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ABSTRACT

The mathematical formulation of the extension of the Reading
two-dimensional Moving Finite Element model of dopant diffusion in
silicon to include oxidation is described. Non—dimensionalisation of
the equations shows that the oxidation and silicon diffusion problems
can be seperated. Thus the only information about the oxidation
required by the diffusion model is the location of the oxide boundary.
This moving boundary effects both the location of the interfacial nodes
and also the dopant concentrations there, and can lead to element
folding. Results produced by the model when it is extended to include
such a moving boundary are presented, illustrating both its potential

and its limitations.



1. Introduction

The dimensions of silicon integrated circuits are continually being
reduced, with critical features now as small as one micron. This
prlaces stringent requirements on silicon processing techniques, such as
ion implantation, oxidation, annealling, lithograthy and etching, so
that transistor junctions are well defined and correctly located. Thus
the task of developing a manufacturable, small-geometry silicon inte-
grated circuit process is extremely complex and expensive. It is
important, therefore, to reduce the number of experimental tests to a
minimum by using predictive models of the main physical processes
(Godfrey, 1986).

To this end models have been developed in the Mathematics Depart-
ment at the University of Reading over a number of years, using the
Moving Finite Element (MFE) method devised by Miller and Miller (1981).
This technique has the advantage over conventional fixed finite differ-
ence and finite element techniques of being able to concentrate nodes
vhere they are required at any time, thus saving on computational time.

In some regions of silicon semiconductor structures l-dimensional
modelling gives an accurate simulation of the dopant diffusion during
thermal annealling (Ho et al., 1983). Such models have been developed
using the MFE method (Baines et al., 1986) with subsequent adaption to
also include the effect of a moving oxide boundary (Moody and Please,
1987). This model is at present being extended to simulate multiple

dopant diffusion (S. Chynoweth, private communication).



The applicability of 1-dimensional models is, however, limited to
planar regions and, as device dimensions are reduced, the need for
2—-dimensional models increases. A 2-dimensional model of dopant diffu-
sion has been developed (M. Baines, private communication), to be impli-
mented within the Alvey 066 software. However the extant code only
models ion implantation (using Gaussian and error functions) and dopant
diffusion. The important process of thermal oxidation, with the
resultant moving boundary and dopant segregation at the boundary, was
not included. It is to the interfacing of an oxidation model with the
diffusion model that this report is addressed. As with other numerical
integration techniques, the extension of the 1-D MFE method to 2-D is
not as simple as it would first appear. For as well as greatly
increasing the number of elements and thus causing a reduction in reso-
lution, there are other difficulties related to the method and also to

the problem:

(1) While in 1-D the local MFE method is equivalent to the global

method, in 2-D this is not the case (Sweby, 1987).

(2) While in 1-D element folding is a simple process (Moody and Please,
1987), in 2-D it can take many forms and it is difficult to include

all posibilities in the model (see section 3.2).

(3) The growth of the oxide is not purely in the vertical direction but

also has a horizontal component.

In section 2 the models used to simulate diffusion, oxidation and
segregation are described. These are then non-dimensionalised which

highlights negligible terms, resulting in a decoupling of the oxide



diffusion problem from the silicon diffusion problem. Thus the silicon
model only needs to know how the location of the oxide interface varies
with time. In section 3 the technique to impliment this knowledge is
described, with the MFE model needing to calculate both the new nodal
position and, more difficult, the new interfacial dopant concentration.
The moving upper boundary also results in elements folding and the
methods used to cope with this are also described in this section.
Results of wusing this method are given in section 4. These
results also highlight some shortcomings in the present model and
suggestions for improving it are given in section 5. Details of the

alteration to the numerical code are given in the Appendix, section 8.



2. The Mathematical Models

2.1 Diffusion in Silicon.

The model used here of 2-D dopant diffusion in silicon is that
developed at Reading University (M. Baines, personal communication).
It is based on the dopant diffusion equation

5;5 = V{Ds(ss)vcs} (2.1)

where cs(x,y) is the total dopant concentration at the point (x,y)
in the silicon and Ds(cs) is the diffusion coefficient at concentra-
tion c,- The diffusion coefficient also depends upon dopant species
(arsenic, boron, phosphorus or antimony), temperature, clustering
effects and whether oxidation is taking place or not (Godfrey, 1984).
In the case of the diffusion of a single dopant species the effect of
clustering (precipitation) can be simulated without considering the
clustered dopant as a seperate species. The technique for so doing is
given by Baines et al. (1986).

