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Abstract

This report describes an algorithm for generating “optimal” grids for the representation of
continuous functions by piecewise constant approximation in one and two dimensions on
unstructured grids, using a discrete norm. The algorithm incorporates a convergent iteration,
each step of which reduces the norm. The approach provides a link with heuristic averaging
procedures used in grid adaptation, providing a rationale for their use. The extension to three

dimensions is straightforward.



Introduction

The purpose of this report is twofold. First, it presents a simple way of constructing an
optimal mesh for the piecewise constant approximation of a continuous function in a simple

discrete norm, both in one and two dimensions on an unstructured grid. The more

complicated L, case was discussed in [1] and analysed in [2]. The algorithms presented here

shares with [1] the property that it produces a mesh sequence for which the error norm
converges.

The second purpose is to bring out the similarities between this algorithm and an
heuristic averaging procedure used in grid generation. This gives a rationale for the averaging
procedure and a simple interpretation of the algorithm for the best fit.

One of the disadvantages of the algorithms for best constant fits using the L, norm
described in [1] is the complexity of solving the equation for the grid iteration step. Here we

replace the L, norm by a discrete norm which enables a simple formula to be derived while

preserving the norm-reducing property of the method. The discrete norm is almost equivalent

to a trapezium rule quadrature version of the L, norm approach given in [1] but the size of

the element is omitted. Its inclusion considerably alters the variation of the norm under grid
movement and is the source of the complications seen in [1].

In section 2 the discrete norm is introduced in one dimension and an algorithm
proposed which reduces the norm of the error at every step of an iteration in which the grid
adapts. The algorithm therefore converges in the sense that the norm of the error tends to a
limit, although the grid itself may not (as discussed in [2]) tend to a global minimum.

A weight function may be included in the norm but for norm reduction the theory
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restricts it to be independent of the data function. If this restriction is violated the norm

reduction property cannot be proved, but the algorithm may nevertheless continue to work in
practice. A particular feature of the algorithm is the similarity between the grid movement
step and certain averaging procedures used in grid adaptation methods.

In section 3 the procedure is extended to two dimensions. The same property of norm
reduction is proved, so that once again a limit exists. Also averaging procedures familiar in
grid adaptation once again involved, particularly when the weight function is allowed to
depend on the function, and this similarity is brought out in section 4.

Section 5 concerns generalisations of the ideas, including the extension to 3-D.
Several demonstrations of the results of the algorithm are presented in section 6. Finally, in

section 7 we summarise the report and present some ideas for future developement and use.



2. One Dimension

2.1 A Discrete Norm
Let f e(T0,1] be a given continuous function. For a given integer N, let TV be the set

of all partitions IT of [0,1] with N interior points, i.e.
ﬁ: 0:x0 <X <. <Xy <Xpnqp =1

For a given I define

D(1:I) = {v e I?[0,1] = constant, forj=1,...,. N+ 1} ;

V
|[xj—l ,xj]

Now introduce the discrete norm ||| with positive weight w given by
, N4 , ,
lel” = X widgCew)” +80xur)”) @.1)
k=1

(see Fig. 1a), where the suffices L and R refer to the left and right hand ends of the

interval. We seek the element # € D(IT) and the partition IT such that

lu—f|<|v- 7] forall veD(I) and TV,
Given the partition I, the projection of # of f in the norm (2.1) is defined as the
unique element of D(IT) such that
- £l <|v=f]| forall veDQT) . (2.2)

From (2.1), written in the form

N+1
lel? =12 > Wit (gCew) + 2(er))* +(2Ce) - g(xir)* s (2.3)
k=1

it is easy to verify that
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N+l

= £ =% 3wl — F ) +vi = F e ) +(F (i) — F (e )?)
k=1

is minimised by the element # for which

up = Vo{f (xig )+ f (em)} -

Now seek the partition Il e TV with corresponding projection

u=u(IT) e D(IT) such that

||u(I‘I)—f|| s”u(ﬁ)—f” forall TeTV .

