1) can be written in terms of the
Jordan triple V, A, W as follows.

Theorem 2 Let V,W, A satisfy (8)-(9) and let u(t) be a continuous function
on the interval t € [0,T]. Then, the solution to the second-order system of
differential equations (1) is given ezplicitly for all t € [0,T] by

z(t) = Vexp(At)(AWHJ — WHD)z(0) + V exp(At)WH Jz(0)

(13)
+ [1V exp(A(t — 5))WH Bu(s)ds.

Proof. The proof is by differentiation and direct verification. We let z(¢)
be defined by (13) and assume that (9) holds. Then, by Leibnitz’s rule, the
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continuity of u(s) and exp(A(¢t — s)) for s,t € [0,T] implies that the first and
second derivatives of z(t) are given by

z = VAexp(At)(AWHJT — WHD)z(0) + VAexp(At)WH J3(0)
+ [EVAexp(A(t — s))WHBu(s)ds,
Z = VAZexp(At)(AWHJT — WHD)z(0) + VA2 exp(At)WH J2(0)
+ TV A2 exp(A(t — s))WH Bu(s)ds + J ' Bu(t).

(14)

The relations (9) imply also that the initial conditions on z and z at ¢t = 0 are
both satisfied. The proof then follows from (8) by direct substitution of (14)
into (1). (See also [7], [17].) O

The response of the control system is therefore shaped by the eigenstructure
of its corresponding quadratic polynomial, and the robustness of the system
design depends on the sensitivity of the eigenstructure to perturbations in
the system matrices. In the next sections, measures of the sensitivity and
robustness of the system are derived.

2.2 Sensitivity and robustness

In order to measure the sensitivity of an eigenvalue of the quadratic polynomial
P()) to perturbations in its coefficent matrices, we follow the approach of
Wilkinson [26]. Without loss of generality (since J is nonsingular), we let
JoJ,J6D,J6C € R™ ™ denote the perturbations in the coefficient matrices
J, D, C, respectively. We assume that \ is a simple eigenvalue of P()\) with
corresponding right and left eigenvectors v and w satisfying (7). The condition
number of A is then defined to be

¢(A) = limsup (|3A|/e), (15)
where
(3 + 82)2(J + J8J) = (A + 6X)(D + J8D) - (C + J6C)) (v +8v) =0, (16)

and
1[6J,6D,6C]|l, < e. (17)

It is assumed that € is sufficiently small to ensure that J(I+4J) is nonsingular
and the perturbed polynomial thus remains regular. (It is assumed implicitly



in the definition that the perturbations 6\, év — 0 as € — 0. See also [9].)
From this definition we have that

[6A] < e(A)e + O(e?), (18)

and the condition number c()\) therefore gives a measure of the sensitivity of
) to perturbations of order € in the coefficients of P()A). An explicit form for
c()) can be derived as follows.

Theorem 3 Let \ be a simple eigenvalue of the quadratic polynomial (5).
Then, the condition number c()) is given by

w7, v,

N = H @I - D]’

(19)

where e = (At + | A2 + 1)2.

Proof. By expanding (16), premultiplying by w and applying (7) we
obtain

wH@EM —D)v = —wHJ(\26J — A6D — 6C)v + O(e?)
Av
(20)
= —(WHJ)[8J,6D,6C] | =Xv | + O(€?).
—V

The assumption that X is a simple eigenvalue implies that wH(20\J — D)v # 0,
and hence an upper bound on the first order perturbation in A is given by

o|wiJ| Ivl,

|wH(2XJ — D)v]|

|6A] < 18J,6D,6C]|; + O(€?). (21)

To show that this upper bound is attained we let T = (e/a)JT wvi / HWHJ”2 vy
and take 6J = M\2T, 6D = —AT and 6C = —T. Then
1[6J,6D,6C]|l, = e (22)

and, since
IwH J(\26J — A6D ~ 6C)v| = ea “WHJHZ Ivl,, (23)



we obtain equality in (21) for these choices of the perturbations. Dividing (21)
by € and taking the limit as ¢ — 0 then completes the proof. 0O

The condition number ¢()) given by (19) measures the sensitivity of the
eigenvalue A to perturbations in P()) in an absolute sense. For a nonzero eigen-

value, a measure of the relative sensitivity is given by the condition number
k()) defined, as in [25], to be

£(3) = lim sup (|3M/ (e X)) (24)
With this definition we find that

o|wiJ| vl

IA[wH(2XJ — D)v|’

k() =c(A)/[A = (25)
This expression is similar to the result derived in [25]. The difference is due to
the definition of the perturbations and the form of the bound on §J,4D,8C.
The particular form chosen here ensures that the same condition number is
derived if the polynomial is first reduced to monic form. It also allows the
relations between the quadratic and linear cases to be established directly, as
shown in Section 3. More importantly, this formulation leads to a numerical
procedure for solving the robust eigenstructure assignment problem that does
not require the inversion of the matrix J.

To measure the robustness of the second-order system (1), we need an indi-
cator of the overall sensitivity of the eigenvalues of the corresponding quadratic
polynomial (5). The condition number (19) gives a proportional measure of the
sensitivity of a simple eigenvalue to perturbations of order € in the coefficient
matrices. For a nondefective eigenvalue A of multiplicity p, the condition num-
bers (19) are also well-defined for a particular choice of the basis eigenvectors
{v;jH,{w;}} spanning the corresponding right and left invariant subspaces.
Provided that these bases are biorthogonal with respect to the matrix 2A\J — D,
then an equivalent proportional measure of the sensitivity of the eigenvalue is
given by the square root of the sum of the squares of all the associated con-
dition numbers. If the system has a defective multiple eigenvalue, then the
sensitivity of some eigenvalue to perturbations of order ¢ is expected to be
larger by at least an order of magnitude in e. Therefore, systems that have
defective eigenvalues are necessarily less robust than nondefective systems.