The existing 2-D MFE code simulated the implantation of dopant
followed by its diffusion, obeying equation (2.1) with the boundary
condition of zero gradient in the dopant concentration at the edges of
the domain. This model has been used to successfully reproduce the
first benchmark problem, posed by GEC within the ALVEY 066 program, and
has been implimented within the ALVEY 066 sof tware package ’'TAPDANCE’.
However the model has difficulty in simulating the second benchmark
problem, in which the implantation has realistic range, standard devia-
tion and straggle and therefore sharper concentration gradients and

smaller radii of curvature.



2.2 Oxidation.

Simulation of the oxide growth, and the diffusion of dopant within
it, is a very complex problem (Chin et al., 1983) and will not be
tackled here. Instead it is assumed that information about the oxide
comes from one of two sources: An external oxide model (in the case of
the ALVEY 066 software this will be provided by University College,

Swansea) or else an analytical model.

2.2.1 The Analvtical Model.

The analytical model is that of Penumalli (1981), which is used by
the TITAN process simulator (Girodolle and Martin, 1987). Penumalli’s
model is a two-dimensional extension of the classic Deal and Grove
(1965) one-dimensional model used by Moody and Please (1987), with the
lateral variation in oxide thickness being described by an error func-
tion. Figure 1 illustrates the model together with an explanation of

the notation used here.

s(b)

Figure 1



If the initial oxide thickness is S5 then the oxide thickness at a
large distance from the nitride (or polysilicon) mask at time t is

given by the Deal and Grove (1965) formula:

s(t) = %{V/Az +4[s> + As_ + Bt] - A} (2.2)

where B and B/A are the parabolic and linear temperature-dependant
rate constants respectively. The general oxide thickness d(x,t), at

any location x 1is then defined by

d(x.t) = { Effzé:_fe.}[1 + erf{ Ao =2 }] +s, (2.3)

a(s(t) - Eo)

where a 1is the lateral extension of the oxide (0.6 for a nitride mask,
2.0 for polysilicon).

The location of the silicon-oxide boundary is defined by
d(x,t) = d(x,t)/v

where 7 is the ratio of the silicon dioxide to silicon specific
volumes (~» = 2.27). (Note that the y-axis is oriented downwards to be
consistant with the 2D-MFE code).

To include oxidation within the MFE environment we need to know not
just the oxide interface at a given time but also its velocity, which
thus defines the velocity of the boundary nodes. For the analytical
formula of Penumalli (1981), this velocity is not uniquely defined.
Thus we need to make an assumption about the direction of oxide
encroachment into the silicon, and we will assume that it is normal to

the silicon-oxide interface. Thus the velocity of the silicon-oxide



interface, v(x,t) , 1is defined as

v(x.t) = -3-%{1+ [%];}/{1 " [%]2} (2.4)

where
€ - -2 ep(- 07 (2.5)
avmT
8 21+ erf 0] - E ep(- ) (2.6)
vir

¢ = 2(x0 = x)/{a(s(t)go)} and s = s/v (as with d) , with i and j
being the unit vectors in the x and y directions respectively.
To model dopant diffusion within the oxide we assume that the

motion due to oxide growth is purely vertical. With this assumption

then e the dopant concentration within the oxide, obeys

dc dc
o _ 2 _ ad(x,t) "o
3t = Dov <, + (~ 1) 3t 3y (2.7)

where D0 is the diffusion coefficient within the oxide (assumed inde-
pendant of concentration), and y 1is depth into the silicon, with the
origin being the level prior to oxidation. In keeping with previous
work, clustering effects in the oxide can be ignored as the dopant con-

centrations are low.

2.2.2 The Numerical Model.

In this alternative to the Penumalli model, data for the moving
silicon-oxide interface was supplied in numerical form from the Swansea
Oxidation Model (J. Waddell et al., 1987). The data comprise time,
node number, location. The interfacial velocities were calculated by
numerical differentiation of this data, while the dopant concentration

is not modelled (see section 2.4).



2.3 Boundary Conditions.

Consistant with the previous silicon modelling work at Reading

University using the MFE code, we assume no flux leakage at external

boundaries, and thus g% = 0, with c¢ Dbeing either c, or c. and
n being the normal to the boundary. Note that the domain used needs

to be large enough for the oxide interface to be horizontal at the
boundaries, otherwise the above boundary condition is not valid.

