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Abstract

Non-linear optimal control problems in tidal power generation are formulated
and thoroughly investigated. The formulation is based on a dynamic flow model in
which the fluid dynamics in the full estuary and across a tidal barrage are described
by the time-dependent non-linear shallow water equations. By using the Lagrangian
method, necessary conditions for control optimality are derived. To obtain the pre-
cise form of the solution for the problem, a numerical solution procedure is adopted.
It consists of a constrained optimisation algorithm for iteratively determining op-
timal sluice and turbine control functions, together with a finite difference scheme
for solving the flow and adjoint equations. The emphasis of the numerical work
is placed on the optimisation algorithm. Several gradient based optimisation algo-
rithms are presented and the behaviours of the algorithms are examined in detail.
Both ebb only generation and two-way generation results are given.
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1 Introduction

In [1] we reported detailed results of our investigation of optimal control problems for
tidal power schemes with sluices and turbines operating independently. Analytically it
was deduced from Pontryagin’s Maximum Principle that the optimal sluice control func-
tion is invariably bang-bang in nature; whereas the optimal turbine control function is
dependent on the form of the power function. For a linear power function, a bang-bang
solution results. For a non-linear power function, the solution is no longer bang-bang but
contains some interior points. These conclusions were confirmed by extensive and system-
atic numerical work which utilised several gradient based optimisation algorithms. The
equation governing the flow across the barrage was solved by a finite difference method
using the trapezoidal scheme. Upon examination of the performance of the algorithms,
it was concluded that the conditional gradient algorithm was best suited for bang-bang
type controls, while for the type of controls with interior points the projected gradient
algorithm was recommended. Similar work was also reported in [2] but with only one
control.

The formulation in [1] and [2] was based on a flat basin flow model which assumes
that the basin surface elevation remains flat everywhere throughout the basin and that
the flow across the barrage is governed by an ordinary differential equation. The main
advantage of this model is that it is simple to use. However it takes no account of the
different phases of the tides at different points along the estuary. As a result it cannot
be expected to give an accurate estimate of power output from a tidal scheme and hence
its application can be severely restricted. More accurate estimates can only be achieved
by employing more sophisticated and more accurate flow models which are capable of
accounting for the dynamic effects in the basin. Mathematically the flow is treated as a
function of both time and spatial position, and the system is described by a set of partial
differential equations.

In this report the optimal control problem for a tidal power scheme based on a dynamic
model (also known as the partial differential equation model) is investigated. Firstly the
flow equations governing the fluid dynamics in an estuary and across the tidal barrage are
described, together with the associated initial and boundary conditions. Then the optimal
control problem is formulated and the necessary conditions for optimality are derived. A
detailed description of the numerical solution procedure, in particular, the finite difference
scheme, is given thereafter. Finally numerical results for the Severn estuary tidal barrage
scheme are presented.



2 The Mathematical Model

2.1 The Equations of Flow

The basic geometry of the estuary together with a tidal barrage is given in Fig.1. It shows
that the tidal basin lies upstream of the tidal barrage which is itself situated at z = 0. If
the estuaries of interest are long compared to their width, then the flow can be treated as
one-dimensional within reasonable accuracy. As a result the fluid dynamics in the estuary
can be modelled by the time-dependent one-dimensional shallow water equations, which
are

Continuity equation:
On , 9(A(n, z)u)
b(n,z)— + ——— =
()5 + o, 0 (1)

Momentum equation:

Ju du on . gnfulul
55 T 95 e 2)

where

n(z,t) = water surface elevation above datum,

u(x,t) = velocity in x - coordinate direction,

g = acceleration due to gravity,

n = Manning’s constant,

b(n, ) = breadth,

A(n, z)= vertical cross-sectional area,

r(n,z) = hydraulic radius of the channel. FFor a wide shallow estuary, r can be
approximated by the formula (7, z) = A(n, z)/b(n, z).

There are two types of boundary conditions with this problem: external and inter-
nal. The external boundary conditions are chosen to give no flow through the upstream
boundary at z = l5, and to give a specified variation with time of water level at z = —/;
which is the mouth of the estuary. Hence we have

T](_ll’t) = f(t) yoou(lyyt)=0 (3)
where f(t) = tidal elevation. Over a short interval of time the tides are approximately
periodic, hence f(t) = f(t + T'), where T is the tidal period. It follows therefore that the
water surface elevation n(z,t) and the velocity u(z,t) must also be periodic in time with
period T. Hence the following periodicity conditions are evident

"7(3:’0) = U(iU,T) ) u(w, 0) = ’LL(.’C, T) (4)

In addition to these external boundary and periodicity conditions, there exists an
internal boundary condition due to the presence of the tidal barrage in the flow path.
This can be expressed by the mass continuity requirement across the barrage
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Q(0,) = A(n™,0%)u(07,t) = A(n™,07)u(07, 1) ()
where Q(0,1) is the total volumetric flow rate of water across the barrage at any time t.

