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ABSTRACT

We propose and justify the use of a simple scheme which recovers
gradients from the piecewise linear finite element approximation on
triangular elements to phe solution of a second order elliptic problem.
The recovered gradient is a superconvergent estimate of the true gradient
at the midpoints of element edges. A related scheme recovers the

gradient at the element centroids.



1. INTROBUCTION

For quadrilateral elements, gradient superconvergence has been well
established since Veryard (1971) improved the accuracy of the gradients of
biquadratic Galerkin approximations by sampling them at the second order
Gauss points in each element. Such points of excepticnal accuracy of derivatives
of finite element approximations have come to be known as "stress points” and
their existence as an example of the phenomenon of "superconvergence”; we
associate these terms here with the sampling or recovery of gradients to one
order of accuracy higher than is globally possible.

Stress points are located (Strang & Fix, 1973, pp. 168-9; Barlow, 1976)
by the property that the derivative of the polynomial which dominates the
error expansion coincides with its approximation (i.e. the derivative of
a lower-degree polynomial). This idea is at the heart of any superconvergence
result, for it leads us directly to the stress points of the "unknown”
function's interpolant. Further, the gradient of the interpolant is at all
points a superconvergent approximation to the gradient of the finite element
solution. Therefore the stress points for these two functions are identical.

V4
(For proofs of this result on guadrilateral elements, see Zlamal, 1977, 1978

and LeSaint & Zldmal, 1978).

It has been suggested (e.g. Moan, 1974) that the Galerkin least-squares
approximation.to gradients is "almost local” and can therefore be analysed
in one element in complete isolation from all others. Although this reasoning
is fortuitously successful for quadrilaterals it fails on linear triangles,
for it implies that their centroids are stress points. On the other hand
the interpolant method given above predicts for these elements that "midpoints
of an (element) edge seem ... to be exceptional for derivatives along the edge
but not for stresses in the direction of the normal”. (Strang & Fix, 1873, p. 169).
In this paper we consider piecewise linear approximations on triangular
elements to a model Dirichlet problem. We prove (in section 3) that element

edge midpoints are indeed tangential derivative stress points for the interpolant



and complete the above outline by returning to the finite element method in
sections 4 and 5. We must however impose the following condition on the mesh:
the nodes are given by a smooth transformation of a square grid and the
triangulation is topologically equivalent to a triangulation on this grid by
identical triangles, arranged so that six elements surround each internal node.
The last requirement leads to the cancellation of error contributions between
neighbouring elements; it demonstrates the non-local nature of the Galerkin
approximation. 1In séctions 3-5 we simplify the argument somewhat by
restricting the mesh further. We take up the more general case in section 6 and
predict an alternative superconvergence result which may hold even when the domain
of the problem is incompatible with the more relaxed conditions. We do not
prove this last result here, but give a numerical demonstration of this and
other aspects of superconvergence in section 7.

Separate components of a vector at different points are not what is
usually required: we have established superconvergence only for the stress
companent tangential to the edge on which the sampling point lies. However,
if we average the approximate gradient (a piecewise constant vector) between
the two elements neighbouring this point, then the interpolant method above
indicates that this "recovered” gradient is a superconvergent approximation
to both components of the derivative at the stress point. We prove this in
Section 3; Lin Qun et al (1983) and Krizch & Neittaanmiki (1983) have
obtained restricted forms of this result. There is again a geometrical
condition on the mesh: it must obey the restrictions already imposed in sections
3-5. (For the more general meshes of section B we must modify
the recovery scheme]l. Finally, we can recover the gradient at an element
centroid by averaging recovered values from the three stress points for that
element; 1in section 7 we present a comparison of this scheme with the

corresponding superconvergence result on bilinear elements (LeSaint &

Zlamal, 1979).



2. PRELIMINARIES AND TRIANGULATION

The results of this paper are presented in the context of Sobolev
spaces; we introduce here the relevant notation and a key lemma. We work only
with bounded open regions in IR? which have the strong cone property (see
e.g. Bramble & Hilbert, 1970). Let R be such a region: typically this will be
either the problem domain @ or a small patch of elements. We denote by
WE[R) (m = 0,1,...) the Sobolev space of functions which together with their
generalised derivatives up to order m inclusive are in Lp(R]. The norm and

seminorm are given by

( 1/p
a |p
lll oy = |[ T 108 ,
P LRIa|=m
[ 1/p
- a P
Wny = |[[ T 16%]
p LRIaI"m

respectively for p ¢ ® , with the usual modification when p = «® . For the

and

most part we take p = 2 and write H", |l - lm R

and

e Ifm |l mery -
WZ(R] WZ[R]
In all that follows the letter c¢ stands for a generic, positive
number, different at each appearance but "constant” in that it is independent

of the functions denoted below by f, u, v or w, the element(s) under

consideration and the discretisation parameter h.