The internal boundary between the silicon and oxide is assumed to
obey a segregation law, and thus the concentrations in the silicon and

oxide obey the equations:

N

oate o, + stithe i 0 = s, =4 o8

[Dogco + 'n_/(x,t)co]ﬂz = - h[co . :—*1] (2.9)

where h and m are the boundary transport rate and the equilibrium
segregation ratio respectively, while v is the unit vector in the Vv
direction.

The initial dopant distribution in the silicon is be assumed to be

Gaussian with depth while having an error function dependance in the

lateral direction. The values used here are:
Range = 0.25 pym
Standard Deviation = 0.05 um
Straggle = 0.05 pm

While these are not physically realistic, they are the values which have
consistently been used in developing the 2-D MFE model, and thus the

behaviour of the base model is known and understood.
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2.4 Non—-dimensionalisation.

In their study of l-dimensional oxidation, Moody and Please (1987)
found that by non-dimensionalising the model equations they could show
that the diffusion of dopant in the oxide was negligible. The same
method should lead to similar conclusions in 2-dimensions. However,
the existing 2D MFE code does not use the same scalings, instead it uses

the following normalisations:

Concentration ni (a function of temperature)
Length L = 1um

Time t

I

LZ/Di (Di is a function of temperature).

Using these values equations (2.1), (2.7) - (2.9) can be rewritten in
normalised co-ordinates, in which the following transformations are

made:

(cs,co) ni(Cs’Co)
(x.y.d) = L(X.,Y.D)

(t)
(v)

[Ds(cs),Do] = [DiDS(CS),DiDo]

7(T)

(L/7)(V)

The result of such substitutions is to leave the equation for diffusion

in the silicon (2.1) unchanged, while the remaining equations become:

ac acC

0 _ 2 ., 8D "0
aT_ = 51V CO + (’Y 1) _aT _aY (2.10)
[Ds(cs)gcS + ycs].\_/ 5 -8, [Co - Cg/m) (2.11)

[51300 + 7\_/00] Vo= -8, [Co - CS/m] (2.12)
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where

and 6, = - Lh/D,

Using typical values for Do'Di and h leads to the conclusion that

some of the terms in these equations are negligible, because:

61 K1 and 63 > 1

In view of the smallness of 61 (due to diffusion in the oxide being
much slower than diffusion in the bulk silicon), the diffusion term in

equation (2.10) can be neglected, leading to

ac B aD 6CO

s = (=D grar (e:19)

This has reduced the order of the differential equation in the
oxide layer from a second order diffusion equation to a first order
advection equation. Thus the surface and edge boundary conditions in
the oxide are no longer required.

Similarly, due the diffusion term in equation (2.12) being negli-
gible, this equation can be combined with (2.11), resulting in the

elimination of the boundary transport rate:

[DSYCS + YCS]°Y = 7YCO‘Y ; (2.14)
In view of the large size of 63 and the lack of any term on the LHS of
equation (2.12) to balance the RHS then the coefficient of 63 must be

very small, leading to the equilibrium segregation condition

e, = cs/m on y = d(x,t) (2.15)

Thus the interface boundary condition on the dopant concentration in the
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bulk silicon (equation 2.14) can be further simplified so that it does

not depend on the dopant concentration in the oxide:

v
{DSYCS + Y[l - E']CS}

which is identical to the form used by TITAN (Girodolle and Martin,

<>
1]
o

(2.16)

1987).

As in the one-dimensional case of Moody and Please (1987), these
simplifications have created a decoupling between the silicon and the
oxide dopant diffusion problems. Thus, in the first order solution,
the effect of the oxide boundary on the silicon diffusion problem is
independant of the dopant concentration in the oxide, which in turn is
directly proportional to the concentration at the silicon boundary.
The dopant concentration within the oxide can be determined for any
lateral section by direct calculation using the growth rate of the oxide
and the temporal evolution of dopant concentration in the silicon at the
interface.

As well as using this normalisation, the model is also expressed in
transformed co-ordinates in which the dependant variable is no longer
concentration but ¢ =c + ln ¢, a velocity potential associated with
D(c) . (Please and Sweby, 1986). For large <c ¢ Dbehaves like <c
itself, while for small ¢ ¢ behaves like In ¢ thus allowing better
resolution of the wide range of concentrations simul taneously observed.

This transformation leads to altered equations using

6¢ = 6c® (c+ 1)/ c. (2.17)
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3. Implimentation.