As a global measure of robustness we thus take

V2 = ijzc()\j)Q, (26)



where the eigenvalues {);}7 of the system are assumed to be nondefective and
the positive weights w;, j = 1,...,2n, satisfy E?’;l w]z = 1, with w; = wy
if \j = Ag. (See also [16], [15].) If the right and left eigenvectors v;, w;,

corresponding to A;, are normalized such that

1 .
(M1 + P+ 1) vl =1, Wi 2\ T =D)vil =1, j=1,...,2n, (27)

then the robustness measure v% can be written
2 o H 2 H |2
V= ij ”Wj J”z - ”D“’W J”F’ (28)
i=1
where D, = diag{wi,...,won}. (Here |(-)|r denotes the Frobenius matrix

norm.) The normalization (27) is consistent with (9) and is selected to enable
the relationships with the linear eigenvalue problem to be established.

2.3 Monic polynomial

Of practical interest is the case where P()) is a monic polynomial with leading
coeficient matrix J = I. It is assumed that this leading coefficient matrix is
not subject to perturbations. We consider specifically the monic quadratic
polynomial

P(X\) = M1 — My - Ay, (29)

corresponding to the second order system (1), where J = I, D = A;, C' = A;.

A measure of the sensitivity of a simple eigenvalue XA of the monic polyno-
mial (29) to perturbations 6A;,dA; in its coefficient matrices A, As, respec-
tively, is given by the condition number ¢()) defined in (15). The right and
left eigenvectors corresponding to A are again denoted by v, w and the first
order perturbation dA now satisfies

(A + X)L = (A + 6X) (A3 + 645) — (A1 + 0A1)) (v46v) =0,  (30)

where
[[6A1,84:]], <. (31)

An explicit form for ¢()) in this case can be derived as follows.

Theorem 4 Let ) be a simple eigenvalue of the monic polynomial (29). Then,
the condition number c¢(\) is given by

a|wH| vl
‘N = REEAT . A;;v| ’

(32)
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where & = (JA[2 +1)2.

Proof. By expanding (30), premultiplying by w#’, and using the assumption
that A is a simple eigenvalue, we can show, by similar arguments to those in
Theorem 3, that an upper bound on the first order perturbation in A is given
by

& [wh|, Ivl,
|WH (2)\[ . A2)
This upper bound is attained for the perturbations §4; = T and 645 = AT,
where T = (e/&)wvi/ HWH H2 |v|, , since this choice ensures that

[[6A1,64:], =€ (34)

[8A] < o7 1541, 842]l + O(€?). (33)

and
IwH (A6 Ay + 6A1)v| = e ”wH ”2 v, - (35)

Dividing (33) by € and taking the limit as e — 0 then completes the proof. [

The form of the condition number in the monic case is thus the same as
in the generalized case up to a constant factor. The difference is due to the
different assumptions on the allowable perturbations.

The condition number (32) gives an absolute measure of the sensitivity of
the eigenvalue )\ in the monic case. For a nonzero eigenvalue, a measure of the
relative sensitivity is given by the condition number £(\) defined in (24). We
find now that
a[w], I+,

[IM|wH (2A] — Ag)v|

The global measure of robustness in the monic case is also taken to be 12,
defined as in (26). Normalizing the eigenvectors of the polynomial such that

w(A) = cA)/I1Al = (36)

1 .
A+ NP Vil =1, WEENI-Avjl=1,  j=1,...20, (37)
then gives

2 ol H? H|?
2= S|l - -
‘7=

In both the generalized and the monic quadratic polynomial cases, the
control design problem is to select the feedback gains to assign a given set
of 2n nondefective eigenvalues to the second-order closed loop system and to
minimize its robustness measure v2. In Section 3 we show that this problem can
be solved by minimizing the robustness of a generalized linear system subject
to a restricted set of perturbations.
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3 Generalized Linear Problem

3.1 Transformation of the system

The inverse quadratic eigenvalue problem is commonly treated by transforming
the second-order control system (1) into a generalized linear state-space, or
descriptor, system of the form

Ex = Ax+ Bu, x(0) given, (39)

where E, A € R*?" B ¢ R?»*™ and x = [ 27, T ]T. Various transforma-

tions can be used to embed the second-order equations into the linear form.
We consider the generalized linear system where

I 0

) A=
0 J
This form is suitable for treating the feedback design problem. Different trans-
formations may be desirable for other purposes (see [25]).

The response of the system (39) is governed by the eigenstructure of the
generalized linear matrix pencil

0 I
¢ D

E= (40)

’

L()) = \E — A. (41)

Since J is nonsingular, the linear pencil L(A) is regular in the case where
E, A are defined by (40). The system (39) is then uniquely solvable for any
continuous control u(t) and the solution is equivalent to that of the second-
order system (1). The solutions to (1) can therefore also be characterized in
terms of the eigenstructure of L(}).

The generalized eigenvalues of the linear pencil (41) are given by the 2n
values of A € C for which det(AE — A) = 0. The corresponding right and left
eigenvectors are defined, respectively, to be nonzero vectors ¥ and w satisfying

AE—- A% = 0,

wH(\E — 4) = “2)

Regularity of the pencil ensures that there exist nonsingular matrices V.,We
C2?n%27 that simultaneously satisfy

EVA—-AV = 0,

3 N 43
AMWHE —WHA = 0, (43)
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and 3 3
WHEV =1, (44)

where A € C2"%2" ig in Jordan canonical form. The columns of V and W
comprise, respectively, the right and left eigenvectors and principle vectors of
the linear matrix pencil. The relation (44) defines a normalization of these
vectors.

The equivalence between the eigenstructure of the linear matrix pencil (41)
with coefficients given by (40) and that of the quadratic matrix polynomial (5)
can now be established.

