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Abstract

This paper consists of two parts. Part I considers the Cauchy
problem for the nonstrictly hyperbolic system p; + (pu)z = 0, (pu)s +
(pu?), + p(k:e%p'y_l)z =0, 8¢ + us; = 0, which is motivated by the
non-isentropic equations of polytropic gas in Euler coordinates, and
gives the global Holder continuous solution by applying the method of
vanishing viscosity. Part I further studies the relation between the
exact solution and the viscosity solutions and obtains error estimates.

Introduction
In this paper we consider the nonlinear hyperbolic system

pt + (pu)e =0 .
(pu)e + (pu*)z + p(keP p?1); = 0 (1)
St +usy =0,

with C! initial data

(p(z,0),u(z,0), s(z,0)) = (po(z), uo(), s0(2)), (2)

*Visiting from Institute of Mathematical Sciences, Academia Sinica, People’s Republic
of China.




where 3, k,~ are positive constants with 1 < v < 3. System (1) is motivated
by the non-isentropic equations of polytropic gas in Euler coordinates

pi + (pu)e =0 ,
(pu)e + (pu? + EeBp), = 0 (3)
st + usy =0,

where p, u and s are density, velocity and entropy respectively.

When s = is constant, (1) and (3) are equivalent. For this isentropic case,
paper [6] considered the global Holder continuous solution of the Cauchy
problem. In this paper we report on preliminary research on the system (1)
and believe it will later be useful for research into system (3). For similar work
of the global smooth solutions to hyperbolic systems, see papers [1, 3,4, 5].

This paper consists of two parts: Part I considers the existence of the
global Holder continuous solution of the Cauchy problem (1), (2). The method
used is a variant of the “viscosity” argument (2, 5, 6].

Substituting the first equation of (1) into the second, system (1) is equiv-
alent, for smooth solutions, to the following,

{ pt + (pu)s =0

u+ (% + ke p?™), =0 (4)
s; + usg; = 0.

By simple calculation, system (4) can be rewritten as follows:

(u+ ac) + (v + ¢)(u + ac), =0
(u—ac)+(u—c)(u—ac)y =0 (5)
st +us; =0,

where @ = =27 and ¢ = \/(’y — D)kerpr—t.
Let w = u+ ac, z = u~ ac. We try to construct solutions of (5) as limits
(¢ — 0%) of smooth solutions of the systems

wy + (u + c)w, = €wyy
2+ (u—¢)zy = €24y (6)

St + USy = €8z,

with initial data

(w(a,0),2(2,0), s(2,0)) = (w5(z), %(x), 0(z) -
= (wola) + 8(e), 20(2) + 8(6), 50(x)),
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Figure 1: An illustration in the (p, u) plane.

where §(¢) is a positive, bounded function of ¢ and defined later.

We first show that for every fixed € > 0, the Cauchy problem (6), (7) has
a bounded solution (w, z,s) whose differentials with respect to z,t are also
bounded independent of €. We show that there is a subsequence

{p~,u", s}, € — 0" asn — oo,

on any bounded region converging uniformly to a Holder continuous solution
of the Cauchy problem (1), (2).

Part I further studies the relation between the exact solution (p,u,s)
and the viscosity solutions (p¢,u¢, s¢) and gives the following error estimates

[u€ = u] < M(T)e, | — p| < M(T)e, |s* — 5| < M(T)e,

where M(T) is a positive constant depending only on the time T, being
independent of e.

It is worth pointing out that the idea in Part II is motivated in part by
Tadmor’s paper [8] although in our paper only the maximum principle is used,
the E-condition of the forward problem used by Tadmor being unnecessary
in our case.



Part /. Holder continuous solutions

In this section we consider the existence of the global Holder continuous
solution of the Cauchy problem (1),(2). As discussed in the introduction,
we first study, for any fixed ¢ > 0, the existence of solutions to the Cauchy
problem (6), (7).