Lemma 2.1 (Simplified form of the Bramble-Hilbert lemma; see Bramble &

Hilbert, 1970). Let F be a linear functional on WE[RJ such that

. < m
(i) IFewd| s ¢ [lwll WM(R) Yw € wp[R]
P
and (ii) F(w) = 0 if w 1is a polynomial on R of degree less than m.
Then |Flw)| £ ¢ lewm[R) Yw € WS[R]; the constant ¢ depends on F, p, m
p

and diam (R) only.



We now describe a particular triangulation for which our results hold;
the general form is given in section 6. Let @ be a bounded open domain
in IR* with the strong cone property in which (x,y) are rectangular
Cartesian co-ordinates. For decreasing values of the parameter h we
triangulate @ in the following way. We choose a pair of functions (X,Y)
of (x,y) (and, if necessary, of h) which can be used as a co-ordinate
system on Q@ and its neighbourhood. (For example, see (7.1) and Fig. 11 below).
We require that (X,Y) be smooth in the sense that, uniformly in hH, the
global mapping (x,y) = (X,Y) 1is a Wg - diffomorphism with Jacobian

satisfying
¢ Vs [ax, V17006, y) ]| 5 c. (2.1)

Note that the two norms based on (x,y)- and (X,Y)- derivatives

e 1y g
are not equivalent. We will make no use of (X,Y) - norms.

We place grid-points on @ so as to give a uniform, square grid in
the (X,Y) plane with mesh size h. We triangulate the region in the (X,Y)
plane by means of horizontals, verticals and diagonals of slope +1
between the grid points and then in the (x,y)] plane with straight 1lines
topologically corresponding to the (X,Y) 1links. When we refer to elements
we will mean the (non-curved) triangles in the (x,y) plane; we call the
union of elements Qh. (See Fig. 1).

We require the triangulation to approximate the boundary 89 of & well,
in that all the nodes on anh lie on 9 and the intersection of each element
with @ contains an open disk of diameter 2 ch which itself contains the
centroid of that element. (It is clear that triangulation functions (X,Y)
satisfying all the above conditions do not exist for general regions § ; we
discuss this problem in section 6).

We denote the elements by TK[K =1,...,K). For each k, let
NKO = (XK,YK] and qu = [XK + h, Yk] be the nodes with the same Y co-ordinate

(see Fig. 2); let NK2 be the third node. We introduce local co-ordinates



[&K,nk] by means of a linear transformation tk of (x,y) which maps TK
onto the triangle Ty and the nodes NKD' NK1' NKZ to (0,0), (1,0,
(EKZ' nKZ] respectively such that
lgkzl T hzla[gk,nk)/a[x,y)l <c (2.2)

We adopt the notation that functions of (Ek,nk] are distinguished by a hat
from their counterpart functions of (x,y) or (X,Y). Thus Q(Ek,nkl

-1
w[tK (x,y}), etc.

Lemma 2.2 Let Vm denote the tensor of mth derivatives with respect to
(X,Y) and V denote gradient with respect to (x,y). The following estimates
hold:

- -2 =
1 h meas [TK] £c, cC 1 £ meas [TK] £ c;

IA

(i) c

(ii) each element of the matrix B[X,yJ/B(EK,nk] is bounded in modulus by chs;

-1

(iii) |2§| (m ='1,2]. similarly for derivatives of n ;

A

ch 7, |v €] = ch

A

(iv) |w]

m-1 - M _
i ch || wl| mT, Vw € HU(T)) (m=0,...,3).

K
Proofs These follow from (2.1), (2.2) and the linearity of the tk' For (iii)
we use BSK/BX = ay/ankodet[a[Ek,nkl/a[x,y]], etc: the Vm bounds follow

by the chain rule.

There usually exists another triangle, Tk" with the nodes NKO and Nk1

in common with Tk' We will map Tk' into the (Ek,nkl plane with the same

transformation (i.e. t }J as T and refer to the guadrilaterals

K K
TK U Tk' and T U T, @as Ak and o (see Fig. 3). If such a Tk' does not
exist then NKD and NK1 lie on BQh and we denote TK by Bk (see Fig. 4).
In other words we have the decompositions
K K
e, = ut To= W A AJ U WU = B ).

k=1 k=1 k=1
In each Tk' AK or Bk' we refer to the midpoint of the edge NKONK1 as Mk'
(i.e. M_ is the point t;1(%,0]l. (See Fig. 2).