The method used here is to prescribe the interfacial nodal velocity
from the oxidation model and then to find the new interfacial nodal
concentration using equation (2.16), as in the TITAN process model
(Gerodolle and Martin, 1987). This method could lead to slight errors
in the oxide depth simulation as the velocity is continually changing
and thus a correction to the interfacial node location should be made
once the timestep has been calculated. However, with the small time-
steps observed in the oxidation-diffusion model described here this
error is negligible.

While the calculation of the interfacial node velocity is elimen-
tary, this movement has three more complex effects. Firstly, the rate
of change of the dopant concentration at the node is altered due to
advection. Secondly, the rate of change of dopant concentration was

calculated assuming its gradient was zero (normal to a boundary) or

unconstrained. This choice needs to be extended to include the effect
of a non-zero gradient at the moving boundary. Thirdly, and most
problematic, the movement of nodes forced elements to fold. The first

two of these points are dealt with in section 3.1 while the latter is
considered in section 3.2.

The effect of segregation on the interfacial dopant concentration
is given by equation (2.16). There are two ways of including this in

the model:

(1) As a boundary condition, thus specifying concentration
gradient at the interface (this was the method adopted by
Moody and Please, 1987)

or
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(2) As a flux condition thus using conservation of total dopant
amount, the method used by the process simulators SUPREM III

(Ho et al., 1983) and TITAN (Girodolle and Martin, 1987).

Each technique has been considered and they are described in more detail

in section 3.3.

3.1 Interfacial nodal position.

The velocities of interfacial nodes can be specified in the model
by overwriting the values which would be predicted by the code. At the

heart of the 2D-MFE method the following matrix equation is solved:

where a;

(xi’yi)' mj

and n.
J

gradients in element j,

is over elements

values (see Sweby, 1987, for more details).

is the concentration at node

is the area of element

j surrounding node

matrix equation can be reduced to

js

EA. ~YAm, - YAn, o, Aw,
J J J J J J J
= z Am, z A .m? A.m.n, Am.w (3.1)
J J J J JJJ J JJ
- An. z A.m.n. An? An.w
J J J JJ JJ JJJ

which is located at
are the horizontal and vertical concentration
the summation
are more complex

For interfacial nodes this
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2 AJ - z AJmJ - z AJnJ 24 z AJwJ
0 1 0 x, | = u (3.2)
0 0 . 3.’1 v

where (u,v) is the interfacial velocity (n.b. at the left and right
edges of the interface u = 0) . This formulation not only specifies
the movement of node i to be that of the interface at that location
but also takes advection into account in calculating the rate of change
of a;

As well as these effects, the moving boundary also alters recovery,
a technique which allows the second derivatives to be calculated from
the nodal concentrations by fitting a pseudo-cubic to the concentration
gradients (details are again given in Sweby, 1987). In the 2D-MFE code
seven points are used in the recovery calculation for each element: the
three nodes, the three mid-edge points and the centroid. In general
the gradients at the nodes and mid-edge points are weighted means of the
appropriate surrounding elements while at the centroid the value is
based on the gradients in the element with added components from the
other 6 points. (Experience with various weightings showed that the
most robust was to use the length of the element transversal.) This
method is adapted at the edges of the domain, for there the gradients
are specified by the zero flux condition. Thus in the existing 2D-MFE
code the values of the gradients are set to be zero normal to the
boundary.

In the case of oxidation, however, the zero flux boundary condition

is replaced by equation (2.16). Thus the gradients calculated for the
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surface nodes and mid-points needed to be altered to take this into

account while leaving the tangential gradients unchanged. When using
the transformed variable ¢, equation 2.16 can be rewritten, using
(2.17), as:

do _

= = Iyl[l m](l + C)/D(C) (3.3)

Letting W, and wy represent the gradients predicted by the

recovery technique described above for a given surface node which has

velocity (u,v) , then the adjusted gradients are
(wv —wv )v N
. X'y y x''y d¢ x
L vz T (3.4
v = -l N Ty (5.5)
y IVlz on |v )

except at the left and right sides where w* = 0.