By the representations of w and z, for any fixed s, we can easily depict
the lines w = ¢z + 8(¢),w = ¢; + 6(€),z = ¢; — 8(€),2 = ¢; — 6(€) in the
plane (p,u) as in Figure 1, where ¢; (1 = 1,2,3) are constants satisfying
¢1 < ¢y < c3. Moreover we have

wte Gt Dw+@—9) Dz + B 7w

u=—  ukes 4 ’ i

Define

U={(w,z,3,ws, 25, 8z) : Ca2+ %5(6)

IN

w < ¢z + 26(e),
c — %5(6) <z< e — %6(6),
] < 20, ] < 2V, | < 2, Is,| < 2M)

and consider the mapping 7"

w(z,t) w’(z,t)
T{ z(z,t) } =4 2°(z,1)
s(z,t) O(z,t)

/t s /°° (v +Dw(y,s)

,8) + (3= 7)z(y, )
4
t /oo _(7 + l)z(y, S) : (3 - V)w(y’s)zy(y,S)G(IC —y,t— s)dy

wy(y,8)G(z —y,t —s)dy

s d
)
t oo w(y,s)+2(y,s) '
\ /0 dS/_oo— 5 sy(y, 8)G(z — y,t — s)dy,
where

W)= [ uwiydy, L@t = [ #wwd, St = [ s

=5 —00 —o0

and (G is the appropriate Green’s function.
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By applying the contraction mapping principle to the map T', we can
easily obtain the following local existence result for the solution to the Cauchy

problem (6)(7); (see [5],[7]).
Lemma 1 Let wy(z), 20(2), so(z) be bounded in C* space and satisfy
¢z < wo(z) < cs,y a1 < zp(z) < ¢, |so(z)| < M,

lwoe(2)| < M, |200(z)| S M, [sos(z)] < M.
Then there exists a smooth solution for the Cauchy problem (6),(7) in some
Rg = (—00,00) % [0,5), which satisfies

e2 + 26(€) < w(a, ) < o5 + 26(c),

[s(@, )] S 2M,  fwa(e,8)] < 2M,
ea(a, ) S 2M,  s(a,t)] < 2M.

When we have a priori estimate in C! space, we can establish the global
existence by using the local existence step by step. The framework given in
[6] about the maximum principle of nonlinear parabolic system shows the
following required estimate.

Lemma 2 Let the conditions in Lemma 1 be satisfied and in addition wo, >
0, 205 > 0. Suppose (w(z,t), z(z,t),s(z,t)) is a smooth solution of the Cauchy
problem (6),(7) defined in a strip (—oo0,00) x [0,T] with 0 < T < oo. Then

¢z + 6(e) < w(=,t) < 3+ 6(e),
{ c1 — 6(€) < z(z,t) < g —6(e), (8)
|s(e,t)| < M,
0 < wy(z,t) < M, 0 < zy(z,t) < M, lss(z,t)| < M. (9)

Therefore we obtain the following global existence result.
Theorem 3 Let wo(z), 20(z), so(z) be bounded in C* space and satisfy

c2 < wo(x) < c¢s, ¢ < 20(33) < e, |30($)| <M,
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0< wos(e) <M, 0<z00(z) <M, sos(z)] < M.
Then the Cauchy problem (6), (7) has a unique global smooth solution satis-
fying (8),(9)-

We now give the estimates of w;, z; and s;. Let X = w, Y = z;, R = sy,
then

f r _— . - ._ ! ! ‘ - '
X |t=0= w; |=0= (f-wa:x — o wi =1 zw:c) |t=0,
. — _ (B=x)wi( )z
Y |im0= % |i=0= (‘-z:::n = I’YH Z:c) |t=0, (10)
| R lt=0= 8¢ |i=0= (C'S:::ar - y—;*isx) li=0 -
Differentiating (6) with respect to ¢, we have
X: + [‘1’+1}TJ’J:1|'(3-"T)2 er + (1+1)X1—(3—1)Y Wy = eXx.m
Y; 4 (3—7)1”::'(":"1'1}2 Y, + (S—W}X:II-('YHJ}’% = Yo, (11)

R, +%E=R, + J’—’Yzy Sy = €Ryy.

Lemma 4 Let wo(z), z0(x), so(z) satisfy the conditions of Theorem 3. In
addition, let {wo(z), 20(z), so(z)} € C* and

[Xo(z)| £ M, |Yo(z)| <M, |Ro(z)| < M,
then
| X(z,t)| <M, [|Y(z,t)] <M, |R(z,t)| <M+ MT.

Proof. Make the transformations

N(z? + cyLe) Y VMt N(z? 4 c4Le?)