On the other hand, it is also the total volumetric flow rate of water through sluices and
turbines. Hence it can be given alternatively by

Q(0,1) = as(t)Xs(h) + ar(t) Xz(h) (6)
where
h =n(0",t) — n(0%,t) is the head difference across the tidal barrage,
as(t) and ar(t) are the sluice control function and the turbine control function respec-
tively. The control functions represent the percentage of the maximum total flow which
is permitted through each device at a particular time t and are bounded such that

0< as(t) <1 (7)
0 <ar(t) < 1. (8)

The functions Xg, X7 are used to denote the maximum total fluxes permitted through
sluices and turbines respectively. These are further defined as

, ) —Qsi(h) ifRL0
Xs(hy= { @s2(h) otherwise (9)
) =Qm(h) R0
Xr(h) = { Q12(h) otherwise (10)
where
Qs1(h) is the maximum sluice flow out of the basin for head h,

is the maximum turbine flow out of the basin for head h,

h)

h) is the maximum sluice flow into the basin for head h,
h)

h) is the maximum turbine flow into the basin for head h.

2.2 The Optimal Control Problem

Having set up the equations governing the flow in the estuary and across the barrage, we
can formulate the optimal control problem for a tidal power generation scheme with two
controls as follows: we seek to determine a control vector a=(as, ar)? which maximises
the power functional

T
E= / e(Xr(h)ar, h)dt (11)
subject to the constraints expressed by Equs.(1)-(8).

The integrand in Eqn.(11) is the instantaneous power function of turbine flow and
head difference across the barrage.



2.3 Necessary Condition for Optimality

In this section we derive necessary conditions for optimality for the problem under consid-
eration. Pontryagin’s Maximum Principle has been used successfully in [1] [2] where the
flow is described by an ordinary differential equation. However, with a system of partial
differential equations the Maximum Principle is no longer directly applicable. To solve
problems of this form, we must resort to the more general Lagrangian method.

The Lagrangian functional associated with this optimal control problem can be con-
structed as (Ref.[5]):

L(a) = /OT le(Xr(h)ar, k) + m[A(n;,07)u; — asXs(h) — arXr(h)]+
YAy, 07 )u; — A(nF,0")u +]] dt+

0A  0Q ou Ou 877 1 1
][ / [ <___8_:v> +p(— 5 " U5s 9 g I 2u)u 4/3>] dxdt (12)

where @ = Au, u¥ = u(04,t), n¥ = n(04, ) and the functions v, (t), y2(t), Mz, 1), u(z,?)
are Lagrangian multipliers, and

][_IZ f(a)de = /-(: f(a)da + /Olj f(a)da (13)

The total variation of the Lagrangian is given by

AL=6L+%62L+~-- (14)

where §L and 62L denote the first and second variation of the Lagrangian. We shall only
derive the first variation as it sets out the necessary condition for optimality. If we take
a weak variation in ¢ and make use of integration by parts, then we can write the first
variation in the following form

0 0
i) = [[[Loten 5

Ya(b5ug 87 + A5 6uy — bfutsnt — Atsul)) dt

T -
+/ (—A6Q — pudu — guén)|%, + (—A6Q — pubu — guén)|? ] dt +

Op
Ox

——O0h+m [5@0 — (Ostg + aTX})(Sh — Xsbag — XT(SCYT]

5u—|—ga—'u

Op
f_ll( AA — pbu) |0da-|—]£ /l 5A+—6Q+ Fou+uzh 7
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P
— pgn® (2|u| 4/3 u[u]a7 7/3577)] dzdt (15)

where @, = Q(0,1t) is the total volumetric flow rate of water across the barrage.

This expression can be rearranged by considering the relations 6Q) = Adéu + uébA,
§A = béy and 6h = ény — énd. Upon making these substitutions and expressing the
variations of the dependent variables in terms of 67 and éu, the first variation becomes

0
6L(a,ba) = /0 [( ) — 1 X7)bar + (— 'leg)éag] dt +

T
l —6h + 1 [0Q0 — (as X5 + ar X7 )5h]] dt +

S~

(=X6Q — pubu — guén)|®, + (—A6Q — pudu — guén)|? ] dt +

S~
A

T
Ya(b uy én, + AJ bu, — b;ru;"én;" — A+5uj)dt

! 2
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0
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The necessary condition for a(t) to be optimal is that the first variation §L(a, ) of
the Lagrangian L. must be non-positive. Mathematically this condition can be expressed
as

6L(a,6a) <0 (17)

It is observed that the adjoint variables A and u can be selected so that the integrands
of all the integrals except the first one vanish. This leads to adjoint equations of the form

ox  0A Ou  4ugniulu| or
Nat Tva) Y99t~ 37 ap
ou Op IN  2ugn?|ul
ot o= “Bz + A@'c e

b(n, =0 (18)
=0 (19)

with the external boundary conditions



A+ pu = 0 at ¢ = =l
p = 0 at ¢ = 4+,

and the internal boundary conditions

w(0F, 1) (g — bF (uF)?/AT) + nlasXs(h) + arX7(h)] = %

(0, t)(g = bf (uF)?/AT) = n(07,)(g — b5 (ug)*/AT)

where

n(t) = Ay — M +poug JA; — udud JAL
Y(t) = M +pdud /AT

and the periodicity conditions

where A\ = \(04,1), pF = p(04,1).