Integration of the model gives the expected interface motion, as
shown in figures 3 to 5. The upper surface of the domain is gradually
forced down by the oxidation, with the depth being greater in this case
on the left-hand side (where there is no nitride cap). However, the
timestep in many cases tends to zero, halving on each successive time-
step. This was traced to element folding, and comparison of figures
4a, 4b, 5a and 5b shows that an interfacial element has vanished, having
been flattened by the oxidation progression of the interfacial nodes.
In other runs where less, and therefore larger, elements were used (the
parameter DG being set to 2), this problem does not occur. This 1is
because the gradient in dopant concentration forces the sub-surface
nodes deeper into the bulk silicon faster than the oxide intrudes into

it.
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The logical method to overcome element folding is to allow elements
to disappear. Thus the model was adapted to locate very small
elements, eliminate them and alter the cross referencing in the node

table.

3.2 Treatment of folding elements.

The inclusion of a moving boundary greatly increases the probabi-
lity of element folding, particularly at the surface. This has been
shown to occur in most integrations of the combined oxidation-diffusion
model . Elements can fold in many different ways, as is illustrated by

figure 2, but normally resulting in the three nodes becoming co-linear.

OX\DE
\e SILICON

\b

Figure 2 Examples of the various types of element folding.
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In type la and 1b folding elements the descending surface nodes
overtake the internal node, while type 2 is subtly, but significantly,
different in that there is only one surface node. Type 3 folding
occurs in a surface edge element when the two edge nodes become coin-
cident, and thus as well as eliminating the element a node needs to be
removed aswell. Type 4 is the generalized internal element folding.
While only types 1 and 2 have so far been observed, the code has been
altered to be able to handle all but the last situations, using the

techniques now described.

3.2.1a  Type la Element Folding.

In this case the folding element needs to be removed from the
cross-referencing tables and the previously internal node becomes a
surface node. Thus in the subsequent integration this node moves at
the interface velocity. If this type of element folding occurred

repeatedly then the number of surface nodes would become very large.

3.2.1b Type 1b Element Folding.

When the internal node is not between the interface nodes it does
not asymptotically approach the surface. Thus in this case the element
is not removed and no new interace node is created. Instead the method
here is to find the neighbouring non-surface element and to swap the
diagonal on the quadrilateral so produced, leaving the number of

elements unchanged. This is equivalent to the method of Wathen (1984).
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3.2.2 Type 2 Element Folding.

This case is like type 1b, except there is only one surface node.
A similar method to that just described can be followed, again using the
neighbouring non-surface element and swapping the diagonal of the

quadrilateral.

3.2.3 Type 3 Element Folding.

In this case the two edge nodes have merged. The way to deal with
this is to delete the upper node, along with the element, while the
lower node is relabelled as a surface edge node, and thus subsequently
moves with the interfacial vertical velocity (but is constrained not to

move laterally).

3.2.4 Type 4 Element Folding.

Type 4 element folding is similar to types lb and 2, but no surface
node is involved. Thus a similar method can be followed by determining
the neighbouring element on the longest side and swaping the diagonal on
the quadrilateral so produced. This technique will obviously fail if
this element is also folding, but as this is both unlikely and complex

it will not be considered here.

After any of the calculations described above have been performed a
complete recalculation of the element and node cross-referencing tables
needs to be performed.

The treatment described here is not exhaustive, for instance an
internal element could fold in a similar way to type 3. However such
events have not been observed, but if they did then a simple extension

of the above process could be used to overcome the problem.
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3.3 Interfacial dopant concentration.

Due to the surface boundary condition not being one of zero flux,
the dopant concentration at interface nodes needs to be altered from the
value predicted by the 2D-MFE model. This change can be made using one

of two methods:

(a) Solving the boundary condition directly

or

(b) considering the boundary condition as a flux condition and

thus calculating the flux of dopant into the surface elements.

The first method is that used by Moody and Please (1987) on a 1-D MFE
model while the latter is that used with a finite difference model by
SUPREM III (Ho et al, 1983) and with a ’fixed’ finite element scheme by

TITAN (Girodolle and Martin, 1987).

3.3.1 Gradient Method.

In this technique equation 3.3 is solved for the surface dopant
concentration at each node and used to overwrite the predicted value
from the 2D-MFE model. As the diffusion coefficient depends upon con-
centration, equation 3.3 is implicit and thus needs to be solved itera-
tively by a technique such as Newton—-Raphson.

The method of solution is first to locate which element is to be
used. The required element is that which includes the normal to the
surface at point I. It is located by going a short distance 1in the
direction of v and then using the INSIDE function to locate which of
the elements around node I this point is in. Next the gradients of ¢
with respect to x and y are calculated, using the GRAD function

(already in the code to calculate mj and nj ).
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Following the method of Moody and Please (1987), equation (3.3) can

be rewritten in the form

F(#;) = D(c)v-v¢ + |v[(1 - De = 0. (3.6)
As ¢ depends on ¢I this equation is implicit in ¢I , the dopant
concentration at the surface. It is solved iteratively using the

Newton Raphson method until

IF(op) | < e

where e 1is a small number.