First write (2.1) as

where

N
2 - - - _
lel™ =wy (&) + 2 wi (€7)* +wi (g} +whai(gns1)
J=1

W, =W, g_. =
) I &) gl[xj-l.xj]

+ _ + _
wi=Wiy, & =§

[xj-xj+1]

(see Fig. 1b). Using the identity

2.4)

(2.5)

(2.6)

@.7)

wi (g7 +wi(gl) = {wigj +wigh? +wiwl (g7 — &)}/ (W +w}) (2.8)

(2.7) becomes

N ((wjg; +wig))’ +wiwi(gj ~g}))
||g||2:WJ(gJ)2+Z JoJ o) JJ\oJ &)

Then

+
N
+wWyna(@na) -

- +
j=1 w]. + wj

% {w; (u; = £ Q) +w) () - f(x))Y

- 7|7 = wi u - £ (eo))* + i |
witw;

j=1

(2.9)
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u WJ_'wJJ"r - _ 2 - B 2
+> L (uy —u) +wy g (uyag - f(ena)) (2.10)
j=IWj tW;

which is minimised, for a given piecewise constant function #, by the partition IT with

interior points x;(j=12,...,N) such that

wy ()~ fCep) +w)(uf - f(x;))=0 @.11)
or
f(xj):MZEj, say. (2.12)
Wi +w;

Since the right hand side of (2.12) is a positively weighted average of the values in (2.5), it

follows that

min[f (1), f (), f ()1 < < max f (ep), f (8), f (0] (2.13)

Thus, since f is continuous, (2.12) possesses at least one root ¥; in the interval

(x;-1,%;41) andif f is monotonic the root is unique.
The required minimisers # and IT are obtained by solving (2.5) and (2.11)

simultaneously. Combining these equations, the optimal grid points ¥ ' must satisfy

wi (f ) = fEN+wi (fE) - fE) =0 (j=1,..,N). (2.14)

2.2 A Double Iteration

Although a single iteration for the solution of (2.14) for the ¥; is readily devised, we

shall prefer to set up a double iteration to repeatedly solve (2.5) and (2.11) in turn, so that the
local part of the discrete norm, in the form (2.4) or (2.10), is decreased at each stage of the

iteration so that it converges. In this double iteration the first step is to obtain u from (2.5);
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the second step is to find a corrected grid from (2.11) for re-substitution into (2.5) to give a

new u and so on.
The solution of (2.5) for # is immediate, but the solution of (2.12) for x requires an

(inner) iteration of its own. Provided that f(x) is differentiable the Newton iteration,

uj— f(x?
A A A w 'f(p,) (2.15)
S'(x5)
p=12,.) with x? = x;, is possible but we could alternatively use bisection or a secant

iteration (see below). Moreover, it is unnecessary to run this (inner) iteration to convergence
since the main aim is to decrease the norm (2.10) within the outer iteration. Thus, since the
change in the norm (2.10) as a result of the inner iteration from (2.10) and (2.12), is
CHRaT (TR IC A TEN I Ch (2.16)
the inner iteration may be terminated as soon as
l&,-—f(x;"<|5,-—f(xj)l. 2.17)
In particular, since
up=fF ) =uj = fOF)+ (T - xP)-11(6,)

[, r©p
1)

(2.18)

}(w - f(xP)

where 6, (x¥,x? *1) | the termination condition (2.17) holds after one iteration if

16,
£1GD)

1

<1, (2.19)

which is true provided that f’ does not change sign or more than double its value locally

within the interval.



The full algorithm is as follows:

1. Select a grid.

2 Generate u on the current grid from (2.5).

3. Use the iteration (2.15) (or some other inner iteration), terminated by (2.17), to obtain
the new grid from (2.11).

4, If the norm is insufficiently small, return to step 2.

At convergence we see from writing (2.14) in the form

w}{f(f,{)_f (ff"l)](f,-—ff-l) =w}[f (fi'“)—{(ff))(f,-ﬂ %) (20

‘—‘Nv 3 _— 3 ]
o Xjr =%

in that in the limit the weighted ratio of increments

| RACTIRACD,

w; = =
XiR — XKL,

(2.21)

is equidistributed on the grid.