Theorem 5 Let E, A be given by (40). If V,W are nonsingular matrices
satisfying (43)-(44), where A is in Jordan canonical form, then

- V -
V= [ - } ., WH=[AWH]-WHD WH] (45)

where V,W are full rank matrices satisfying (8)-(9). Conversely, if V,W are
full rank matrices satisfying (8)-(9), then V., W given by (45) are nonsingular

and satisfy (438)-(44).

Proof. We let V = [Vi#,V1H . If V satisfies the first of (43), where E, A
are defined as in (40), then

1% = WA,

o i (46)
CVi+ DV, = JWA.

It follows that Vi = V satisfies the first of (8) and V5 = V A. Conversely, if V

satisfies the first of (8), then

A[}

and the first of (43) is satisfied. The relation between W and W is shown
similarly. The invertibility of E together with (44) then implies that E~1 =
VWH and hence, from (45), V, W must satisfy VWH = 0 and VAWH = J—1
and (9) must hold. Conversely, if conditions (8)—(9) are satisfied, then, by
Lemma 1, V,W are invertible and VWH = E~!, which implies that (44)
holds. O

We next relate the sensitivity of the eigenstructure of the quadratic matrix
polynomial to that of the linear matrix pencil.

VA
CV +DVA

VA
JV A2

Vv

A, (7
- (47)
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3.2 Sensitivity to structured perturbations

The sensitivity of a simple eigenvalue A of the linear matrix pencil (41) to
arbitrary perturbations in the pencil is known to be directly proportional to
the condition number

t(\) = [ E|, 191, /1%" B9, (48)

where v, W are the right and left eigenvectors of the pencil corresponding to A.
(See [26],[9],[23],[24].) In the case where the coefficient matrices of the pencil
are given by (40), this condition number is not equivalent to the condition num-
ber c(\) of the embedded quadratic matrix polynomial derived in Section 2.2.
The condition number c¢”()\) measures the sensitivity of A to arbitrary pertur-
bations in all components of the coefficient matrices F, A of the pencil, whereas
the condition number ¢(\) measures the sensitivity of A only to perturbations
in the coefficient matrices J, D, C of the quadratic polynomial.

In order to establish a condition number for the generalized linear eigen-
problem that is equivalent to that of the quadratic eigenproblem, we need to
find a measure of the sensitivity of an eigenvalue of the pencil (41) to a specific
class of structured perturbations. We assume again that A is a simple eigen-
value of L()\) with corresponding right and left eigenvectors v, w, respectively.
We consider perturbations 0F,§A to the coefficient matrices E, A of L(\) of
the form

0E = EFARGT, 0A=EFAAGE, (49)

where Ag, A4 are arbitrary (unknown) disturbance matrices and F, Gy, G>
are specified matrices that define the structure of the perturbations. The
sensitivity of ) to perturbations of the form (49) can then be measured by the
condition number ¢()\), defined as in (15), where the first order perturbation
O\ now satisfies

((A+62)(B + BFARGT) - (A+ EFA AG)) (W +6%) =0,  (50)

and
I[AE, Adlly <e. (51)

It is assumed that e is sufficiently small to ensure that E(I + FAgGY) is
nonsingular and the perturbed linear pencil therefore remains regular. An
explicit form for é(\) is given as follows.
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Theorem 6 Let \ be a simple eigenvalue of the linear matriz pencil (41).
Then, the condition number &()) is given by

_ e et

e WEBY]

(52)

where Gy =[ A\G1, —G3 |

Proof. Applying arguments analogous to those in the proofs of Theorems 3
and 4, we find from (50) that

|ON|WEEY| = |WHAEFARGT — EFA 4GV + O(€?)
A\GT
=  |WHEF[Ag, A4l G}T |+ 0(e?) (53)

s r|, 659+ 0@

IA

Regularity of the pencil ensures that WZ E¥ # 0, and hence an upper bound
on the first order perturbation in X is given by

|w"erl, |e39]

|WwHEvV|

|0A} < 2 {Ag, Aally + O (54)

Equality in (54) is achieved for the perturbations
Ap = \ETFTw¥HGe/r, Aas=-—-ETFTWvHGye/T, (55)
where 7 = HVVHEF“2 ”G}:G”z. Then |[Ag, A4l|, = € and
W7 EDFARGT — FALGTI9| = ¢|[w" EFH2 “Gf\?”Q , (56)
and the upper bound on || is attained. Dividing (54) by € and taking the
limit as € — 0 then proves the result. 0O
In the case where the quadratic polynomial is embedded in the linear pencil

(41) and the coeflicients of the pencil are given by (40), the arbitrary pertur-
bations may be taken to be

Ag=06J, Ay4=[6D,5C), (57)

14



and the matrices F, G that structure the perturbations may be defined by

0 0 I
F= , GT=[,1,), Gf= " (58)
The admissible structured perturbations (49) then have the forms
0 0 0 0
OE = ) = ) (59)
0 JéJ JéC JéD
where
1154,8D, 6C1l, = I[Ag, Aall, < . (60)

The condition number &(\) of the linear pencil, subject to the structured
perturbations, can now be shown to equal the condition number c()) of the
quadratic polynomial.

Corollary 7 Let E, A be defined by (40) and let Ag,Aa and F,G ), be defined
by (57)-(58). Then, the condition number ¢(\) satisfies

_a|wf ], v,

N = @A - Dyl

(61)

where o = (|A|* + A2 + 1)'12" and v, w are the right and left eigenvectors of the
quadratic polynomial (5) corresponding to the eigenvalue X.

Proof. From Theorem 5 it follows that

| el v
[wrerl= sl o= G || =] o (| =
"
and
|WHEV| = 22w Jv — wH Dv|. (63)

Substitution into the definitions of the condition numbers then establishes the
result. 0O
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An analogous result can be obtained in the case where the embedded
quadratic polynomial is monic. In this case the linear pencil is also monic,
with coefficient matrices
I0
0 I

E= : (64)

Al Ay

0 I

It is assumed that the matrix F remains unperturbed. The arbitrary pertur-
bations are now taken to be Ag = 0 and A4 = [6A1,dAz]. The structure of the
perturbations is defined by F = [0, I,]7 and G = G% = I,,. The admissible
perturbations then satisfy |[6A1,d42]], < € and the condition number &(X),
given by (52), can be shown to equal the condition number ¢()), given by (32).