We now show that each o is close to a parallelogram, in the sense that

the midpoints of its diagonals have separation = ch. This lemma is the link

between the triangulation conditions and the superconvergence results that follow.



Lemma 2.3 Let k = K, be fixed (for convenience we drop the subscript k)

and consider the quadrilateral a, with vertices labelled as in Fig. 3. Then

ch.

+
3

|
IA

|E+ + & -1 £ch and In

2
Proof We can view £ as a twice differentiable (i.e. Wm) function of (X,Y)

and consider the functional E(XO +h, Y. + h) + E[XO, Y. - h) - F,(XU + h, Y.]

0

0 0

‘E[XO, YU]. This vanishes for linear & and so the first bound follows from

Lemmas 2.1 and 2.2; the second is derived identically.

3. RECOVERING THE GRADIENT FROM THE INTERPOLANT

We are now in a position to define interpolation on the mesh and derive
some error bounds, Let Sh(ﬂh] c H1(Qh] be the space of continuous piecewise

linears on the triangulation of Q Let u be any function satisfying

h
u € HBLQh] (so that u and Vu are defined everywhere in Qh). Let

uI € Sh(ﬂh] interpolate the values of u at all the nodes of Qh. It is well

known that |ZﬁuI*u)| = 0(h); since u can (just) fail to be in Wi the result

takes this form.

Lemma 3.1 Let Q@ be a point in TK and let [-]Q stand for point sampling

at @. Then

IA

|L2(u1—u]]Q| c || ull 5.7,

Proof Let F(u) = [zﬁuI-u]] and Eﬁa] be the corresponding functional-pair

Q

on HS[TKJ- When u dis linear on T

K uI = u and so by Lemma 2.2, the Saobolev

Lemma and Lemma 2.1,

A

|Flu)]| = ch_1|EﬁGJ| ch_1|ﬂ|w2 (r. )

2+¢

for any fixed € > 0. By the Sobolev Lemma again,

_1 A P
|F(u)| = ch [Julz,rk + |u]3’T )

the result now follows from Lemma 2.2.

Although we use this lemma later, our aim in this section is to suppose

we know ug and obtain from it values of Vu, correct to 0(h2]. To estimate both
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components of this gradient at & single point, we will use the recovery

scheme introduced in section 1. Note that if v € Sh[QhJ then

aQ/agk is constant over o (3.1)

K ;

this is a constant multiple of the derivative of v 1in the direction of the
edge common to elements Tk and Tk" So, for this component of the
gradient, our scheme is equivalent to point sampling at Mk' the midpoint

of this shared edge.

For each A , we defipe the recovery operator Qk on Sh(Qh] by

K
= 1 ®
Qk (v) 2 [[Zv]T + [Yy]T ']. (3.2)
Kk k
Lemma 3.2 Let Kk = KA be fixed (for convenience we drop the subscript k).
Then
ouy - tgulyl s ehllull 5,

Proof Let F1[u] and F2(u] be the tangential and normal components,

respectively, of the recovery error Du. - [yp]M. Then

I

F1[uJ [auI/ag]a = [aU/BE][%,D]

and ﬁz(a] %[[Bal/an]T+ ¥ [SGI/Bn]T_] ) [aa/an][%.ol ’

where T, , T_ are the triangles above and below the ¢-axis which comprise a
(with vertices labelled as in Fig. 3).
Now,

it U =¢£2 in o then GI =g + ”(51 - 5:]/"¢ in T, 3

if u=¢gn in o then up = nEi in T, S (3.3)
. = = 2 » g = .

if u n in o then uI n, in T,

Also, GI = U for all linear 4 on o. So, without reference to the mesh

geometry, ?1 vanishes for a basis of quadratics on a (and hence for all guadratics).

