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ABSTRACT
We consider two pointwise error bounds connected with the piecewise
linear Ritz approximation to Poisson’s equation on a uniformly
triangulated square. One of them - (maximum displacement error) =0 (h?|log h|) -
has been a subject of speculation for some time; the other - (maximum
difference in gradients between Ritz approximation and interpolant) = O[h2|10g hl] =
is newer and has its origins in gradient superconvergence. For both bounds
we give a simple numerical example of O[hzllog h|] convergence and show
that the |log hl term can be dropped if the smoothness of the unknown function

is slightly increased.

1. THE DISPLACEMENT ERROR

Finite element error bounds depend on the smoothness parameter (m) of the unknown

function wu. Their variation is typically of the abstract form

|E(w)]| = cy, (h) lluilmp
pim (m < s) L
with y (h) = 4 0% {10 [ (m =) (1.1
hK+S (m > s)

=

for fixed p; B will be:.either 0 eor 1;8, k and s will depend on E. (See, for

instance, (1.7) below or Oganesjan & Ruchevec, 1969).. Here || - l% o denotes the

usual Sobolev norm in :WE. In this.section and the next we give two examples of this

pattern for which 8 = 1, on a model problem domain. Then in section 3 we
present numerical evidence that B = 1 1s actually necessary for the

bounds under consideration.
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Let © be the unit square, uniformly partiticned into squares of

side h and thence into triangles with diagonals all of the same oriesntation

(see Fig. 1). Let ~Sh be the space of continuous piecewise linear functions

g \
SN ZANNFAN
~ \k ' Figure 1
“““_H\ (In this example the twelve pairs
N
%E&\ A ]} AK are shaded; there are eight

triangles left over on 09%.

See Section 2).

x,

on this triangulation which vanish on the boundary 0Q. Then for any
0

u € W; we define the Ritz projection Rhu € Sh by
- h
where (¢,¢) denotes the L2 inner product.
It is well-known that
o1 = 2
- < 2
Il u Rhull2 < ch llullz’2 Vu € W, N W7 (1.3)

Op . 2

and || viu - RhU)||2 < chl‘u||2‘2 Yu < w2 n W2 s (1.4)

where Ip denotes the Lp-norm. Several authors (see e.g. Nitsche, 1376;

Scott, 1976; Schatz & Wahlbin, 1982) have established
99 2
lu - Rull, s ch?|1log bl [lull, , Yu €u, N, (1.5)

Rannacher and Scott (1882) showed that

lvea - Rl s eh Null, ., vu € E; n w (1.6)
In this paper they said, "it has been considered as a challenge from the
beginning to remove the logarithmic factors [in (1.5)]1". This is particularly
so because for higher order elements or the piecewise linear interpolant
that estimate holds without the logarithm. Incidentally, the bounds
(1.3) - (1.8) apply to more general finite element approximations on more general

problem domains.



With a result which appears to have gone unappreciated in the literature,
Bramble and Thomee (1974) showed by a Finite Difference analysis that, on the

uniformly triangulated square:
o

Theorem I lu - Roull, s ch J1og hl®full,,, . vu € Wy nwg"
i} (1.7)
with5={1 when e = O
0 whene >0

We will now establish (1.7) by Finite Element Methods.
Let z be any point which is bounded away from 3@ and in the interior

of one of the triangles [TZ say) and let & = 8(x;z)= 8(|x-z|) € CO(TZ] be such tat

sup. |8 = ch_z, 6(x;z)dx = 1
T, T2 h
and ¢h[z] = [¢h,6] V¢h €5, (1.8)
o1 2
We define G = G(x;3z) € W2 n WZ by
1
(Vu,VvG) = (u,8) Yu € WZ[Q]. (1.9)

G is a smoothed Green's function with "singularity” at z, for Poisson’s
equation with homogeneous Dirichlet boundary data. By a simple though lengthy
argument (see Levine, 1985), there exists a (harmonic) function V=V(x;z) which is

normed in w2 independently of h and for which

2
1
G-V= -— log [x—zl if |x-z| > h
ar (1.10)
and [v_(6-v3| s ch™" |1og it |x-z| < h,

where Vm denotes the tensor of mth derivatives, (m 2z 0). We remark here that the
results that follow can be applied to points on or near element edges
(or vertices) of 9Q by adding one (or three) suitable image functions to G.