23 An Order-preserving Iteration

We now consider an alternative inner iteration to (2.15) which has the desirable
property that (apart from at certain points of extrema) the ordering of the partition IT is
preserved. First, a secant-type version of (2.15) is generated by applying a modified Newton

argument to (2.11), giving

wi(uy = (D) +w] (u] - f(x]))

- +
BN E
W] - P +W]- + P
xG — X5 XG — x),'

F

Pl _

P _
LA

(2.22)
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where xg =x;_y, xG=x i+ Writing u; = fg, u}L = f& (c.f (2.5)), equation (2.22) can

then be put in the form
e B (G —x)+ (E)) (e~ x]) o)
S (E;) +(E})?
where
= _ P Aﬂ: P
3 x; i
(&) -wi{ L2 |-ws S, (224)
XG ~Xj T A

say. (Note that the use of (2.5) is admissible here since the term u; — uj+ in (2.10), being a

difference of average values of f, does not contain f(x;).)
It may readily be deduced from (2.23) that, provided E;' and E; are of the same
sign,
XG < xj’” <xg (2.25)
and the partition therefore remains ordered during the iteration.

In many cases one step of the iteration (2.15) or (2.22) is sufficient to decrease the

norm.

2.4 Equidistribution Properties

A

As we have already seen, in the limit an equidistribution function for the grid is w——.
Consistently with (2.24) we write this function as

E= w%‘ (2.26)
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With the particular choice of weight w =1, the equidistributed quantity is Af , that is

to say the grid can be constructed from equally spaced points on the ordinate axis, as in fig. 2.
Monotonicity of f is required for the equidistribution in this case, since for more general
functions convergence breaks down near extrema and chaotic behaviour is observed [3].

Other weights dependent on & are admissible, but weights dependent on u,x or
function derivatives invalidate the norm-reduction argument based on (2.10). The double
iteration, (2.5) and (2.10), may still converge, however, and again it is sufficient to run the
inner iteration only as far as to satisfy the criterion (2.17). In practice it is found that
convergence does occur for such weights and we mention two particular cases here.

The weight w = Ax accentuates the contribution of large elements in the norm (2.1)
which is then a trapezium rule approximation of the L, norm. The equidistributed quantity is
AfAx , the area of a small box for which the arc length in an element is an approximate
diagonal (see fig. 3(a)).

If f isdifferentiable and w is chosen such that

As
E=— 22T
> @27)

where
& 2]’
s=[ 1+t @] e (228)
is the arc length of the graph of f, the equidistributed quantity is As, as shown in fig. 3(b).

The appropriate weight function is

TG
N ) -f ()

(2.29)
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The function E of (2.27) may be approximated by

5%
E:[1+(%)] ; (2.30)

although care is required in the use of (2.30) near extrema since the approximation may be
significantly poor.

A similar approach to generating (2.27), (2.28) is to define the arc length function

SLFGN = [T+ @P 1 e 231)
which is always monotone, even though f(x) may not be.
The piecewise constant approximation, s{#] say, to (2.31) involves the norm
lstee] = sLf (0]
whose minisation in the manner of this section will always lead to a converging iteration

whose limiting grid equidistributes As[ f(x)] and therefore achieves the same result as

(2.27), (2.28).

3. Two Dimensions

3.1 The Discrete Norm

Let A’ = {A(;c},ﬁl denote a triangulation of Q=(0,1) x(0,1). The closure is defined

as Q= A(;( , where the A(;c are non-overlapping triangles such that no vertex of a triangle

I
Cx

e
fl

1
lies along the edge of another. Denote by TM the set of all triangulations of ) which

have the same topological table as A° ,thatis Ae YM if there is a one-to-one
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correspondence between A’ and A which preserves the connections between vertices. For

AeYM we define
D(A)={v e }(Q)|v|, = constant, k=12,...,M}.

Now introduce the discrete norm ||| with positive weight w given by

M 3
”8”2 = Z Zwkg(xkv’ykv)2 (3.1)

k=1 v=1

where xy,,y, are the coordinates of the v'th vertex of Aj (see fig. 4(a).