Therefore, by the Sobolev Lemma and Lemma 2.1

i?1[ﬁ)| sc |u|3 N : (3.4)
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Unfortunately ?2 is less easy to bound. From (3.3) we have

Bo(g%) = 402 = £,)/n, + (62 - £ )/m)
by - 4, + -1 (3.5
and Fz(nzl = 3(n, +n_)

If o (or equivalently A) were a parallelogram then %2 would vanish

for guadratic U and be bounded exactly as ?1. However, o 1is only close

A

to a parallelogram and F2 is as a result only close to a functional - ?Z[G—ﬁa)
below - which vanishes for quadratic u.
To be precise, let R be the projection given by

o 208 -~ A
BD & et ng{ iU, 2q I[ Al nZJI 9% u (3.6)
2m(a) 4 9E?2 3EdN an?

o a

where m(g) is the measure of a. Then, by Lemmas 2.2 and 2.3, (2.2) and

(3.5),
~ PPN ~ 320 m 32&
|F (RW| £ —— «||F, (21 IJ = + |[F {en]] ¢ f[
2 mla) 2 - 2 B
[0 o
ey |[[ 22 ]
Do |
< ch U], . - (3.7)

Also, by the Sobolev Lemma and (3.7),

B (4 - RO

A

|F (u)] + | F,(Ru) |

2

s cCflafl; - hlal, )

< c HG||3,G . (3.8)
But if U is linear, Ru =0 and u; = u (so that ?Z(G - Ru) = 0); if G

is one of £%2, &n, n?* then Ru = 0 and so this functional vanishes for all
quadratic .

Thus by (3.8) and Lemma 2.1
[?2(0 - ﬁa)l <c |u|3 ,

whence by (3.7)



-g-.
|F, (0] s otfuly o+ nlul, (3.9)

Finally, (3.4), (3.8) and Lemma 2.2 give

_’I ~ ~ ~ A
|Dup - (9ul| < ch (|F | + |F (I ])
TN "
<c (h |u|3‘a+ ]u|2,a1
<ch |lull 1A as desired.

—

We now turn to the central question of this paper. Given u, € Sh[ﬂh]
(a finite element approximation to an unknown function u), how do we estimate
vu? The answer is that since yﬁuh = uI] is constant over each element, we
should use the same recovery procedure with u, as with Upe

3 h =
Theorem 3.1 Let u € H [th, Ug €S (Qh] and Ek (k 1,...,KA] be as

above and let Uy be any member of Sh[Qh). Then

K 3
A 2

hf 1% [Bu, - (uly | c[luwl +h2 lull }
k=1 k™ h Mk I h 1.Qh B.Qh

A

Remark Although this result only bounds recovered derivatives on element
edges between nodes with the same Y co-ordinate (see Fig. 3), it is clear

that edges linking nodes with the same value of X (or Y-X) can be included

in the average. So Theorem 3.1 states that the L2 average erraor of the
recovered gradient over all internal edges is bounded by luI . uhl1,Qh+ 6(h2).

(The average can also include tangential derivatives at midpoints of edges on

BQh.J This comment also applies to Theorems 4.1 and 5.2 below.

Proof (nghal {1977} has proved a similar result).

By Lemma 2.2 the operators D, are bounded thus:

K
-1 h
lgk(vll < ch |V|1'Ak Yv € S,
Squaring and summing,
=2 2 -2 2 h
} |D, (v}]2 < ch Y vl < ch “|v| Yv € S .
Koo koA -0y
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Squaring and summing the result of Lemma 3.2,

2 2
] IDy -ty [* s en”

k
Then, setting v = uh - up in the above,
2 -2 2 2 2
E |9_Kuh - [wl, | seh [uI “uply o *oeh | ul] 6.0 '

K

whence the result as required.

4. THE FINITE ELEMENT APPROXIMATION AND NUMERICAL QUADRATURE

From now on, we take u to be the (unknown) solution to the model

problem:
Lu = f in @ , u=g on 3N
(4.1)
) 3u duf _ 3|, 2u au
where Lu = ax [611ax ’ a123y} ay [%21ax * 5223yJ
satisfies the classical ellipticity condition and a = a,,. (We could add

12 21

the term aDu - with ag 2z 0, 9, € Pi%ﬂ) - to L with a straightforward supplementary

analysis). The goal of the next two sections is to apply Theorem 3.1 to a

finite element approximation u_ to u by showing that |u = 0(h2).

h
2
We associate with (4.1) the bilinear form on [H1(Q]] :

ow 9V oW 9V + 3w 3V oW JVv
) = 98 U oW 9 + dw 39 9w Y | dxdy.
S0y JJ [%113x ax | 212 [}x 3y 3y axJ " “225y 3y | Y

9 (4.2)