Let Ihu denote the nodal interpolant of u. From (1.2), (1.8) and

(1.9) we obtain
(u - Rhu)(zl = (u - IhuJ(zJ = E;h(uJ (1.11)

Fz;h(UJ = IR 5 I ulz)

h
[[Rh - IhJu,GJ
[V(Rh - Ih]u,VG)
(V(u - Ihu], VRhGJ

where



We use a result of Rannacher and Scott (1982). LlLet o = o{x;z) be

defined for some fixed Kk > 0 by
o2 = |x - z|? + k*h% ; (1.12)

then for any function ¢ € w; n WS 5

IA

f " 76 - R 0112 5 on2 J v, 0|2 (1.13)

where o 1is any fixed, strictly positive number, Recalling (1.7), we take
o to have any (small) value if € =0 and a = €/2 if € > 0. From the

Holder inequality, (1.13) and (1.10) we abtain

< 2 “+Egk <’ o> "G - R Bl :

-uB/Z

A

(4
le*v(G - R, G) lI1

A

cC

ch |log hlB ’

A

Also from (1.10),

lloevs||1 < ch

whence

HoEVRhGH1 < ch |10g h|® . (1.14)

This bound is the source of O(h2|log h|) estimates. To prove (1.7),

we must weight the integral of VRhG so that contributions either decay

radially, cancel transversely or vanish altogether. We will now therefore

decompose u into the parts which combine differently with VR, G. Since

h
. . 2+E .
uew for some € 2 0, we can write

©o

where g 1s a guadratic and

V glz) =V _ul(z) m=0,1,2
m m (1.15)

and |V2r(x]| < |lull |x - z|®

2+g ,»

It is one of the principal features of §© as triangulated that



(vig - IhQJ,V¢h] =0 Y quadratics Q, V¢h € Sh.

(This is because the interpolant of any guadratic satisfies the Ritz

equations (1.2), i.e. I,Q = RhQ. For an alternative proof see Section 2).

Thus

IF,,pwl = [Ve - 1.0),VR 6
§||0_€V[r - Ihr]H - ”OEVRhGI|1
We apply the Bramble-Hilbert Lemma (Bramble & Hilbert, 1370) and (1.15)
separately to each element. From (1.14) we then obtain
1P, el s on llull 5, - coh 108 n|®
Finally the Bramble-Hilbert lemma applied element by element gives
fu - Ihul|w < ch? |u|2,m

and (1.7) now follows from (1.11).

2. THE GRADIENT DIFFERENCE

We prove below that

o
1 3
HV(Ih - Rh)u||2 < ch? ||ul| 55 Yu € W, N W

This result should be compared with (1.4). It leads to "gradient

superconvergence”: Vu can be estimated from VRhu to 0(h?) by any

algorithm which recovers derivatives from VIhu to that accuracy. (Ses

{(1.18)

(2.1)

Levine, 1983 and 1985; for related results on guadrilateral elements see Le-Saint

& Zléﬁal, 1979). We will also prove the corresponding pointwise result:

o
ch? | log hIBIlU[l3+€,w Yu € w; nw©

IA

Theorem IT ||V[Ih N Rh]u I -

with B = 1 when € =0

0 when € > 0

(2.2)



We consider first the products
_ J _ g h h . _
Fi = <§;;-(Ihu ul, E;Ii) " ¢h €S, 1 1,2 ,

where [xq,x2] are co-ordinate axes parallel to the sides of & . We
bound F1, noting that F2 can clearly be treated identically. We
partition Q@ into pairs of triangles which have common edges parallel to

the x,-axis, denoting these pairs by A

1 (k = 0,..0,k ), with a number of

k max

single elements on 3R which cannot be paired. (See Fig. 1). Since ¢h =0

on 9Q V¢h € Sh, a¢h/ax1 is not only constant on each AK but vanishes in the
unpaired elements and we can write
Fo =3 rg— (T,u - u) L]
1 K A 8x1 h 3x1 A
k k
< 3¢h
- ZK Cy (W [3X1 R (say) - (2.3)

K

It is easily verified (Levine, 1982 or 1984) that Q]K(u) vanishes for ‘quadratic

3]

u, Yk. Therefore, by the Bramble-Hilbert lemma in w3,
_ 4-2/p
C1,K (u) = 1.k (u) h
YKk. (2.4)
<
where |C1,kl <c |ju HW3[A )
p Kk
For each k, let z, be the centroid of Ak' Since all the AK are
congruent, S depends only on the variation of u within AK' thus:
c1jk(u[xJ] =C%g (ulx =+ z, - zo)). {2.5)