Corollary 8 In the case of a monic pencil, with coefficients E, A defined by
(64), the condition number ¢(A) satisfies

~

. a|wh| vl A
= WHQ@M - Ag)v] Y

o

(65)

where & = (|A\]* + 1)% and v, w are the right and left eigenvectors of the monic
quadratic polynomial (29) corresponding to the eigenvalue .

Proof. From Theorem 5 we have

Vv
IZn l: :I
AV

The proof then follows as in Corollary 7 with J =1, D = Ay and C = A;. O

=alv|, |WHEEV|=|wl(@A - Ay)v|. (66)
2

|5+, =

3.3 Robustness

As an overall measure of the sensitivity of the linear matrix pencil (41) to
structured perturbations of the form (49), we take a weighted sum of the
squares of the conditions numbers &(%;), j = 1,...,2n, (see [14], [16], [15]).
We assume that the pencil is nondefective, since if any eigenvalue is defective,
the order of the perturbation is expected to be magnified in some eigenvalue.
In the case of a nondefective multiple eigenvalue, the condition numbers are
defined with respect to a particular choice of the basis eigenvectors spanning
the corresponding invariant subspaces and biorthogonal with respect to the
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matrix E. The right and left eigenvectors v, W; associated with each eigenvalue
A; may also be normalized such that

GT vl =1, |wWHEvj|=1, Vj—-1,...,2n (67)
J 2 J

Then (44) holds and the global robustness measure is given by
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where D, = diag{ws,...,won} and w;, j = 1,...,2n, are positive weights
satisfying 377 w? = 1, with w; = wy if Aj = M.

In the case where the coefficients of the linear pencil are given by (40),
we can show, using Theorem 5, that the robustness measure (68) is equal
to the robustness measure (28) of the embedded quadratic polynomial. As
demonstrated in the proof of Corollary 7, the normalizations (67) and (27) are
equivalent and, since &(A\) = ¢()), it follows that

o = |pusrnse, = oo, = o o], =4, o

which proves the result.

The equivalence of the robustness measures can also be established in the
case where the quadratic polynomial embedded in the linear pencil is monic
and the coefficient matrices of the linear pencil are given by (64). Using the de-
finitions of F, G, applicable to the monic case, we find that the normalizations
(67) and (37) are equivalent. The equality between the robustness measures
(68) and (38) of the linear pencil and the monic quadratic polynomial, respec-
tively, then follows immediately from Corollary 8.

The robust eigenstructure assignment problem for the second-order control
system (1) can now be formulated as an equivalent problem for a linear pencil.
Numerical methods previously developed in [14] can then be applied directly to
find the desired feedback gain matrices. In the next section we reformulate the
control problem and establish the theory needed for eigenstructure assignment.
In Section 5 we derive a modified numerical procedure for solving the design
problem that takes advantage of the special structure of the generalized pencil.
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4 Robust Eigenstructure Assignment

4.1 Quadratic control problem

The control design problem for the second-order system (1) is to select feedback
matrices K, Ko to ensure that the closed loop system (3) has a desired modal
response. As demonstrated in Section 2, the modal behaviour of the closed loop
system is characterized by the eigenstructure of its corresponding quadratic
matrix polynomial Py(\) = A2J — A(D + BK,) — (C + BK1). The primary aim
of the controller is therefore to determine feedback gains that assign a given set
of eigenvalues to the quadratic polynomial. The inverse quadratic eigenvalue
problem is stated explicitly as follows.

Problem 1 Given real matrices J,D,C € R"™" and B € R"*™, and a set
of 2n complex numbers L = {\1,...,Aan}, closed under complex conjugation,
find real matrices K1, Ko € R™ "™ such that the eigenvalues of Py()) are equal
toXj, j=1,...,2n.

Conditions for the existence of solutions to Problem 1 are known and the
following theorem is easily established.

Theorem 9 Solutions Ky, K to Problem 1 exist for every set L of self-conjugate
complex numbers if and only if the system (1) is completely controllable, that
18,

rank[\2J —A\D —C,B] =n, VYAeC. (70)

If the system is not completely controllable, then solutions exist if and only
if the set L = {Ly, L} contains Ly, the set of all values of A for which the
system (1) is uncontrollable (that is, the set of values of A for which (70) is
not satisfied).

Proof. The proof follows directly from the standard theory for the equiva-
lent generalized linear system (39), characterized by the matix triple (E, A4, B)
defined as in (40). (See also [4], for example.) O

In the single input case (m = 1), the solution to Problem 1 is unique
and the robustness of the closed loop system cannot be controlled. In the
multi-input case (m > 1), there are extra degrees of freedom in the design
that can be specified so as to optimize a measure of the robustness of the
system. The feedback gains can be parameterized in terms of the eigenvectors
of the closed loop system and the eigenvectors corresponding to the desired
eigenvalues can then be selected to minimize the sensitivity measure 2, defined
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by (26). The degrees of freedom in the feedback matrices are reflected precisely
by the degrees of freedom available for assigning the eigenvectors. The robust
eigenstructure assignment problem is formulated explicitly as follows.

Problem 2 Given real matrices J,D,C,B and a set L as in Problem I,
find real matrices Ki,Ky € R™" and matriz V. € C"*?" such that V =
VT, (VA)T)T is nonsingular,

JVA? — (D + BK,)VA— (C+ BK )V =0, A=diag{\i,..., e}, (71)
and the measure v2, defined as in (26), is minimized.