_Ul
I h 1.Qh

We will also use the inner product

(w,v,]Q = JI w v dx dy. (4.3)

f
Let H;(QJ c Hq(Q] be the set whose members satisfy the condition w = g

on 9, similarly let w =0 on 3Q for all wE€ H;(Q]. Then the weak solution

of (4.1) 1s a function u € H;(Q] satisfying
N -]
aQ(u.v] = H?.v]Q Yv € HU[Q). (4.4)

in fact we require the additional smoothness

ue H;(QJ n H (@),

2
aij € W2+€(Q) {(i,j = 1,2) for some € > O (4.5)

and £ € H2(Q)
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Now, the finite element approximation Uy which we introduce below

is defined on Qh, which is not necessarily contained in Q. Although up

is computed using values of functions on @, it will simplify our analysis to extend

these functions to Qh. Indeed, since § has the strong cone property we can use

Calderon's theorem (Calderon, 1961, Theorem 12) to give extensions of u and
aij (i,j = 1,2) in the Sobolev spaces of (4.5) (to IR? as opposed to & ). The

restriction back to Q of the extension operator yields the identity and so

we can use a single symbol for a function and its extension. We have

|| ul| < c||u] and |la,.l| A8 = (1,5 = 1,2).
3.9, 3.0 13" w2 (@) (4.6)
We extend f as follows:
1 2
f =Lu€H [Qh] n H Q) , (4.7)

where L is the operator of (4.1) and u and the coefficients of L are

extended as above. Then by Green's theorem,

_ 1
anh(u.V) = (f.V]Qh Yv € HU(Qh]. (4.8)

where a_ (s,°) and [-,-]Q correspond to the forms (4.2) and (4.3)

with integration over Qh.

In all practical computations, aq («,+) and [-.-]Qh will be evaluated
h
by numerical guadrature. The centroid rule is sufficient for our purposes;
its use is denoted thus: a5 (e,°), (°,-]6 .  {0Our results can be modified to

h h
apply to any other rule, provided it integrates linear functions exactly in

each element).
If h is sufficiently small, the ellipticity of L is passed onto its

extension so that (Ciarlet, 1978, Theorem 4.1.2)

< c a* (v,v) Yv € Sh. (4.9)
1.Qh Qh

|v]

This discrete coercivity condition implies the existence and unigueness of

the finite element approximation which we now define.
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Let SE[Qh] be the subset of Sh(QhJ whose members interpolate nodal

values of g on the boundary BQh; similarly let v = 0 on BQh for all

. <h h 1 h 1 .
v €55(2). (Note that Sg(Q) ¢ He(o ) but Sj(Q ) < Hyle).) We define

h
uy € SE[Qh] by

a® (u,v) = (£,v)* W€ SB(Qh). (4.10)

*
Qh h Q

Also let ug < SE(Qh] interpolate the values of u at all the nodes of Qh.

(This corresponds to the wu of section 3, except that u, and therefaore u

I I’

are no longer "known" functions).

Contributions to u come from a variety of sources; we

I “h|1,9h
examine in this section the error due to numerical guadrature. Note that the mesh

geometry, i.e. Lemma 2.3, plays no further part until Lemma 5.3.

We expand the numerical approximation to I(Q w dx dy 1in the form
h

K

z fwl. *m(T,) where G, and m(T,) are the centroid and measure of element
k=1 GK K k k

TK' We define the local error functional over TK:

Ek[w] = ([ w dx dy - [w]G em(T, )
J) K K

Lemma 4.1 Let k be fixed (again we drop the subscript). Then

(1) (e s en il o v € HA@,)
and (1) [EG| s o Cilwll, o+ Wl 1) vwe H'@, ) n H@).
Proof By (2.2) and Lemma 2.2,
|E(w)| = ch?| E(w)] . (4.11)

Since the guadrature scheme is exact for linears, (i) follows immediately from
(4.11) and Lemmas 2.1 and 2.2. For (ii) we proceed with caution, for
i%[&]‘ is not bounded by ||Qil1’T, We recall that TN Q contains an open disk
which itself contains the centroid G and whose image, 1, say., in the (&, n) -
plane has measure 2c (by (2.2)).

As in Lemma 3.2, we introduce a projection operator:

Rw = meas(T*)J_1 II w d&dn in T,
~ T

W * in ™1,



e
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Then
Eeku) = H % -mﬂadgdn ;

meas(t,)
T T*

this is bounded in H1[1] and vanishes for w constant on 1. Therefore

by the Sobolev Lemma and Lemma 2.1,

A A

|[ERWI| = ¢ H®||1,T§ c|w|1'T

The remainder, E(w - Rw) is bounded in W;+€ (t,) for fixed ¢ > 0O;

it vanishes for W constant on <, and is thus bounded by C[IW|1 o | W]
LN

(This is similar to the proof of Lemma 3.1). So

|Ew)| = |E(§Q)| + |E(w-Rw)| = C[IW|1,T+ lez,t*)

IA

and (ii) follows from (4.11) and Lemma 2.2.