Let f eC (ﬁ). Foreach A €T we denote by u=u(A) e D(A) the projection of

S onto D(A) inthe above norm. Now write (3.1) in the form

= 33 {z&)zy g

v=1 A=1

(.2)

where g, =g(x,,y,) and A,u run over the same values of v. It follows that

2
lv—- f|| —k213wk {3‘*’ kav} +1212(ka fk,u) (33)
| p=1
A>u

where fy, = f(%gy, V1), is minimised by the element # given by

1 =
0 =52 =i say (3.4)
v=]

(see fig. 4(a)).
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The aim nowis to find A €T such that

[u(d)- £l <|u@-f| vAeyM . (3.5)

First rewrite (3.1) as

, B ) N
lel =1§ Z; wh(g5) +Zl Z’; wS(gf) (3.6)
=1l e= J=1 e=

where b isone of B boundary values and j isoneof N internal vertices (with
N+B=M). Theindex e runs over the number ne(b) or ne(j) of triangles with & or

Jj as a common vertex, while

85 =8j a, 3.7

where A, denotes the triangle with index e (see fig. 4(b)).

Now consider the identity

w5 ={[ZWEg5)2)+ Zw,‘-wj“(gf—g}‘)z}/z‘ﬁ (338)

A>u

where A,u run over the same integers as e. The non-boundary terms of (3.6) then become

N 2
) [wagfj + Y wiwl(gr -gh)? /Zw;’- (.9)

Jj=1 e A>u

and the corresponding terms in the norm of (3.3) are

N 2
5 [z»vf-wi—f,-)] LSl -ty [ e |

Jj=1 e A>u

(All e summations, as wellas A, u runfrom1 to ne(j)).

14
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Constraining the boundary notes to remain fixed for the moment, it follows that, for a

given piecewise constant #, the norm of (3.3) is minimised by the triangulation A with

vertices satisfying
Dowi;—f;)=0 (3.11)
or

f(xj,yj):ijuj/Zw; =u; say (3.12)

(c.f(2.12)). A similar argument may be applied to the boundary terms in (3.4) with the
boundary vertices constrained in some way to remain on the boundary.
Since the right hand side of (3.12) is a positively weighted average of (3.4), it follows

that

minijS;jSmaxij, (3.13)
14 14

where the suffix jv runs over all the vertices of the triangles which have j asa common
vertex (see fig. 5). Hence, since f(x,y) is continuous, (3.12) possesses a solution on at least
one “spoke” joining the vertex j to one of the outer vertices in fig. 5. More generally,
solutions of (3.12) will lie on a contour of f(x,y), at least part of which is contained within
the local patch of triangles in fig. 5.

The required minimisers # and I are obtained by solving (3.4) and (3.12)

simultaneously. The resulting solution therefore satisfies

> wilf.—F)=0 (3.14)

e

where
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_ 3
Fo= 32 f e Ye) (.15
v=l

32 A Double Iteration

As an alternative to solving (3.14) directly, we may find a solution of (3.4) and (3.12), as in
one dimension, by setting up a double iteration, each step of which reduces the norm of the

error. The only new factor is that in higher dimensions the solution of (3.12) for (x j>Yi) s

not unique. We shall need an appropriate (inner) iteration in order to extract a solution
although, as in one dimension, the inner iteration need only be run until the norm is decreased.

Since the change in the norm (3.10) is

% wi] - 167 ) = - 7651 | @10

e

(c.f. (2.29)), it is again sufficient to use
ey —us| <m0 (3.17)
as a stopping criterion.

The usual Newton argument on (3.12) gives
- 1 5 1 1
0=uj - fGJ yE ) =y = 9P = = x P -y0)V f

(3.18)
To minimise the possibility of mesh tangling we shall choose the displacement with smallest

modulus, giving

o r
(x}q+l _x;J,y;zH _yf) :[l"j l;;xlj’yf)}&j] (3.19)
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where & . is a unit vector in the direction of Vf;.

33 A Local Iteration

As in one dimension, a secant version of (3.19) may be constructed from a modified

version of (3.18), namely,
~e\P
0= Wi - F(2, D)) - e = yBH  y) (x2S wevTe) (3.20)

where f is the linear interpolant of f. Again, choosing the displacement with smallest

modulus, (3.20) leads to

Cwjt] 7 Gy 5
2%

+1 +1
(F = xB yET -y =

(3.21)

vil©

where @ is a unit vector in the direction of ij (Zf)e . (All summations are again from

e=1 to e=ne(j).)