Finally, the necessary condition for optimality can be written as

T
§L(, 6a) = / VE(a)-be dt <0

0

where VE(a) is the functional gradient and can be calculated as follows

9E/dar de/dar — 11(t) Xz (h)
e
8E/aa5 —’h(t)Xs(h)

(28)

(29)



3 Numerical Solution Procedures

The problems as formulated in the preceding sections are state constrained optimal con-
trol problems. To solve these optimal control problems, it is necessary to use a numerical
solution procedure which can determine the optimal admissible control functions ags(?)
and ag(t) with corresponding response n(z,t), u(z,t) and u(z,t), A(z,t) satisfying the
flow and the associated adjoint equations. The procedure which is developed for this
purpose consists of a constrained optimisation algorithm for iteratively determining the
optimal control functions, together with a finite difference scheme for solving the flow and
adjoint equations.

3.1 Optimisation Algorithms

It is well established that if the functional gradients can be evaluated analytically, gradient
based optimisation algorithms tend to have superior convergence properties as compared
to those which do not use the gradient. Therefore two gradient based optimisation algo-
rithms, which have been tested thoroughly in [1], are used in the current work. These are
the conditional gradient algorithm (CGA) and the projected gradient algorithm (PGA).
The structures of the two algorithms are illustrated in Fig.2 and Fig.3 respectively. Both
algorithms employ a simple but efficient step length rule which halves the current step
length if the current control functions fail to improve the functional value over the previ-
ous iteration. The iteration is terminated when the measure M(a*) is less than a given
tolerance, where M(a) is given by

M(a) = max < VE(a),B —a>=< VE(a),&—a > (30)
and U is the set of admissible controls. In the conditional gradient algorithm & is used as
the search direction for the new control. In the projected gradient algorithm, however, it
is used solely for calculating the first variation for the convergence criterion.

3.2 Finite Difference Scheme

It can be seen that both state and adjoint equations are partial differential equations of
hyperbolic type. To solve these equations numerically, an explicit leapfrog finite differ-
ence scheme is used. The flow equations are integrated forward in time from an initial
state (arbitrary) to obtain the final condition. This procedure is repeated, using the com-
puted final condition as the new initial condition, until the periodic condition is satisfied.
The adjoint equations are similarly integrated repeatedly backward in time from the final
state. A non-staggered grid system is adopted. The grid arrangement and the relevant
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nomenclature for the finite difference scheme are shown in Fig.4.

For the tidal flow problem it is found that the advection term uu, in the momentum
equation (2) is negligible, and therefore in order to simplify the computation, the advec-
tion terms are not modelled numerically. With reference to Fig.4, the flow equations are
discretised as follows

Continuity equation:

n+1 n—1 n n n n
pli —M - Alntin —Alawi (31)
) 20 20z
The continuity equation is followed by a post processing step
ny = (0] + 20f 07 70)/4
Momentum equation:
n—1
u At 1
uit = | — —g(njp — nj-1)| = (32)
I d; AV d d’
where
1

(- 2(,,n
dy =1+ (gn | lAt)——(T?)(l/g,

n=12,... NI -2 NT -1
7j=23.m—-2m+2,.,NX-2,NX -1

where NT is the total number of time steps, At = T'/NT is the time step, NX is the total
number of spatial grid points and Az is the spatial step. Separate spatial step values are
allowed in the outer estuary and in the estuary basin. j is the grid point number on the
finite difference grid. All the quantities with superscript n are evaluated at ¢ = nAt. It
can be seen that this scheme is a three-level time-differencing scheme and has second-order
accuracy in both space and time. The equations are easily rearranged to give formulae
for 77;“"'1 and u;'H in terms of the other quantities. The quantities at n — 1 and n must
be stored in order to compute those at n + 1.

As the scheme is of explicit type, we cannot guarantee that it is unconditionally stable.
The stability of the resulting discretisation equations can be analysed by the Von Neuman
method. For the explicit scheme, the stability criterion takes the form

CFL=-"<1 (33)
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This is the Courant-Friedrichs-Lewy condition; CFL is the well-known Courant or CFL
number, and c¢(z) = g\/A(n, z)/b(n, z) represents the local wave speed.

The boundary conditions for the flow equations are treated as follows:

Left Boundary (j=1)

it = f(¢) (34)
n—1

Internal Boundary - Barrage (j=m + 1)

n+1 n—1 n n
n TMmet = Tmor |, g = A7 _jup o
b =0
m-1 YAN ZACL'I (36)
n+1 n—1 n n
n Mmtl — Tmtt Am+2um+2 —qm
b =
sl 20\t * 2Nz, L (37)

where gm is the total volumetric flow rate of water across the barrage. From equation (6)
we have

qm = as(tn)Xs(hn) + OtT(tn)XT(hn)

and

n 1 n n-1 n+1 n—1
h" = 5 <T]mt11 + 1 — Ut — "7m+1)

It is obvious that the above equations constitute a system of non-linear algebraic
equations with two unknowns 77t} and nt% and must be solved iteratively. A damped
Newton method is used here. This method is known to have good convergence properties.

Details can be found elsewhere.