Now (2.1) can be obtained directly from (2.3) and (2.4) with p = 2, For

F B

IA

A T R

Lz[An]

IA

ot full g, [178,11,

We take ¢h = (Ih - Rh]u and apply (1.2):

It

2
|v (I, - Rul| 2 (V(I,u - u), V)

A

|F |F

A
ch? Hu||3,2 Hv(Ih - RhJuH2 ,

.|

IA
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whence (2.1). (Note that sincs Ci,K[Q) = 0 Afor all guadratics Q, we have
also derived (1.16)).

To establish the pointwise result we must again introduce a Green's
function. Let AO be one of the triangle pairs introduced above, bounded

away from 09Q. We let § = S[X;ZO] be such that

SUP, |s| = ch_2 and IA §d dx =1
0 0
therefore X
ML QL 1 v, €3, vz € A . (2.6)
0% ax, h 0
o 14z 1
We define g = g(xsz) € w; n wg to be the smoothed derivative Green's

function of Rannacher and Scott:

au 04
(Vu, vg) = — , § Yu € W, . (2.7)
Bx,l 2

Again (see Levine, 1984 for details) we have a (harmonic) function v=v(x;z), normed

independently of h in Wg, for which
(x - z.)
g_V=—'_'_'_E_1_2 l'F |x_zo)h
2n|x - zg) > (2.8)
and Vig-v]sch"™mz0) if |x- 2] < h.
m 0 J

(If AD is not bounded away from o0& as h = 0, we modify (2.8 by
adding one (or three) suitable image functions to g.) This decomposition

implies that
lo¥vell, = cl10g n|®
Also, Rannacher and Scott(1982) have proved from (1.13) that
VR e - &), =¢ ; (2.9)

hence

||0¢,VRth1 < c |1log hlB ’ (2.10)

Now, by (2.6}, (2.7), (1.2), (2.3) and (2.4) with p = = ,



]

\Fxﬁ T, = Rh]u] = (V(I, - R )u,V)
1 AD

= (V[Ihu = uJ,VRhg]

oR, g
I o,  (upt|—" ; (2.11)
i,k 09X,
k i AK

=1,2

3+e

o]

As in section 1, we treat this integral of VRhg carefully. Since u € W

for some e 2 0, we can write

where g 1is now a cubic and
= m=0,...,3 ]
v q[zo] \% u[zUJ

(2.12)
and |V3r[xJ| < lul| 34g 0 Ix - ZUI € ,[

Since g 1is a cubic, we have from (2.5) and (1.16):

3R g —3R g
Yoo, (@h [ﬁ—“] c. (q@)h [ L
: i,k I, i,0 0%,
i,k 1lA ill AK

)

i,k

Kk

s om llall, J [vme
9]
=oh lall,, JV[Rhg - gll, (2.13)
Q
because J Vg==¥aﬂg = 0. Also, by (2.4) and (2.12),
9]
oR g
h
z c,  (r)n* ' < ch? z Ir| 3 . J VR g
i,k 1.k Exi Ak K Wm[AK] AK h
< ch? ||u||3+€,m|lc€VRhg||1. (2.14)

Combining (2.39) - (2.14), we conclude that since AO is an arbitrary element

pair,

h
o

a
HW (T, - RJull = ch?|1og n® lall gee e

The xz-derivative is bounded identically and (2.2) follows immediately.
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3. NUMERICAL EXAMPLES OF LOGARITHMIC CONVERGENCE

We illustrate the above results with examples of functions with € = 0
for which B = 1 1is necessary in estimates (1.7) & (2.2). The examples were derived
by an inuitive matching of the directions of Vu with VG (or Vg). Their
existence implies that some pointwise estimates do indeed require the extra
part-derivative smoothness (i.e.e > 0) if they are to be logarithm-free.
Note that there exist other pointwise estimates, such as (1.6), which do not
involve |10g h| even when € = 0.
We start with (1.7). Let (x,,x