However, while this method successfully converges, the resulting
surface concentrations are much too high. The reason for this becomes
clear when physical situation is considered in conjunction with the
mesh. The effect of segregation only has a direct effect very near the
surface, and there produces significant gradients of the size predicted
by equation 3.6. However the mesh used is optimised to have high reso-
lution where the initial second derivatives of the concentration were
high. Resolution near the interface is therefore poor and using the
gradient from equation 3.6 over the whole element results in gross dis-—
tortions. For this reason this gradient technique was abandoned and

the alternative flux method used instead.

3.3.2 Flux Method.

Following TITAN (Girodolle and Martin, 1987), and many others, the

diffusion equation can be split into a flux form:

de _ _gJ, J = -DwC (3.7)

In this notation, equation 3.3 can be rewritten as



- 929 -

- dc o
JE-Dgz = lv|(1 —)e (3.8)
where Jn is the flux normal to the interface. This flux is used to

calculate the increase in concentration at the surface due to segre-

gation:

Cnew = C + FLUX % (LENGTH / AREA) DT (3.9)

where LENGTH is half the sum of the lengths of the interface edges of
the two surface nodes including the node under consideration, while AREA
is a third the sum of the areas of all the elements about the node.
The size of this increase in C was found to be normally less than that

due to the advection of the node.
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4. Results.

The combined oxidation-diffusion model, including element deletion
and the surface flux calculation, has been used to simulate furnace
anneals at 950°C. Three grids have been used with different resolu-
tions, having initially 408,166 and 78 elements (by setting
DG = 0.9,1.4 and 2.0 respectively). Results for integrations are shown
in the accompanying figures, with the equivalent integration with no
oxidation given for comparison. In figure 3 results for DG =2 are
shown for a 2 hours anneal, while figure 4 shows the same simulation but
with the incresed resolution when DG = 1.4. Figure 5 shows the evolu-
tion of the model with high resolution (DG = 0.9) when simulating a
20 minute anneal.

In the low resolution case it can be seen that the amount of diffu-
sion is overestimated (compare figure 3c with figure 4c). This is not
due to the large grid size introducing extra numerical diffusion, for as
figure 3d shows this does not occur when oxidation is not included.
However poor resolution of the silicon-oxide interface leads to excess
silicon conversion to silicon dioxide and thus to a greater injection of
dopant, by segregation, and thus increased diffusion. Note that in
this case no elements are removed during the simulation because the
subsurface nodes move away from the interface before being overtaken.

When medium resolution is used (figure 4), a more realistic dopant
distribution results, with the peak concentration and vertical diffusion
being slightly greater than in the no oxidation case. In the hori-
zontal the diffusion is noticably enhanced, particularly near the inter-

face, due to segreagation increasing the amount of dopant present
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in that area. During the integration a surface element has been elimi-
nated due to its folding. This created an extra surface node and thus
further improved the resolution of the interface profile. The elements
in the region of the initial high concentration region have clustered
together, due to the lowering interface, resulting in the timesteps
remaining small and thus increasing the total number of timesteps, and
the CPU requirement, by about a factor of 5 more than the no oxidation
case.

When the resolution is increased yet further, the oxidation-
diffusion model has severe difficulties. For while at 1200 secs the
simulation is both realistic and stable (see figure 5c) at 2000 secs it
goes unstable and rapidly produces infinite dopant concentrations. The
cause of this is unclear and requires further investigation. One
possible cause is that the nodes near the left-hand edge have been
observed to oscillate with a period of two timesteps, and this could
lead to instabilities and also timesplitting, as is observed when the

leapfrog scheme is used with finite differences.
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(b) After annealling for about 1 hour at 950 C.
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(¢) After annealling for 2 hours.

(d) As (¢) but with no oxidation.



li

Figure 4. (a) As 3(a) but with DG=1.4.
(b) After 30mins anneal at 950 C.



z 165 elements
py
,W/. P 97 nodes
. 1“ i v = 7200, 000
t Ll
qll
R A N | e T T | S
_~
L4
7 /
—_— % h
o -
= y .
/ ra
X0
==
-
- o
= ——)
- . 166 elements
- N \\‘ . ‘-.‘.I \ 97 nodes
\ 5 \\ t = 7200.000

g

(e) After 2 hours anneal.
(d) As (c) but with no oxidation.