After nitY and pit) are evaluated, the flows are determined from

m—1
- 1 .
n+l _ Um—1 _ At <£ n+1 n-1y _ n > 1 38
um-—l L(17’7']’,':-]_1 A.’I,'lg 2 (T]m—l + nm—l) 77m—2 ] 7”:1_1 ( )
mh At 1 1 1
U;’,Ln+1 _ Um 41 B < 1T:L 2 (.ntl + :1—1 > 39
+1 _—d%fl Nz, Mm+2 2(77m+1 Tmt1) | (39)
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Right Boundary (j=NX)
up'y =0

n ’77175&1 — X - 2AR x1UN X -1 -0
NX oAt 20z,

Similarly the finite difference forms of the adjoint equations are written as

Adjoint continuity equation:
- )\;}—1 — XJ’.'+1 _n )\;."_H — A?—l . g,u;?_l_l - N;’L—l B nllgfn,z|'u;1|’ul:7(r’);L 1 (42)
7 2Azx 20z Hi 3(rp)7/®

J 24t

Again the adjoint continuity equation is followed by a post-processing step
. +1 n -1
A= (AT 20T+ A7) /4

Adjoint momentum equation:
At 1
=l — N — )+ — (A, — AT ) AR
ou’] /’l’] ( q] ) + AII?( 7+1 J—l) 7 1 ol q_;b (43)
where
q" = 2Atgn®|u’?] !
J AT
n=NT,NT-1,..,1
7=23.m—-2m+2 .. . NX-2 NX -1
The boundary conditions for the adjoint equations are treated as follows:
Left Boundary (j=1)
At 1
n—1 — n+1 1 . n 2 Xn.An 44
Hq prt( @) + —-—Aml 241 —1+q{‘ (44)
AT =0 (45)
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Internal Boundary - Barrage (j=m =+ 1)

Xn.+1 Xn—- (/\'u 1 ‘l‘ \n-H )/) . /\n
b m—1 =1 b m—1 1 m—2
m=—1 ‘.ZAE + m— l m—1 [ 2&&1 +
mm — ’I’:Ln—2 n
m-1 — 0 46
2 YA + 1 fm-t (46)

)‘?n’tl-ll )‘m+1 + b +1un li)‘zt+2 — (/\77;;*}1 + /\::*_11)/2] +

b‘n
m 2At mt QAIBQ
Bmtz —MP | o
;sz =+ fmy1Bm1 = 0 (47)
where
By = dgn®up sy |up | (M)t -0
3(rrgy)7/3

g+ mp+ 7{as( () + e () Xe (1)) = (52)

= (A"" + A0 = A — A5
mm = mp

These equations give a pair of linear equations for A%3Y, A"} which are solved directly.
The adjoint flows are then found from

n— n n At 1 n n— n n 1
,u’m—ll - /‘m+11(1 - qm—l) + ()‘ +11 + A -11) - )‘m—2 Am—l 0 (48)
A:z:l 2 i 1 + Im—1
n— n At n n n ] 1
Nm+11 = Nm-:-l1(1 qm+1) _Aw.; <)‘m+2 (/\ +1 == ’\m+1)> Am+1 1+ qn'+1 (49)
Right Boundary (j=NX)
px =0 (50)
n.— An+l T
7 NX Byx—-1 _
X 2Ai +g 2w =0 (51)
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4 Results and Discussion

In order to examine and compare the performance of the two optimisation algorithms, nu-
merical results are obtained for a practical problem which simulates the proposed Severn
estuary tidal barrage scheme in 1981 [7]. The model extends 120 km from Ilfracombe to
Sharpness and the barrage is assumed to contain 140 turbines and 160 sluices. Discharge
and derived power characteristics are the same as those for the early study and, essentially
follow the line of maximum efficiency until the maximum power limitation is reached [5].
The data and functions necessary for the computation, such as tidal elevation and turbine
flow characteristics, are prescribed as follows:

1) Turbine flow functions

Q11 = 140 x 390.0(1 — tanh(10(h + 2.27))

140 x 390.0(1 + tanh(10(h — 2.27)) for two-way scheme
Qr2 =
140 x 102.9048+/2gh for ebb scheme
2) Sluice flow functions
Qs1 = 160 x 259.2/—2¢h

Qg2 = 160 x 259.2,/2gh

3) Tidal elevation f(¢):

f(t) = Focos(zﬂ) + 0.15

s
where Fj, is the tidal amplitude in metres and for this problem is 4.25.
4) Power function e:

e = C(t)ar(t)F(h)

where C is the tariff and F'(h) is the turbine power characteristic. Here C takes a constant
value of 2.43 and F(h) takes the following form

0 if |h] < 2.27
F(h) = { 0.039671|h[* — 0.91158|h|* + 14.113|h| — 23.79 if 2.27 < |h| < 8.82
57.0 if |h| > 8.82
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This power characteristic should be valid for an ebb scheme as well as for a two-way
scheme. However in an ebb scheme, there is no instantaneous power output when the
head difference is positive and therefore the power characteristics should be set to zero.
It should be noted that the unit of the power function is megawatts.

5) Manning’s number = 0.04

6) Estuarine breadth b(n, z) and area A(n,x): These are numerically approximated
by taking a linear interpolation between the low water breadths and high water breadths

(see Fig.5 and Fig.6).

The test data are chosen to enable comparisons to be made with previous results [5].
In practice the functions X7, X5 should be defined such that X7 = 0, Xs = 0 only when
h = 0. In the present case, where this does not hold, the optimal control a7 is undefined
in regions where both e and X7 are zero, and ag takes arbitrary values in these regions.
The optimality of the solution is not afffected, however, as the power generated depends
only on the actual flow through turbines and sluices. A more suitable choice for Xt in
this model is obtained by defining Xr for |h| < 2.27 to be equal to the maximum flow
through the turbines used as sluices. Such a choice gives similar results to those presented
here.