We remark that the requirement that the matrix A is diagonal, together
with the invertibility of V, ensures that the closed loop system is nondefective.
This requirement imposes certain simple restrictions on the multiplicity of the
eigenvalues that may be assigned. The condition that V is nonsingular is also
needed for a well-posed parameterization of the feedback gains in terms of V.
In the next section we derive conditions for the solution of Problem 2.

4.2 Eigenstructure assignment

The objective of the design problem now is to select the modal matrix V' of
right eigenvectors of the closed loop polynomial P ()) to satisfy condition (71)
of Problem 2 for some choice of K1, K5. We let W denote the corresponding
modal matrix of left eigenvectors of the polynomial. We assume without loss
of generality that B is of full column rank. No restriction is made on the con-
trollability of the open loop system, but it is assumed that the set of prescribed
eigenvalues £ contains each uncontrollable eigenvalue with its full multiplicity.
We remark that although the values of the uncontrollable eigenvalues of the
system are not affected by the feedback, the corresponding eigenvectors may
be modified and the conditioning of these eigenvalues may be improved.

The next theorem provides necessary and sufficient conditions under which
a given set of nondefective eigenvalues and corresponding eigenvectors can be
assigned.

Theorem 10 Let V € C™® be such that V = [VT,(VA)T|T is nonsingular,
where A = diag{\1, ..., Aan}. Then, there exist real matrices K1, Ky, satisfying
condition (71) of Problem 2 if and only if

UL (JVA?2—DVA-CV) =0, (72)
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where

B = [Up, Ui] [ i ] (73)

with U = [Uy, U1] orthogonal and Z nonsinsgular. The matrices K1, Ks are
given explicitly by

[K1,Ko] = ZUF(JVA?2 — DVA - CV)V L (74)

Proof. The assumption that B is full rank implies the existence of the
decomposition (73). Condition (71) then holds if and only if the feedback
matrices K1, Ko satisfy

B[K1, Ko [ ‘YA = (JVA2 = DVA - CV). (75)

Premultiplication by U7 gives

Z[K1, K2V = UF(JVA?—DVA-CV),
0

(76)
= U{(JVA?2-DVA-CV).

If condition (71) is satisfied, then (72) and (74) follow directly, since V is
invertible by assumption. Conversely, if (72) is satisfied and V is nonsingular,
then K1, K given by (74) exist and satisfy (71). (See also [13], [4].) O

An immediate consequence of Theorem 10 is the following.

Corollary 11 The right eigenvector v; of Py()) corresponding to the pre-
scribed eigenvalue \j € L must belong to the space

S; = N{UT (\J — \;D - C)}, (77)
where N'{-} denotes right nullspace. The dimension of S; is given by
dim(S;) = m + ky;, (78)
where ky, = dim(N{[B, \2J — ;D — C|7}).

Proof. From (72) we obtain immediately that

UL (A2J = XD - C)v; =0, (79)
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and therefore vj € S, j =1,...,2n, is necessary. Using (72)and (73) we find
that

Z UTY(3J-\D-C
UT[B,\3J — \;D — C] = 0(; ¢ al (80)
0 Uf(\3J-X\D-0C)

From the definition of k), we find also that rank(U7[B, A?J - \D-C)) =
n — ky,. Since matrix Z is square (m x m) and invertible, we then have
rank(U{F()\gJ — XD = C)) = n —m — ky;, from which (78) readily follows.
0

From Corollary 11 we can now deduce restrictions on the set £ of eigen-
values that can be assigned. If the system (1) is completely controllable, then
the dimension k) is zero for all A. For the closed loop polynomial to be non-
defective, the maximum multiplicity of any eigenvalue A; that can be assigned
is then equal to dim(S;) = m. If the system is not completely controllable
and \; € § is an uncontrollable eigenvalue, then there exists a set of at least
ky; independent (left) eigenvectors of the polynomial Py (2) for every choice
of Kj, Ky. The eigenvalue \; must, therefore, be assigned with multiplicity at
least ky; and at most dim(S;) =m + k).

As a consequence of Theorem 10 we can also derive explicit expressions for
the feedback matrices directly in terms of the right and left modal matrices
V,W of the closed loop polynomial.

Corollary 12 Let V be such that V = [VT,(VA)T]T is nonsingular and con-
dition (72) of Theorem 10 is satisfied and let WHJ = V=10,I]T. Then the
feedback matrices Ky, Ko satisfying condition (71) of Problem 2 are given ez-
plicitly by

Ky = Z7WEUVAWHET - J(VA2WE])? - 0), (81)
Ky = ZWEUIVAWE] - D),

Proof. By definition, the matrices V,A,W form a Jordan triple of the
closed loop polynomial P, ()\) for some Kj, K. Then conditions (9) hold and
WH gatisfies

ANwWH] - AWHED - wHC = AWEBK, + WHBK;. (82)
Premultiplying by Z~U{ JV, using Z~1U{ B = I and applying (9) then gives

the result for Ky. Similarly, premultiplying (82) by Z~1UJ JV A, applying (9)
and substituting for K, then gives the result for K;. (Alternatively, (81) can
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be established using the definition of V1 given by Lemma 1 in the closed loop
case.) [

The solution to Problem 2 can now be found by selecting the columns
v; of V from the subspaces S;, j = 1,...,2n, such that the matrix V=
[VT,(VA)T]T is nonsingular and the robustness measure v* is minimized. The
required feedback matrices K7, Ko can then be constructed directly from (74)
or (81). In the next section we show that this solution can also be obtained by
solving the eigenstructure assignment problem for the corresponding general-
ized linear control system. Methods previously developed for optimizing the
robustness of the linear system subject to structured perturbations are then
adapted to solve the quadratic control design problem.