—X =X+ M+ ——F, o

, (12)

where ¢4, N are positive constants and N is the upper bound, of w, 2 on
(—00,00) % [0,7], dependent on €. The functions X and Y are easily seen to



satisfy the equations

X, + (7+1)w1(3—7)z5{x+(71‘1)—(_ 3;717)1033
(r+Dw+ @ =9)2 N
+(caLe® + . x — 26)ﬁ
v—1 N(z? + cqLe?) _
+‘_2——(M + 12 )wa: . eXa:z:
< (13)
_ — 1z . _ _
K+(3'ﬂw+W+'VKA%7+1 3 7pr
4 4 4
B-—pw+(y+1)e N
+(caLet + 5 T — 26)—17
y—1 N(z? +calet), =
\ +T(M Eir L2 )zaz b 61/1.,,,
resulting from the first and second equations of (11),and,moreover
Xo(z) = —Xo— M — 2L <0, Yo(2) = -Yo— M - 25X <,
(14)
X(+L,t) <0, X(-L,t)<0, Y(+L,t) <0, Y(-L,t) <O0.
We have then from (13), (14)
X(z,t) <0, Y(z,t) <0, on (—L,L) x (0,T). (15)

Since if (15) is not valid, then at least one of X and Y, say X, is non-positive
at a point (z,t) in (—L, L) x (0,T). Let  be the least upper bound of values
of t at which X > 0, then by the continuity we see that X = 0 at some point
(z,) € (=L, L) x(0,T). So X; > 0, X, = 0 and —eX, > 0 at (Z,?), namely

(r+D)w+B-7)z5
4 x

But if we choose sufficiently large ¢4 such that

X, + —eXgp > 0, at (7,17). (16)

c4L+£1+—1M;'Mw—26>0

9

c4L+@)%3——’YMx—2e>O
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on [—L,L) x (0,T), noticing that ¥ < 0 at (z,%) and w,, 2, are nonnegative,
then the first equation of (13) gives a conclusion contradicting (16). So (15)
is proved. Thus for any point (zo,ts) in (—L, L) x (0,T),

X(zo,t0) = —(M + M)’
(17)

¥ (z0,t0) < (M + Mebteden))

Letting L T oo in (17), we have X (z,t) > —M, Y (z,t) < M on (—o0, 00) X
(0,7). Similarly X(z,t) < M,Y(z,t) > —M.
To give the estimate of R(x,t), we make the transformation

N(z? 4+ Le*t)

R=R-bt- T3

- M
where b = ma’x(—oo,oo)x[O,T)(&;lS:c)-

Noticing that |s;| < M, |X| < M,|Y| £ M, and using the same technique
to prove X,Y, we obtain R < 8T + M < M?T + M. Similarly we have
R> —M?T — M and Lemma 4 is proved.

We now give the Holder continuous solution of the Cauchy problem
(1),(2). First, the following estimates about (p,u,s) can be obtained from
the above estimates.

Lemma 5 If the conditions of Lemma 4 are satisfied, then

(212 cu@n <222 sl M,
Y=L stegeth < o2 <if2=L 26(c))et
gk T =P =\ e (BT AT S
1 6(e)

Y 0<u, <M, |s,] <M, |07 ps| < )M,

4k(7_1)(1+ 25
luel < M, s < M+ M?T,

=8 1 é(¢)

m|§

(1+ MT))Me?

(18)



Observing that §(€) is a positive, bounded function of ¢ and v —3 < 0,
we constructed a sequence of the approximate solutions

{p",u’,5°} € WH**((~00, 00) x [0,T1)

for 0 < T < oo, which, by the embedding theorem, have a subsequence
{p*",u*", s} on any bounded regions ! of (—co0,00) X [0,00), converging
uniformly to a triplet of Holder continuous functions (p(z,t), u(z,t), s(z,t)).
We are going to prove that the limit functions (p(z,t), p(z, t)u(z,t), s(z,t))
is indeed the solution of the Cauchy problem (1), (2).

We can rewrite (6) as follows:

( — M w—2z
pi + (pu)e = Th(y — )( )z,
(pu)e + (pu)s + p(kep"™t); = %( W 2)os (19)
eup_l -_ﬁs- i P
i 4k(7—1)( -

St + USy = €S4,-

.

For the case of 1 < v < 2, taking 6(€¢) = 0, we have
-3 ¥—3 4., =3
(7% )el = |55=p" 0" pul < M.

In the case of 2 < v < 3, we choose §(¢) = €, where 0 < I < 2& 12), then
2(2—~

(07 )al < Mp < ()5 < M

and so .
e(p’7 )g — 0 as ¢ — 0.