Both two-way and ebb schemes are computed for a half day cycle with a tidal period
12.4 hours (14,714 seconds). The computation uses 250 time steps for both flow and ad-
joint equations. With regard to the spatial discretisation, the outer estuary is discretised
with a total of 15 mesh points whereas the estuary basin is discretised with 11 mesh
points. As it is known that the length of the outer estuary and the estuary basin is 70.0
km and 50.0 km respectively; this results in an equally distributed spatial step of 5.0 km
throughout the whole estuary. Based on the above chosen time and spatial steps, the
CFL numbers can be evaluated. It is found that the maximum CFL number is 0.6987.
Therefore the Courant condition is satisfied and the finite difference scheme is stable.

Two sets of initial controls are used. These are: 1) a% = 0.1, a% = 1.0 and 2)
ag = %, af = “ig(ﬂlll_ The second set of initial controls simulates an ebb
scheme. Detailed computational results using CGA and PGA are tabulated in Table 1 for
the ebb only scheme and Table 2 for the two-way generation scheme respectively. These
results are also presented in graphical form in Figs.7-14. It should be mentioned that
throughout the investigation the convergence tolerance employed is 1.5% of the power
functional.

An examination of the results shows that in general the two algorithms perform quite

well, considering the fact that the test data used are pretty rough. For a majority of
the test runs convergence is achieved within 10 iterations. As far as rate of convergence
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is concerned, it is observed that for the ebb scheme the conditional gradient algorithm
appears to perform better, whereas for the two-way scheme the projected gradient al-
gorithm does. This observation differs from the previous work using the flat basin flow
model where, with a linear power function, the conditional gradient algorithm proved to
have better convergence properties for two-way schemes as well as ebb schemes. However,
with the current system it can not be established theoretically for a linear power function
that the optimal control functions are strictly bang-bang in nature, and in practice the
optimal turbine control strategy is found to contain interior values even in the linear case.

It is further observed from Tables 1 and 2 that in terms of power output the ebb
schemes are superior to the two-way schemes in all cases investigated. In the ebb schemes
the power outputs predicted by the two algorithms are in agreement to within 1.0%. The
algorithms are able to predict that the turbines are used for sluicing when they are not
generating. This is indicated in the graphs by intervals where positive turbine flow is
shown but energy is not produced.

In the two-way schemes, by contrast, there are some discrepancies in the predicted
power outputs with different sets of initial controls, as shown in Table 2. Similar results
are also reported by Birkett [6] who made an investigation of a modified conditional
gradient algorithm for non-linear optimal control problems using the flat basin model. He
concluded that the control strategy computed by the algorithm for the two-way scheme
is only a local maximum. That seems to be the case with the current results. In fact,
if the second set of initial controls is used, the optimised two-way schemes produce a
power output as well as an optimal control strategy close to that of the ebb scheme. It
is worth pointing out that even though the ebb schemes produce more power than the
corresponding two-way schemes, it doesn’t necessarily mean that we should not consider
the two-way scheme in practice. In certain circumstances it may be more important to
be able to supply electricity flexibly over a wide time period.
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5 Conclusions

In this report we further investigate non-linear optimal control problems for a tidal power
scheme. A sophisticated dynamic flow model is used for accurate description of the fluid
dynamics in the estuary and across the barrage. By using the Lagrangian method the
necessary conditions for optimality are established.

Two gradient based iterative optimisation algorithms are used to solve the optimal
control problems numerically. Computational results are obtained for a practical problem
which simulates the proposed Severn estuary tidal barrage scheme. Generally speaking,
the algorithms perform well, requiring only a few iterations. The finite difference methods
for the numerical solution of the flow and adjoint equations are accurate and stable. It is
found from the computation that an ebb scheme is superior to a two-way scheme in all
cases investigated.

Finally it can be concluded that the optimal control approach to the tidal power

generation problem is a feasible and attractive method for systematically computing flow
control strategies.

Acknowledgements

The research reported here has been conducted with financial support from National
Power (NPTec) and this support is gratefully acknowledged.

18



References

[1] Xu, Z.G. and Nichols, N.K., ”An Investigation of the Form of an Optimal Controller
in a Tidal Power Generation Scheme with Two Controls”, Numerical Analysis Report
NA.5/91, Department of Mathematics, University of Reading, 1991.

[2] Andrews, T.P., Nichols, N.K. and Xu, Z.G. "The Form of Optimal Controllers for
Tidal Power Generation Schemes”, Numerical Analysis Report NA.8/90, Department
of Mathematics, University of Reading, 1990.

[3] Pontryagin, L.S., Boltyanskii, V.G. and Gambkrelidze, R.V., ” The Mathematical
Theory of Optimal Processes”, Interscience, 1962.

[4] Birkett, N.R.C. and Nichols, N.K., ”Optimal Control Problems in Tidal Power Gener-
ation”, Numerical Analysis Report NA.8/83, Department of Mathematics, University
of Reading, 1983.