438 e'e~ants

226 nooes

o= 0,000

|{\l |
||
|
|
/

e
SRR
\\:\\ \\\,;\\\... T
S \\',‘. i
NNNN wﬁ\

407 elements

. y - Ny 226 nodes
SRS . / t = 300.000
e W N !
o ) 5
B — / . O % -
&= 5 A \ ------------- E i
N \ " \
] : \.
\ i s v
—\ ) H T =
Fi " x
- ..l
My I L T S T I Tt
/ -
-
-
———  — — / :
| — q -
A\ ) =
R — \ #1) u
2 "

-

‘.\ i\ \h
R
&&\\“ s

g‘ A

Figure 5., (a) As 3(a) but with DG=0.9
(b) After 5 mins anneal at 950 C.



Sl
;,é@{
=)
éﬁ}‘
aﬂ)
N




- 95 —

5. Conclusions.

The 2D MFE model of the diffusion of dopant in silicon has been
extended to include the effect of oxidation. The code for this at
present needs external data to describe the interface movement, but an
analytical model has been presented which could alternatively be used.
In either case, a scaling analysis of the relevant equations shows that
dopant diffusion in the oxide is negligible compared to that in the bulk
silicon, and this leads to the oxidation and diffusion problems being
separable. Thus the diffusion model only needs to know the location of
the oxide interface.

The main alterations implimented relate to the calculation of the
position and dopant concentration of the interface nodes. Prescribing
the motion of surface nodes alters not just their location but also, by
advection, their dopant concentration. The recovery functions used to
calculate the rate of change of concentration at a given node needs to
take into account the new interface boundary condition (equation 2.16).
The effect of segregation of dopant from the oxide into the silicon
needs to be included, and this is achieved by writing the interface
condition in flux form (equations 3.7 and 3.8).

Due to the moving oxide interface, the upper nodes are forced down,
which tends to cause element folding. In all cases this can be over-
come by applying the appropriate geometrical transformation to the
element definition.

The new model can provide reasonable simulation of the oxidation—
diffusion process, as is shown by figure 4. However, the model still
has various problems which need to be tackled. Primary amoung these is

its failure to simulate anneals longer than 30 minutes
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with the high resolution mesh. Another serious deficiency is the
amount of computer time required for integrations. The small timesteps
forced on the model are due to the excess number of nodes in the region
below the fastest oxidation, creating small elements in a region of
almost constant dopant concentration. There is a need for the model to
automatically reduce the number of nodes in this area, thus allowing
larger timesteps.

The model is of suitable ability to now be include in the ALVEY 066
Sof tware (’TAPDANCE). This will require the appropriate input/output
code written to interact with the overall package and also some cosmetic

alterations to the code.
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Appendix — The Computer Code.

A.l Interfacial Node calculations.

In the present implimentation the oxide growth is simulated using
data supplied by J. Waddell of University College, Swansea from their
oxidation model, rather than using the Penumalli (1981) model given in
equations (2.2) and (2.3). This data is read in by the new subroutine
OXDATA (called by DATA), and stores oxidation boundary node data in OXX
and OXY for times OXT, and velocities OXU and OXV are calculated.
Units used are pm and seconds. The option of left side or right
side oxidation are available, corresponding to a mask on the right or
left respectively.

The velocity of oxide growth at each interfacial node is calculated
in subroutine TSTEP and stored in array BDC. Conversion to normalized
units is performed simultaneously with the interpolation, by dividing
by DI.

Specification of interfacial boundary condition affects the calcu-
lation of the adjacent nodal dopant concentration as the constraints on
gradient affects the recovery function. Thus the elements of the array
NBC can now take one of 5 values, rather than the 3 previously allowed

by MFE2D. These values are:
0 Totally free to move (Internal point)
1 Constrained to move on a boundary (Edge point)
2 Fixed, zero velocity (Corner point)
3 Constrained to move with oxide (Interfacial point)

4 As 3, but with no lateral motion (Interfacial corner)
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The new values of 3 and 4 are defined in XINDEX by adding 2 to any point
with y co-ordinate less than 1.E-5. The difference between NBC = 3
and NBC =4 1is only used once, in the calculation of MIDW(2), which
is O for NBC = 4 but given by the oxidation value if NBC = 3 .