4.3 Reformulation of the control problem

In order to solve the control design problem, Problem 1, it is common practice
to transform the second-order control system (1) into a generalized linear state-
space (descriptor) system of the form (39), where the coefficients E,A,B are
given by (40). The matrix B is assumed, without loss of generality, to be of
full column rank.
The control problem is now to synthesize a proportional state feedback
controller of the form
u=Kx+r (83)

where K € R™*2% guch that the closed loop system
Ex = (A+ BK)x+ Br (84)

has desired properties. Specifically, the aim is to select real matrix K such
that the 2n eigenvalues of the linear matrix pencil

La(\) = \E — (A+ BK) (85)

corresponding to the closed loop system (84), are equal to A; € L, where
L ={)1,..., A2} is a specified self-conjugate set of complex numbers. In the
case where the system coefficients are given by (40) and K = [Ky, K»)], then
the closed loop pencil has the form

’ I 0 0 I
La(XA) = A - , (86)
0 J C+BK;, D+ BK,

and the solution to the generalized linear inverse eigenvalue problem gives the
solution to Problem 1 immediately.
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The linear inverse eigenvalue problem has been studied widely and con-
ditions for the existence of solutions are well-known [27]. The eigenvalues
of the closed loop pencil L¢(A), given by (85), can be assigned arbitrarily if
and only if the system (39) is completely controllable, that is, if and only if
rank([B, \E — A]) = 2n for all \ € C. If the system is not completely control-
lable, then the prescribed set L of eigenvalues must contain each value of A for
which the system is uncontrollable, with its full multiplicity. In the case where
the coefficients E, A, B of the system are given by (40), the conditions for the
existence of solutions are precisely equivalent to those of Theorem 9 for the
embedded quadratic polynomial.

The robust eigenstructure assignment problem for the generalized linear
system (39) has also been investigated thoroughly [16], [15], [14]. The objective
is to find a nonsingular matrix V comprising the right eigenvectors of the
closed loop pencil Lg(\) for some feedback K such that the robustness of the
closed loop system is optimized. Specifically the aim now is to minimize the
sensitivity of the assigned eigenvalues to structured perturbations of the form
(49). The robustness measure is thus given by 72, defined as in (68). For the
system (39)-(40), this measure is equal to the robustness measure v* of the
embedded second-order system, as shown in Section 3. The solution to the
linear robust eigenstructure problem therefore gives the solution V' = [I ,0[V
and [K1, K] = K to Problem 2 directly.

We remark that the robustness measure for the linear system is commonly
taken to be the sum of the squares of the condition numbers c()), defined as
in (48). This measure gives the sensitivity of the closed loop eigenvalues to
perturbations in all elements of E, A + BK. Its minimal value varies with the
form of linear embedding used and it is not a true measure of the robustness
of the quadratic polynomial. In order for the linear and quadratic inverse
problems to be equivalent, it is necessary to apply the measure of robustness for
the linear system with respect to the structured perturbations. The generalized
linear eigenstructure problem is thus formulated explicitly as follows.

Problem 8 Given real matrices E,A € R2"*2n B ¢ R¥™*™_ g set of 2n
complex numbers L = {\1,...,An}, closed under complex conjugation, and
real matrices F € RQ”X”‘F,GAJ. € Rvxme 4§ = 1,...,2n, find real matriz
K € Rm¥2 gnd nonsingular matriz V € C?*2" such that

EVA—(A+BE)V =0, A=diag{\,...,\n} (87)

. 2 =
and 7% = HDwV‘lFHF is minimized, subject to ”G{J,Vej ||2 =1, j=1,...,2n.
(Here e; denotes the jth unit vector.)
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Conditions under which a given set of nondefective eigenvalues and eigen-
vectors can be assigned to the linear system are given in the monic case in [16].
These conditions can be extended to the generalized (nonsingular) case with
minor modifications and the following results can be established by similar
arguments to those used in [16] and in the proof of Theorem 10.

Theorem 13 Let V € C2*2% be nonsingular. Then, there exists real matriz
K satisfying condition (87) of Problem 3 if and only if

UT(EVA - AV) =0, (88)

Z
i } (89)

with U = [f]o,ﬁl] orthogonal and Z nonsingular. The matriz K is given ex-
plicitly by

where

B = [Us, U]

K=Z"'0F(BEVA - AV)V L. (90)

Proof. See [16]. DO

In the case where the coefficients of the control system are defined by (40),
the decomposition of B can be written in terms of the decomposition (73)
of B. Using the orthogonal matrix U = [Up, U1] from (73), we find that the
decomposition (89) is given by

0
Uo

0 I
Uy 0

Uy = = y =l (91)

H]

The following corollary is then a direct consequence of Theorem 13.

Corollary 14 Let E, A, B be defined by (40). Then the right eigenvector ¥;
of Lg(A) corresponding to the prescribed eigenvalue \j € L must belong to the
space

S; = N{U{ (\E — A)}, (92)

and must satisfy v; = [I, \;I]Tv; with v; € S;, where S; is defined by (77).
Proof. From (88) we immediately obtain

UL (\E - A)¥; =0, (93)
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and therefore ¥; € S;,j = 1,...,2n, is necessary. Using (40) and (91) in (93)
then gives
-vfc uf(\;J-D)

v; = 0. 94
" " : (94)

The second of these relations implies that v; = [v;r, (A;v;)T1T and the first
establishes that v; € S; is necessary. 0

Finally, from the result (90) of Theorem 13 and from (91) we may establish
a direct relation between the solutions to the linear and quadratic feedback
design problems.

Corollary 15 Let E, A, B be defined by (40). Let V be a nonsingular ma-
triz satisfying condition (88) of Theorem 18 and let V = [I,0]V, WHJ =
V=10, I|T. Then, the feedback matriz K satisfying condition (87) of Problem 3
is equal to K = [K1, K3, where K1, Ky are defined by (74), or equivalently, by
(81).