[5] Birkett, N.R.C., "Nonlinear Optimal Control of Tidal Power Schemes in Long Estu-
aries”, Numerical Analysis Report NA.9/86, Department of Mathematics, University
of Reading, 1986.

[6] Birkett, N.R.C., ”Nonlinear Optimal Control Problems in Tidal Power Calculations”,
Numerical Analysis Report NA.2/85, Department of Mathematics, University of
Reading, 1985.

[7] H.M.S.O., ”Tidal Power from the Severn Estuary”, Energy Paper No.46, 1981.

19



7 BARRAGE

[
A BAS
SEA b(7.) D

0 =l
X
;--li
(a) PLAN VIEW
BARRAGE
9 A ndy)y Tixt
() ﬂ(dit,) '( ) e
SEh u(x,t) — 5 BASIN Xl
Saias X=0
Xw=]y
(b) SECTION ViEW
\—— b("x) ———=/

A(.x)

(c) CROSS—SECTIONAL VIEW

Figure 1: Estuary Geometry



SET0G ,08, WE®,%E®

SET STEP SIZE
S = So

COMPUTE NEW CONTROLS
altt= ak+S (A ~ af)
= af+S (3 — af)

[SOLVE FLOW EQUATIONS WITH a&*' ak+|

[COMPUTE FUNCTIONAL E **'|

FUNCTIONAL
BEEN IMPROVED
?

YES
[ SOLVE ADJOINT EQUATIONS WITH of*' at+! |

!

| COMPUTE FUNCTIONAL GRADIENTS |

Figure 2: Flow chart - Conditional gradient algorithm (CGA)



[SETe? .oei VeEC V,EC |
SET STEP SIZE]

= Sg

=

COMPUTE NEW_CONTROLS
ot o+ SVE */AVER H(VEN)T

o *'= af+SHE® LAVER T+ (V,EX)T

IS +1 +1
G o< 0, OR > Tooe &< 0
OR BETWEEN?

SET Gﬁ*:= i SET 0-':":=
A =
e BETWEEN .

[SOLVE _FLOW EQUATIONS WITH o** o+1|
|

[COMPUTE FUNCTIONAL E**7]

[AS
FUNCTIONAL
BEEN IMPROVED
?

[[SOLVE ADJOINT EQUATIONS WITH o' ax+1 |

!

| COMPUTE FUNCTIONAL GRADIENTS |

[SET &+ = 0|
0 =

| EVALUATE FIRST VARWTION C **' |

K=K+ 1| NO
S = So
YES
a:_¢|§+1
a:-ﬁ"'
Gt

Figure 3: Flow chart - Projected gradient algorithm (PGA)

8]
[C)



I B S

INTERIOR
/ fl o 4
: 4 n+1
1
7 ! /
: 7 i
7 ! /
: n—1
7 i 4
1 m—2 m-—1 m m+1 m+2 NX—1 NX
LEFT BOUNDARY BARRAGE RIGHT BOUNDARY

Figure 4: Finite Difference Grid

23



Low Water Breadths (-6m 00) u/s [lfracombe.

Breadth (km)

x (km u/s)
[} 10 20 30 0 %0 [ 70 [ ] ” 100 1o 120
Figure 5: Low Water Breadths
High Water Breadths (+8m 0D) u/s Ilfracombe.

sBr‘eedth {(km)

10 L bY

S b \’\

0 - x (km u/3)

Q (1] 20 30 .0 so 40 70 [-}] 90 197 1o 129

Figure 6: High Water Breadths



(8)8 (zLot 9c0/9't 80099+ | Z/((()Nubsi—t) | Z/(((3)4)ubsi+1)
(8)8 (v+2)st 9988¢ 825Gt o1 1’0
vod VOO vVod VOO
10 %)
suo|jpJayl jo "oN | (M9) Inding Jemod 0 o
JNIFHOS AVM—OML ¢ 8l9ol
(21)6 e ¥LY06'¥ Lsa6y | 2/((Dubsi—1) | z/((()s)ubsi+)
(ot ()s G6288°v lOGE6V 0l 1’0
vod YOO vOd VOO
10 S

SUOI}DJ3)| JO "ON

(M9) IndinQ Jemod

o)

o

JAN3HOS 843 1 8l9Pl



01 = 010 = 0 - yD) - owayos qqy :J 211y

-SZio1e-
w. -OyaRl—
g
Lumiz- Q)
L 3
[+
g 1]
Lccica- A
‘ON UOI3DU3Y
8 L 9 S ¥ € k4 I
SWI| PaSIDLLIO
E ; L L - . L 0 a &0 ) ) "o i %0 ¥o ) 7o ro antres-
H 1 L 1 L L L L
N m — < —
m iR
2
-9
awi| pasypwIoN
0l 60 80 £a 90 g0 0 €0 Z0 1'0 00
8wl PasIOWL.ION L 1 : 1 1 1 1 1 1 1 oo =
[3) 8 60 80 L0 90 S0 0 €0 z0 1o 00 =
L v ! 1 L 1 1 1 ] 1 00 o.
3
S | 1
—Z0 c = (@
0 [o]
70 o >
.F bn )
Leo & %o
3
=
%0 o Fan-
a1 ] aWl] pas|DWLION L owg- O
01 60 90 0 90 <0 ¥0 T0 10 oo w
L 1 1 1 1 1 1 1 ! o0
/ o
lllg\\ F0is F
Wil pasI|DLIION
ol 60 80 L0 90 <0 ¥0 €0 <0 1o 00
JOieZ— v L 1 1 1 1 1 1 L 1 1 00 _
sWi| PasIPWION O~ S 2
ol 60 g0 ° 90 S0 0 o zo o (] ® o
L 1 1 1 1 1 1 1 1 Al 10 % ~S0 mvc
£
k3
Lb# o




uoijoaeg

(mo) Inding Jemay

0T ="§0T°0 = 30 - YDJ - SWaYs qqy :g 2n3iyg

swi| pasipulo

slI| PasIPLLIO)