) be rectangular Cartesian co-ordinates

such that the square @ = (-3,3)2. We set

u = x1"x22 /x|* - |x|3/5 (3.1)
and define Rhu by
- o (T T h
(VRhu,V¢hJ = (v u.¢h] V¢h €S

where (¢,*) denotes the use of the centroid rule in each element to
approximate (¢,*). The |x|3 term is in W2 - i.e. € »> 0 - and so does
not contribute to the |1og hl behaviour. This term, with the factor 1/5,
is chosen to highlight the asymptotic behaviour of (u - Rhu] for

computationally practical values of h. For the same reason we sample
EChsus;z) = (u - Rhu](zl

at one point - the origin =z = (0,0) - rather than taking its supremum

over all z in Q. In Table I, values of lE , |E/nz], |E/h2 log h| are
tabulated for = %; %u %""’5%'; in addition we give the relative differences
between rows in the cclumns marked A. The |1og hl factor is clear for
1
< —_— .
i 10

For (2.2) we take £ as above and

. 3, 2 2
U= x,7x, /lx| : (3.2)



_/ID_
Again, we do not maximise
elh;u;z) = V[Rh = Ih)u[z]

over all z: we sample the X component of e at the point =z = (0,-h/2).

1
11 1

3 g reeeTE The results are given in Table II;

We take h to have the values

this time the |log h| factor is very clear for h < ; .

CONCLUDING REMARKS

For a model triangulation we have justified simple conditions necessary
and sufficient to guarantee logarithm-free convergence of the error bounds
under consideration. 0On a general problem domaim the proofs require
modification for two reasons. Near 9 the Green's functions G and g
are no longer given by simple image functions. It may well be possible however
to derive (1.14) and (2.10) so that G and g are nowhere expanded as
explicitly as in (1.40) and (2.8): see Rannacher and Scott (1982).

In addition, the quantities
(vig - IhQ],V¢h] (3.3)

(§ guadratic, ¢h = RhG or Rhg] are no longer simple to estimate; this could
affect the results as well as their proofs. Now in the case of gradient
superconvergence, the L2 result (2.1) does not hold on general domains
unless the triangulation is a "smooth” distortion of a uniform mesh (Levine, 1883):
this condition is necessary for better-than-0(h) convergence. We have the framework
and some details of a proof that (2.2) is also retained on such regions, but these
are too long to be given here.

The displacement result (1.3) requires only non-geneneracy of the
triangulation of §. The general topological prerequisite for (1.16) and (2.1) -
namely that exactly six elements should meet at each internal node of @ - 1is
no longer necessary. 0On such a mesh we do not know how to treat the term (3.3)
(or even where to start) and it 1s unclear whether we can improve upon (1.5).

The example of Jespersen (1978) and Fried (1980) indicates that the |log h| term

may be necessary on some triangulations, for arbitrarily smcoth u. However, it is based
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on the reduction of Poisson’'s equation with cylindrical symmetry to a one-
dimensional (singular) problem and is therefore net directly related

to our twe-dimensional approximations.
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|EChsus (0

(x10°

55.53

27.18

16.76

11.57

8.559

6.630

5.310

4.363

3.658

3.117

ECh;u; (0,0)

when u = x

_']2..

,00)|  |E/R?] |E/h2log M| |ACE/h2)}

) (x102) (x10%)

0.8885 6.409
10%

0.9777 5.456
9%

1.073 5.158
7.6%

1.157 5.026
6.3%

1.232 4.960
5.3%

1.299 4.924
4.5%

1.359 4.903
3.9%

1.414 4.891
3.4%

1.463 4.884
3.0%

1.508 4.880

TABLE I

) = (u - Ru0,0) = 0(h? | 1og hl)

1”x22/|x|“— |x|2/5

1 1

and © is the uniformly triangulated square (-3,3

)2,

|ACE/h?1og h) |
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-1 h
(hsu; (0,-= h? /h2 1 h Ale/h? A h21 p
|Q1 2J)| |q( | |ql og h] I (% ) [q{ og H
(x10%) (x10) (x10)
3 17 .70 1.583 1.450
26% 12%
5 8.301 2.076 1.280
16% 2.9%
7 4.9786 2.438 1.253
11% 0.85%
9 3.370 2.730 1.242
8.4% 0.32%
11 2.245 2.3970 1.238
6.6% 0.14%
13 1.877 3.172 1.2367
5.4% 0.06%
15 1.488 3.347 1.2359
TABLE II

hyyo 2 (1 - hy o
glhsu; (0, Ell_ax,ltlh Ry Ju(0,-3) = 0(h?|log h|)
when u = x,lsx22/|x|2

and £ is the uniformly triangulated square (-3,%)2.
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