The other main code changes are in loop 60 of TSTEP. Indeed this

already had two existing errors:

(a) The case of NBC(N1).EQ.1.AND.NBC(N2).EQ.2 was not considered.

(b) The case of N1 and N2 being on different edges (corner element)
was not considered and thus could result in nodes being fixed to
move in the wrong direction. Thus an extra test is now included
to check that (ABS(BDC(N1,1)-BDC(N2,1).LT.1.E-6) ie that N1 and

N2 are on the same edge.

Loop 60 was then extended to consider all the possible permutations of
NBC(N1) and NBC(N2) and to then calculate the appropriate constraint on
the gradient. (Note that this does not prescribe the nodal motion, but
is only used to calculate the node value and position velocities. The
motion for points with NBC > O is overwritten later in the subroutine by
specifying MTDW and WTDW.)

The subroutine OXCAL2 calculates the flux into surface node 1 due
to segregation at the interface. The method of calculation is

described in section 3.3.

A.2 Node elimination.

The subroutine GETDT has been altered so that the element which

restricts the timestep is recorded. When element folding occurs it is
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the folding element which is thus recorded. If the area of the element
drops below 1.E-6 then it is removed or rearranged, depending upon loca-
tion, as explained in section 3.2.

To determine which class of element (see section 3.2) is under
consideration then the sum of NBC for its 3 edges is calculated. For
type 1, NSUM =6, for type 2 NSUM =3 (or perhaps 4), for type 3
NSUM = 8 while for type 4 NSUM = O (but can be up to 4 if in a bottom
corner).

To distinguish between types la and 1b folding elements w mneed to
determine whether the non-surface element is between the other two, or
at one end. If it is between then the element is type la and the
element is to removed, thus the element reference number needs to be
reduced by 1 for all elements whose reference number was higher than the
removed elements. Similarly NE is reduced by 1. However, if the
non-surface element is not in the middle then the element is not to be
removed. Instead the element neighbouring the longest edge of the
folding element needs to be located, then the diagonal of the quadrila-
teral so produced can be swapped resulting in both elements having at
least one surface node.

Before assuming a type 2 element is being considered, a check that
there is a surface node is made, for otherwise a type 4 mode has folded.
Next the neighbouring element not including the surface node is found.
This then allows the quadrilateral formed by these two elements to have
its diagonal swapped, by changing the element nodes.

For type 3 a node is removed as well as an element, thus N needs
to be reduced by 1 as well as NE. All nodes and elements with refer—

ence numbers higher than those removed need to be reduced by 1.
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After any of these changes the cross reference table NND and NEIGHE

need to be recalculated, and this is done using code copied from XINDEX.



2.2 Oxidation.

Simulation of the oxide growth, and the diffusion of dopant within
it, is a very complex problem (Chin et al., 1983) and will not be
tackled here. Instead it is assumed that information about the oxide
comes from one of two sources: An external oxide model (in the case of
the ALVEY 066 software this will be provided by University College,

Swansea) or else an analytical model.

2.2.1 The Analytical Model.

The analytical model is that of Penumalli (1981), which is used by
the TITAN process simulator (Girodolle and Martin, 1987). Penumalli’s
model is a two-dimensional extension of the classic Deal and Grove
(1965) one-dimensional model used by Moody and Please (1987), with the
lateral variation in oxide thickness being described by an error func-
tion. Figure 1 illustrates the model together with an explanation of

the notation used here.

s()

Figure 1
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The logical method to overcome element folding is to allow elements
to disappear. Thus the wmodel was adapted to locate very small
elements, eliminate them and alter the cross referencing in the node

table.

3.2 Treatment of folding elements.

The inclusion of a moving boundary greatly increases the probabi-
lity of element folding, particularly at the surface. This has been
shown to occur in most integrations of the combined oxidation-diffusion
model . Elements can fold in many different ways, as is illustrated by

figure 2, but normally resulting in the three nodes becoming co-linear.

\a. SILICON

Figure 2 Examples of the various types of element folding.
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(b) After annealling for about 1 hour at 950 C.
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for 2 hours.

(d) As (¢) but with no oxidation.

(c¢) After annealling



WAL
X 1
N \
f Ty
S
I e NP -

Figure 4,

(a) As 3(a) but with DG=1.4.
(b) After 30mins anneal at 950 C.
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(c¢) After 2 hours annea 1.
(d) A2 (e¢) but with no oxidation.
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