Qs
Qis—

0%
/T._
QT

1043u0Q 99INS

Mol4 3onig

-LOv T8
|-stea s~
-SIRu-
- ZO0 i~
SWil| pasipuIO \«n\k
a &0 o 90 <0 4] £ 3] ojpsRIT-
r P L A L L L
1./|\\\\ ;ﬂ.ﬁi
awl| pasiDUIION
60 80 L0 90 g0 0 <o <0 10 00
1 1 1 1 1 L 1 1 op =
c
b= |
o
M.
G0
(@)
[}
3
[ gl
~01 ¢
I Olsi~
aWl| PpasIDWION L, 0lsG—
60 80 0 90 S0 ¥0 N.b 1o 00
1 1 1 1 1 1 1 )
1 /395.
3Wl| pas|DuLION
60 8’0 Lo 90 S0 0 €0 T0 1o 00
1 1 1 i 1 1 1 1 "
00
=0
7]
3
S0 ©
o]
b3
1]
=
-0l

juaIpoIY
%Y 4

Mol suiguny




uolorey

01="to10=5%0-yn) - SwaRs Aem-omJ, 16 o1nJr[

EZETLE—

-1

FesOEaE- Q)
a
Q.
[¢]
Lazrva- o
‘ON UOI3DI9Y
Sl i 1} 6 L S Iy } b
L 1 1 1 L L [ 0 284070
g
.4
w —viz'a
P
Lg
3wi| paslpuIoN
ol 60 80 L0 90 S0 0 <0 z0 1o 00
S| pPasiPWION L 1 1 1 1 1 1 1 1 1 oo =
ol 60 g0 0 90 (9] ¥0 €0 zo o 00 [~
1L 1 1 A 1 1 1 1 1 L 00 M-
(]
w -
20 = &0 (@]
o o]
¥0 @ 2
2 0l g
90 .m..
80 g 0=
W] pasfoul c
=01 01 60 80 Lo 90 = 0 £0 z0 ro ojo o
1 1 1 1 1 1 1 1 1 1 0l*0 W
-
I ' g
8WI| PaS|DULION O
ol 60 80 Lo 90 g0 ¥0 £0 zo ro 00
OleZ— L 1 1 1 1 1 1 i 1 1 00
(%} =
o o ” c =]
00 &0 80 0 Z0 Lo 0 s r\l\\\ 2
| 1 1 1 1 1 Ole0 (1] N
n 80 ©
o
-3 %
L3 @
Lhad Loy




awi] Pas|DWION

01 =407T°0 = 30 - YO - dweyos fem-omJ, 0] aIn3r g

\\...-..].I;r.r..:f.r..r
-riocER~
S TE- Q)
S
o
=3
Lg S
-RI08 T [
|| PeslDULION
*ON UOI3DJa}] %0 vo o ro o
] L 9 S ¥ € [4 } g . A L . t
L L 1 1 1 1 1 0 C2erE
g
.4
w LZZILE
-9
awi| vom__octoz
o1 60 80 Lo g0 S0 <0 zo0 ro 00
aWll] pas|pWJON L 1 1 1 1 1 _ 1 1 1 op =
o1 60 20 L0 w.o <o 0 £0 zo ro 00 =
L 1 1 . 1 1 1 1 1 0o =4
a
()} L
rzo & B
0 [¢]
—¥0 © 3
= O 01 g
90 m
=4
80 o e UL
=01 ol 60 g0 Lo z0 ] olo W
| 1 1 1 1 ] qQ.lQ W
m
N _ g
awi| PasIPWLION 2
0l 60 80 Lo 90 m.o ¥0 £0 0 Y1] 00
—=giel— | 1 1 1 1 1 1 1 1
1 vow__cELoz Oz w o0 -
01 60 80 £0 z0 1o o[ m 7]
~
L 1 1 1 1 1 01%0 o .
- -c0
)
5 £
- OleT x m
—-01