From (3.12) and (3.4)

ot ~e
Dwiui = wiuy =wa-fG, say (3.22)
so that the numerator on the right hand side of (3.21) becomes

(ij {.75 _f(xjayj)})gj (323)
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evaluated at the p’th iteration. It is this quantity which vanishes in the convergent limit and

corresponds to the equidistribution property in 1-D.

Since
(fE =1y = (6 ~%,,96 =)V =1,6.V*, say, (3.249)
where f is the linear interpolant of f

Then (3.23) may be written
(Zwir,ev7)8 .. (3.25)

Although we have used (3.4), this is admissible as in the argument following (2.2).

The iteration step (3.21) then becomes

P

_| Gwi¥Ferie) -

GRS R AR 9, (3:.25)
Ewt{ z?ﬂ £|‘.’I

5 (| el i (3.27)
E‘w;’- 7

where le is the projection of r ;G into aj as shown in fig.6.
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It is clear from (3.27) that the displacement of the node j in the direction ¢ . is

contained within the degenerate polygon which has lj‘G as vertices. In the limit the

“equidistribution” property

PRG\7

155 =0 (3.28)

holds.

Unlike in one dimension, this property does not necessarily preclude mesh tangling, as
the particular example in fig. 7 shows. It is therefore necessary to add a limiting factor to
(3.27). A sufficient condition is that the magnitude of the displacement should not be greater

than half the maximum triangle height of all the triangles in the patch of fig. 5.

As in one dimension, when the weights are allowed to depend only on e the norm-

decreasing property still holds but if they are allowed to depend on u,x or y the property

may be lost. Nevertheless the iteration may still converge and in particular the choices
(a) w® =areaofelement e (3.29)

and
(3.30)

T /e

(the latter corresponding to the choice (2.30) in one dimension) allows extra weight to be put

®) W :{1+((278

on the surface area of the solution.
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The “equidistribution” property (3.28) is comparable to (2.20). We may also write it

as

Y Ejtc=0 (3.31)
where

ES =wiVfel. (3.32)

With this definition of E, the iteration (3.27) may be written

(x}’“—xj-’,yf“—yf)z—z—lgg;— (3.33)
The full algorithm may be stated as follows:
1. Select a grid
2, Use (3.10) to generate values of j on the current grid.
3. Use the iteration (3.19) (or some other inner iteration such as (3.27) or (3.31)),

terminated by (3.17), to obtain new values of x;,y;.

4. If the reduction in the norm is insufficiently small, return to step 2.

4, An Averaging Procedure
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There is a striking similarity between the displacement (3.27) or (3.33) and the

displacement

Swé|VFelre SE¢re

J= G e

5[] = . ~ — J ej (41)
Zw] Vf ZE;

(c.f fig. 6) often used to relocate nodes in grid generation work, in that the component of

(4.1) in the direction zj is precisely (3.27). Indeed, we may regard (4.1) as providing not

only the correct node displacement in the ¢ = direction but also a convenient displacement in

the orthogonal direction which serves to smooth out inter-nodal irregularities which may occur

as a result of corresponding irregularities in . ¢ .

It is clear that a single iteration (4.1) can be used as an alternative to (3.27) in order to

decrease the norm. The displacement is then confined to the non-degenerate polygon with

r j-G as vertices: the anti-tangling constraint will still be required, in general.

The semi-heuristic step (4.1) gives a different “equidistribution” property in the limit,

namely,

R

ric =2 Eiric =0 (4.2)

with Eje defined by (3.32) (c.f.(3.30)) which determines (x;,y;) as the centre of mass of

e

particles of mass w/

Zf‘e at the centroids of surrounding triangles.
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Another way of interpreting (4.2) is to regard it as a discretisation of the differential

operator
Yo7y =vED =0, 43)
o 0 : A
where V denotes 6—5,% . Here (£,17) denotes a fixed reference grid and E is a

“diffusion coefficient”. Then the iteration (4.1) is a discretisation of

Sr =6YW|Vf|Vr) = 0V(EVr) (4.4)

where @is a relaxation parameter,

We may also regard (4.3) as a minimisation, that of
i J ‘ f 2
min | w|V |(Yr_‘) dé 4.5)
. s
or

min [ E(Vr)*d¢. (4.6)
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s. Generalisations