Proof. Substituting (40) and (91) into (90) gives the result immediately.
0

In summary, the solution to Problem 3 can then be found by selecting the
columns V; of V' from the subspaces S;, 7 = 1,...,2n, such that the matrix V
is nonsingular and the robustness measure 7? = v? is minimized, subject to the
constraints ”G}; v, ”2 = 1. The required feedback matrix K can then be con-

structed from (90). If E, A, B are given by (40) and F, Gy = [2jG1,Ga], j =
1,...,2n, are determined by (58), then the solution to Problem 3 immedi-
ately gives the solution V = [I,0]V, [Ki,K3] = K to the quadratic robust
eigenstructure assignment problem, Problem 2.

5 Numerical Algorithm

Previously, in [14], we have developed a numerical algorithm for solving the
linear robust eigenstructure assignment problem subject to structured per-
turbations. In the monic case this method can be applied directly to solve
Problem 3. The algorithm is easily adapted to treat the generalized case. The
method does not, however, take direct advantage of the special structure of
the linear pencil in the case where the linear system represents an embedded
quadratic system.

We now present a modified form of the algorithm that can be applied to
solve the robust quadratic eigenstructure problem, Problem 2.
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5.1 Basic steps

The basic steps of the algorithm are first described. Details of the implemen-
tation are then discussed.

Algorithm 1

INPUT: real matrices J,D,C € R"*" and B € R™"*™, a set of 2n complex
numbers L = {\1,..., en} and a diagonal matriz D, = diag{wi,...,won},
where wj, j =1,...,2n, are real positive weights satisfying Z;’TZI wjz =1, with
wj = wg if A\j = A

Step 1. Find the decomposition (73) of B and an orthonormal basis, com-
prised by the columns of the matriz S;, for the subspaces S;, 7 = 1,...,2n,
defined in (77).

Step 2. Select an initial matriz V = [vi,vs,...,Voy] such that v; € &,
aj|vil, =1, and V = [VT,(VA)T|T is nonsingular, where A = diag{);, j =
1,...,2n} and aj = (M1 + |2 + 1),

Step 3. For j =1,2,...,2n do

Step 3.1 Find vector V; that minimizes

i

over all v; € S;, subject to a;|v;|, =1 and v; fized for all i # j.
Step 3.2. Form updated matrices V = [Vi,...,Vj—1,Vj, Vjt1,...,Van],
and V =[VT,(VMTIT and CONTINUE.
Step 4. Repeat Step 3 until v? has ’converged’.
Step 5. Construct feedback matrices K1, Ko by solving

v

V2= ”DwWHJ”; =10 |

[K1, KoV = Z7WUF(JVA2 —=DVA-CV). DO

We remark that the decomposition of B in Step 1 can be found either by
the QR or the SVD method (see [8]). The matrix S; can be found from the
QR decomposition of (UlT()\gJ - ;D —-0C)T.

If the system (1) is completely controllable and the prescribed eigenvalues
are distinct, then an initial matrix V satisfying the requirements in Step 2 can
always be selected. (Under mild restrictions, this also holds for uncontrollable
systems and/or for prescribed multiple eigenvalues.) To obtain the initial
matrix V' it is generally sufficient to select random vectors from each subspace
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S;. The conditioning of the initial matrix V is not significant and it may be
very close to singular without detriment.

The key step of the algorithm is Step 3. Details of the procedure used for
updating the eigenvectors in Step 3.1 are discussed in the next section. If the
initial matrix V is nonsingular, then each subsequent matrix V generated in
this step is guaranteed also to be nonsingular.

The problem of computing the feedback matrices in Step 5 from the con-
structed matrix V is well-conditioned if V is well-conditioned for inversion.
Since the aim of the procedure is essentially to orthogonalize V with respect
to [0,I]T, V is expected to be reasonably well-conditioned. Additional degrees
of freedom in V may exist, however, and these are then selected ezplicitly in
Step 3.1 to make V as well-conditioned as possible. If the constructed matrix
V is, nevertheless, very badly conditioned, then the closed loop system will
necessarily be very sensitive to perturbations, regardless of the accuracy of the
computed feedback gains. It is then recommended that the set of prescribed
eigenvalues should be altered, allowing a less sensitive closed loop system to
be derived.

As an alternative to the procedure in Step 5, the matrices K, Ky could be
determined by solving for WH J from V(WHJ) = [0, 1]7, and then substituting
directly into (81). Analysis suggests, however, that this procedure will be less
efficient and less accurate than that proposed in Step 5. The solution for
WHJ requires the inversion of V into n right-hand-side vectors, whereas the
solution in Step 5 requires the inversion of V into only m < n right-hand
sides. Moreover, forming the product of the computed WHJ with the other
factors in (81), which already contain numerical errors, is likely to magnify the
computational errors introduced into the feedback matrices and hence to give
less accurate solutions.

5.2 TUpdating the eigenvectors

The computation of the update to the vector v; in Step 3.1 of the algorithm is
accomplished explicitly. In essence, this step aims to orthogonalize the vectors
¥; = [I,\jITvj, j =1,...,2n, with respect to the matrix [0, I]7, subject to
the constraints. In the first phase, orthogonal bases () and q are found for the
space spanned by the fixed vectors v;, 7 # j, and its orthogonal complement,
respectively, and the measure v? is expressed in terms of these bases. Next,
the required vector is scaled to have a fixed normalization and the direction
of the minimizing vector in the required subspace is found by solving a least
squares problem. The optimal normalization is then determined to satisfy
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the constraint. These steps follow the Algorithm of [14], but are modified to
produce the vector v; as efficiently as possible. The technical details are as
follows.