90




[4 _ Iy ¢ (4 — Sy - - :
Gyuss=i = ° ‘[yuberi = o0 - VDO - 2WOYds qqy T 2Indiyg
e
Lessec—
Loz~ @
G
Q
Q.
) o
Loa- A
‘ON UOI}DJ3Y
L - - - H L L - 0 o ¢0 10 o0 s0 » ca zo o pAET-
% _ m L L 1 L 1 1
|, M <
m o]
2
|.*\\“
-9
awjl| PpasipulioN
ol 60 80 20 90 g0 0 €0 z0 1o 00
aWI| PasIPWLION 1 1 1 1 ) 1 ! 1 1 i oo =
[2)3 60 g0 L0 g0 [1+] ¥0 €0 z0 X¢] 00 S
L ! 1 1 1 1 1 1 1 oo ga.
]
S =
-zo & LL
o o
-0 ® 3
o 01 g
-90 9
=3
—80 o -Ois— —o
01 alLL| Pas)DULION | gtse— W.
[+29 60 80 ‘0 90 c0 ¥0 z0 10 oo 3
1 1 1 1 | ] i 1 1 ) o0 O
] 5
—,0lsC E 3
awi| pasipusioN
ol 60 g0 Lo 90 g0 ¥0 €0 0 1o 00
- OleZ— v | 1 1 L i | i 1 1 1 1 00 _
SWwi] PasipWlIoN L Oloi— m 3
o1 60 80 90 S0 0 €0 Z0 1o (+/(¢] [ - s
L 1 1 1 1 1 1 1 Al = Y
1=0 |
0 Wn M
—s0lsl 4
—-0




[4 — L ¢ 4 S )
Tt = &0 ‘e = 30 - VOJ - 2wotps qqq ‘gl 28]
-5
-~ S PESHBLION G* .
7 T, (W
K BT R~
M g -
-
s E - (9]
Q
Q
204 - w
*ON UOI}DJ3Y
6 8 L 9 S 14 € z 3
L 1 s 1 - 1 1 1 0 @ = apreTe-
W L i
-2
§
Ly &
2
-9
awl| pasiDUUION
029 60 80 L0 90 g0 ¥0 £0 c0 [Y+] 00
aWwl| PaSIPUIION 1 I 1 1 1 1 1 1 1 I oo =
ot 60 g0 L0 90 [1¢] ¥0 €0 z0 10 00 s
L 1 1 1 ] (] L L i ] o0 m-
]
w =
—-Z0 W|. =0 Mu
-v0 & 2
=
(@) 01 o
~90 W
Z
80 g o LE
o1 8wl PaSIDWLION L Gree— 8
o1 60 0 0 90 g0 0 Z0 1o olo’ 3’
L 1 1 1 1 1 i 1 1 i 0l%0 o
5
Ll— L-c_cm %
Bwl| pas)DWION
o1 60 80 Lo 90 S0 0 £0 <0 1o (4]
SOl Z— L 1 1 1 1 1 1 1 1 L oo
owl] pesioLLION 2 =
01 60 g0 90 S0 0 €0 z0 1o o 2
L | 1 1 1 1 1 1 1 0l*0 o *
- S0 D
3 g
x ®
oisz o

31




4 _ In ¢ [4 — Sp - _ ~ .
Tyae=t = 0P (Freberi — o° - VDD - WS fem-omJ, :¢T 2InSr g
P
-SriTeE—
Lyowiz- Q)
(2
[}
o
(1]
e il w
"ON UOI3DJIIY
o 6 8 L 9 S ¥ € z }
L 1 1 1 1 1 1 1 1 0 nu «.o -.u L izeoe-
g —
.4 _
© 5
g
2
-9
3awil| pas||DWION
() 60 g0 Lo 90 S0 ¥0 £0 z0 1o 0o
sWl] pasipWwJoN L 1 1 1 1 1 1 1 1 go =
o1 60 g0 L0 90 G0 ¥0 )] z0 1o 00 S
L 1 1 L 1 1 1 i ! 00 o
@
[72]
=1 = <0 o
el [+]
-¥0 @ Mv
g0 & %o
3
g0 3
=2 o
o1 o
=4
. Olsc— @
3wl pes|pwlioN -
o1l 60 g0 0 90 S0 +¥0 [ z0 i} olo [}
L 1 1 1 _ _ _ 1 i 0150 3
ot 60 80 Lo 90 S0 0 £0 z0 10 00
JOleT— 1 1 1 1 1 1 1 1 1 1 00
w —
aWwl] pasioWJIoN O~ E. 2
ol 60 20 90 S0 ¥0 £0 zo o ] -
L L i L i 1 1 i i hé - 20 ©
3 g
Oy F o
oz _01

Qo)




- VOd - dweyds Lem-om T, :HT onSig

T
e
Lwsz- Q)
(2
[o]
o
Lg <]
Laorn- =
‘ON UOI}DJ9Y|
8 L 8 S ¥ £ k4 3
L A - - - ! L o a s 70 g v opeaE~
[ — L i L 1l L Il 1
J —— p—
- 4
) Lyion
2
-9
swi| pasipuLION
ol 60 80 L0 90 g0 Y0 €0 z0 1o 00
W] pasiPWJON L 1 1 1 1 1 1 1 1 1 oD
01 60 g0 L0 90 <0 +¥0 £o z0 10 00

1 1 1 1 1 1 L | E— (o71)

[
=]

|oJjuc) sulqun}

[ouo) 8oINS

aWl| PaslpULION

90 <0
S pesoaok
90 0

¥ 20 1'o
¥0 £0 0 1’0 Q0
1

L
Z
T
Mol 4 suigun|

-2 ’-9
-3 |3

g0 Lo

—0l=Z— B 1 1 1 1 1 1 1 00 _
auwll]| pas|jowJioN L Olsi— m w
o1 60 80 90 S0 0 £0 0 10 oo o o
L 1 1 1 1 1 1 1 Al Dl*0 -n S0 U
g g
L Olei E 3 e

—01

33