The algorithm described in section 3 is not restricted to triangles. By replacing the upper
suffix 3 in (3.1) by 4,5 etc. we may extend the algorithm to quadrilaterals, pentagons, etc. The

forms of (3.1) require for a general N-sided polygon are

, My N V¥ NN
el = 25w (ngj +> > (g1 -8,) (5.1)
k=1 v=1 A=lpu=1

in place of (3.2), and (3.8) as it stands, where e runs over the number of polygons having j

as a common vertex.

The piecewise constant function # in (3.4) is then given by
1 N
U A= 2 S (5.2)
N v=l

while the formula for x;,y; in(3.11), (3.12) still stands. The iteration (3.24) can be used
and the stopping criterion (3.17) is still valid. The only difficulty is the lack of a unique
piecewise linear interpolant f which prevents the step (3.24) being carried out. Thus the

formula (3.27) holds only in an approximate sense and its similarity with (3.31) is partially lost.

On the other hand, the extension to higher dimensions using tetrahedrons goes through

without difficulty. Here Aj denotes a tetrahedron and the corresponding forms of (3.1)
required are (3.3) with 3 replaced by 4 and (3.10), with re(j) being the number of

tetrahedra having j as a common vertex.
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6. Demonstrations

We show results for four functions, two in one dimension and two in two dimensions.

The one-dimensional functions are
(a) tanh 32(x - 0.5)
(b)  10e-10x + 20/{1 + 400(x—0.7)2}

on [0,1], starting from an equally spaced grid. Case (a) was run for 100 steps and (b) for 400
steps. Figs 8 and 9 show case (a) with weights w =1 and (2.31), respectively. Fig. 10 shows

case (b) with weight (2.31).
The two-dimensional functions are

(c) tanh 32(x + y - 0.5)

(d)  tanh32(x% + y? - 0.25)

on [0,1] x [0,1], starting from a set of subdivided quadrilaterals, as in fig. 11. Case (c) was
run for 100 steps and (d) for 40 steps. The final grids and profiles for w =1 are shown in fig

12 and those for w given by (3.29) are shown in fig 13.

In addition, the corresponding grids and functions for the grid adapter given in (4.1)

are shown in figs. 14 and 15.
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7. Conclusions and Discussions

In this report we have described algorithms for finding best approximation to
continuous functions by piecewise constant approximations with variable nodes, using the
discrete norm (2.1). The algorithms take the form of a double iteration, one for the solution
and one for the nodes which guarantee norm reduction. The node step itself involves an
(inner) iteration which however can usually be restricted to one or two steps to give reduction
of the norm. There is a link between one step of the inner iteration and averaging procedures

often used in grid adaptation.

The norm-reduction property holds true when weighted by a term which involves
neither the solution nor the grid. If more general weights are used the performance is still

good although there is no proof of norm-reduction.

The resulting grids have equidistribution properties in one dimension and also have
generalisations of this idea in higher dimensions which involve the solution of discretisations of

nonlinear elliptic equations.

One problem with the algorithm when the weight is unity is the possibility of E

changing sign in (2.23) near to extrema. There are two possible remedies. One is to fix the
node at or near an extremum by replacing the r.h.s. of (2.23) by zero when E]_EJ+ <0. This

has been done in the demonstration (b) in one dimension (fig. 9). The alternative remedy is to

replace E everywhere by |E| (as has effectively been done in two dimensions, c.f. (3.27)).

However, there is still a potential problem when all the |E

’s in the vicinity of a node are

small, in that the ratio in (3.27), for example, is of two vanishingly small numbers. A solution



26
to this problem is to replace |E | by a small non-zero constant value when |E | is small. A

constant E will have the effect of smoothing the grid since the corresponding equidistributed

quantity is then x itself.

Finally, in the two-dimensional case, there is the possibility of edge-swapping, i.e. the
interchanging of the diagonal of a quadrilateral made up of a pair of adjacent triangles if the
norm is thus reduced. This also introduces, for the first time, a change in the topology of the

grid if that so reduces the norm.
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