We denote VJ = [V1,.++,Vj—1,Vj41,...,V2y] and let the (complex) QR
decomposition of VJ be given by

Vi = Q. q] , (95)

R

OT

where [@, q] is orthogonal and R is upper triangular and nonsingular. We write
N 2

v; = Sjn € Sj. Then we obtain v? = “DwV_l[O,I]THF = |Y|%, where

-1
. I 0
Y = D, |V S;
)\jI I

A Rt —pR1QH[I, )\ I)TSn QY (96)
= D, :

| 0 p qz
. R71QY — R7H(QF + \Qf)Simpad!
— w )

i pafl

-1
and p= (71, \117Sm) , QF = [Qff,Qf], o = [af', afl)
If g # 0, then using o; |v;|, = |a;n|, = 1 and applying Lemma 2 of [14],
for example, we can show that

2
D~-R~YOH + )\.0H)S. D~R-10QH
ivp, = [ | DR QU AN | Pl QR
ajIm 0 F
(97)
where 62 = qffqs, D; = diag{w,...,wsn-1}, and c is a constant independent
of n.

The problem now is to minimize |Y|% over all n € C™. In order to reduce
this nonlinear minimization problem to a linear least-squares problem, we fix
the normalization of the vector pn. We find the Householder transformation
P such that

(af' + %;a})S; P = oey,, (98)

where ey, is the mth unit vector. From the definition of p, we then have

1=q"[1, ;11" S;pn = (af + Nja3)S;PPY pn = o, PTpm.  (99)
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We may therefore define ) to be such that [f]H S = oPHpy,

Writing P = [P}, p] then gives cPPHpy = Pl , 1] = P;4) + p and the
minimization problem becomes
D,H

a;l

Dy (Hp —~ oh)

Osz

A

(52 P117 +

min

n

; (100)
P

where H = R Q¥ + X;Q)S;, h = R71Q¥ qo. This is a standard linear
least-squares problem that can be solved by the QR (or SVD) method.
Finally we restore the scaling of the optimal vector to satisfy the con-
straints. Since P is orthogonal and the columns of S; form a set of orthonormal
vectors, the required update is given by
1]
1

In the special case where q2 = 0 (or is very small), then |Y| is constant
(almost), independent of 7. In this case the new vector v; could be selected to
be any vector in §;. In order to maximize the orthogonality of V, however, the
new vector is chosen such that [I, \;I]T¥; equals the closest vector to q in the
allowable subspace, given by the projection of q into [, A\;I ]TSj. The required
update is then

v; = 8P / (101)

1
2

;= 8;8F (a1 + Nyaz)/ oS (@ + Kya) - (102)

The new updated matrix V generated by this procedure must be nonsin-
gular. Since the original matrix was nonsingular, the definition of q implies
that q®[I,)\;I]TS; # 0 and o # 0. Hence qf[I, \;I]T¥; # 0 and the vec-
tor [I, )17 V; has a component in the direction orthogonal to all the other
columns of V. The columns of the updated matrix V must therefore all be
linearly independent, which establishes the result.

We may summarize the update step of the algorithm as follows.

Algorithm 1, Step 3.1

INPUT: tol

Step 3.1.1. Form matriz VJ and find its QR decomposition (95) to deter-
mine @ = [Q{I') QgI]Haq = [QfIaqu]H and R. Form §* = ngZ-

Step 3.1.2. If |62| > tol, form (aff + X;q¥!)S; and find the Householder
matriz P statisfying (98). Solve R[H,h] = [(QF + );,QH)S;, Q¥ q2] for H,h
by back-substitution and solve the least-squares problem (100) for 7).
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Step 3.1.3. If |62| > tol, define the update v; by (101); else define v; by
(102). O

In the case where ¥; corresponds to a real eigenvalue );, the method gen-
erates a real update. In the case A; is complex, a complex eigenvector is
generated and, in order to ensure that the computed feedback matrices are
real, the updated eigenvector corresponding to the conjugate eigenvalue Xj
must taken to be the conjugate vector \:rj. In practice, complex arithmetic can
be avoided by generating the real and imaginary parts of ¥; independently.
The optimization is no longer precise, however, and a reduction in v? cannot
be guaranteed at every iteration step. Experience indicates that this is not a
drawback and rapid overall convergence is obtained in practice.

We remark that the QR decomposition of VJ can be found by inexpen-
sive updating techniques from the QR decomposition of V;_1. The solution
of the least-squares problem (100) requires the decomposition of a matrix of
order m — 1, which may be small even where the order 2n of the full sys-
tem is large. The procedure is then relatively efficient. Each update requires
O(4n*m) + O(2nm?) operations. Practical experiments have shown that the
reduction of the minimization problem to a sequence of linear least-squares
problems is generally more efficient than global nonlinear optimization tech-
niques for objective functions of this form [18]. Further work on the procedure
for maximizing robustness would, however, be useful.

6 Conclusions

We have investigated here the problem of robust eigenstructure assignment by
state feedback in a second-order control system. The response of the system
is determined by the eigenstructure of the associated quadratic matrix poly-
nomial and the aim of the controller design is to assign specified eigenvalues
to the closed loop system polynomial.

In the first sections of the paper we derive sensitivity measures, or con-
dition numbers, for the eigenvalues of the quadratic matrix polynomial and
define a measure of the robustness of the corresponding system. In practice
the second-order system is commonly embedded in a generalized linear first-
order control system. The standard measure of sensitivity, or robustness, of
the corresponding generalized linear matrix pencil is not equivalent to that
of the embedded quadratic polynomial. We show, however, that an equiva-
lent robustness measure for the linear pencil can be established by considering
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its sensitivity to structured perturbations. We derive condition numbers for
the eigenvalues of the generalized linear pencil subject to perturbations with
specified structure and show that these condition numbers are equal to the
sensitivity measures for the embedded quadratic polynomial. We show also
that the robustness measures based on these condition numbers are equal.

In the remaining sections of the paper we review and extend the theory of
eigenstructure assignment in second-order control systems. We show that the
solution of the robust eigenstructure assignment problem for the second-order
system can be achieved by solving the generalized linear problem subject to
structured perturbations. Reliable and efficient numerical methods for deter-
mining the required feedback matrices are then developed, based on methods
previously devised for solving the structured linear problem.
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