Noticing that {p, u", s} converges to (p, pu, s) in W' on any bounded
region £ C (—o0,00) X [0, 00), we get immediately from (19)



// pP: + pudzdadt + / podpdz = 0,
t>0 t=0

2 5 v-1 —
O /tzopu¢t+pu bo + plked 57 )udadt + [ pouogda =0, (20)

// 8¢y + uszpdzdt +/ Sopdzx = 0,
\ 120 t=0

for all ¢ € C}((—o00,00) X [0,00)). Therefore (p, pu, s) is the Holder contin-
uous solution of the Cauchy problem (1),(2). If we smooth the data by a
mollifier, the following theorem is obtained.

Theorem 6 Let (po(z),uo(z), s0(z)) € C* satisfy
¢z < wo < ca, a1 <z < ey, |so(z)] < M,

OSwaSM3 OSszSMa |301‘(x)|SM

Then the Cauchy problem (1),(2) has a global Holder continuous solution
(p, pu, s) defined by (20).

Part /]. Error estimates

In this part of the paper, we consider the error estimates between the exact
solution (p, u, s) and the viscosity solutions (p¢, u®, s).

Lemma 7 Let the conditions in Theorem 6 be satisfied and in addition,
,szzl S M, |Z0xa:| S M, ISOJ::I:| S M7

then the solutions (w¢, 2%, s¢) of the Cauchy problem (6),(7) satisfy (8),(9)
and

|Woge| < M, 220 < M, |s5c) < M+ M*T. (21)
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Proof. To prove (21), we differentiate (6) twice with respect to z, and let
A = Wy, B = 245, C = 844, then

(+Dw+B-1z,

A+ 4
B0+ Dwe+ 2872, B Vap
4 4
{ B:+ (7+1)2-Z(3_7)sz
4 4
A+ B
| C, + w;20$+(wx+2x)c+ ; 8z = €Cyq.

In a similar way to the proof of Lemma 4, we can obtain the estimates

(21). The details are omitted.
Let (w?, 22, $2) and (w®, 2, s*) be the solutions of the Cauchy problem

(6), (7) with respect to € = €;,€ = €1, we have
Lemma 8 Let the conditions in Lemma T be satisfied, then

lw? —w| < §(e2) — 6(e1) + e MT,
|22 — 24| < §(ep) — 6(e1) + €1 MT, (22)

|2 — 59| <IT,

where | = (6(ez) — 6(e1) + e MTYM + e1(M + MT).
Proof. Let £ = w? — w, F = 22 — 2, G = s — s, then

O+ DE+B-7F

1 €2 . €2
E; + e D I Bk Er + 4 wg' + e1Wgy = ea By,
1)z€ _ €2 nHF 3—-—4)E
¢ Fi+ Sa 1(3 el F, + i I( ) 2z + €125 = €Fq,
€ € E+ F
G; + %G@n S ; sz + €185y = €2Gey,

(23)
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resulting from system (6) with respect to € = €;, € = ¢, and with initial data
BO,t) = 6(e2) = 8(er),  F(0,) = 6(ex) = 8(er),  G(0,2) = 0.

In a similar way as the proof of Lemma 4, we can obtain the estimates of
E, F by making the transformation

TE = E +6(eg) — 6(er) + MHeLel) 4 o MT,
(24)
:l:F = F + 6(62) —_ (5(61) + _1\L(cc2[-/+-_2cLe_tl + GlMT,

and the estimates of G by making the transformation

2 t
6o ais Nl

The details are omitted.

Since we can choose 6(¢) = 0 when 1 < v < 2, or v = 3 and é(¢) = ¢
when 2 < 4 < 3, letting €; | 0, €2 = € in (22), we obtain the following main
theorem.

Theorem 9 Let the conditions in Lemma 7 be satisfied, then
s —ul < M(T)e, | —pl < M(T)e, s — 5| < M(T)e

where M(T') is a positive constant depending only on the time T', but inde-
pendent of €.

Remark. The result in this paper can be easily extended to the more general
hyperbolic system(for some suitable p(p))

pi+ (pu)e =0 ,
(pw): + (pu®)s + p(e7p(p))s = 0
st +us, =0,

where the nonstrictly hyperbolic line p = 0 is also permitted. Further gener-
alization to the non-isentropic equation (3) of polytropic gas is under inves-
tigation.
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