We apply Lemma 4.1 to give global estimates of the quadrature error:

Lemma 4.2 Let v € SB(QhJ. lien

(1) [(f,v) (£,v)* | € ch?2( || f|| |l £|| ) v

Qh Qh 258 1.Qh 1.Qh

and (i1) |a, (u,v) - a* (u,v)| £ ch? ||ul| I vii
Qh Qh 3,Qh 1.Qh
Proof We again employ a projection method. For (i) we write
K
[ef,vd, - (F,W% | <) (JE(FIVI. )| + |E _(fFlv-IvlL DI]).
Q, Q! Tk, Uk G, k s

To bound the first term when TK is wholly contained in @ (so that

Fe Hz[TkJJ we note that

supL (Jv] + |ov]) = ch”’

Kk

and use Lemma 4.1(i) to obtain

IEK(f[v]GKJI s |E () [V]GKI s ch? | ]|

Alternatively TK is a boundary element and bylemma 4.1(ii) (recall (4.7))

[E_(flv]_ )| < ch? (| #]] IR Jellv]
K Gk 1,TK 2.Tkﬂﬂ Gk

We cannot use (4.13) here without losing an order of h. But since v

on 9f,

h
llvli 1T Yv € S

vl
a1 T

25T

(4.12)

(4.13)
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-1
‘[v] | ch IlvH
GK O'Tk

A

s C‘v]
1.7
k

Therefore, for all TK'

[E, (Flvl. )| s ch® (| ¢l + I+l ) lvll
k GK 1,TK Z,TKnQ 1.Tk

To bound the other term in (4.12) we write Yk for the centroid of TK

and note that since v is linear, ék = 0 when % is a constant on TK.

So by (2.2) and Lemmas 2.1 and 2.2,

IA

|Ek[f[v - [vlg )

i ch? lEK['F(V - [v]Y 1|

A
0
I
S
—_—
~

Fv - vl )
Y
K k

A
2]
=1

Y
—h

1,T

IA

ch? || | Il vil
1,Tk 1,Tk

We now obtain (i) from the above estimates and the Cauchy-Schwarz inequality.

For (ii) we recall that Vv is constant over each element and write

a_ua_v—— a _a__Lla_V . m[T ]
811 3x 3x 11 3x 9x K
Gy

Tk
au o, e
élEk [?x [311]GJ ‘ ' IEK [Bx (a4 [311]Gkﬂ ' ‘{;x]T {

- k

We bound the first term directly from Lemma 4.1(1); the bound on the second
is similar to the corresponding term in (i) above. We use an identical method

for the and a terms of a.(*,*) and Cauchy-Schwarz to sum over

812 22 Q

the elements Tk'

We collect the above results:

Theorem 4.1 Let u, uh, UI' f and Qk (k = 1,....KA) be as defined above.
Then KA ) ]
< * N
h Z_ Ekuh [zylm S c sup [aQ [uI u,v]L/q|vH 1.9
k=1 k .h h h
vtS0

cobtllull 5 g v el ).
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Proof If uI = uhl1,9h = 0 the result follows directly from Theorem 3.1.
Otherwise we substitute v = up Uy € SB into (4.8) - (4.10). Then by
Lemma 4.2,
2
up - uh|1'9h < caah [uI = uh,v)
£

c (]a;zh[uI - u,v) |

la¥ (u,v) - a
194

+

(u,v)| + |[(F,v), - (F,v)* |)
h s & &

IA

c |la* (u, - u,v)|
Qh I

ch?  |ull sl g el o Vvl o -
3,0, 2,9 1,9, 1,9,

+

By (4.7), ||¥]| < c |lull and so
1.9 3,9,

cla* (u_-u,v)|
s eemcull o v llfll Q)
» h »

Il g

h

The result now follows from Theorem 3.1 and (4.6).

It remains to show that the term aé [uI - u,v) is small enough to
h

justify use of the recovery scheme proposed earlier. We devote the next section

to this.
5. a¥ (u. - u,v) = 0(h?) Vv € Sh
S 1 0

This bound was derived independently by Oganesjan and Ruchovec (13969), though
only for the case of a fully "uniform” grid (i.e. X = x, Y = y) and without
the application to superconvergence. The result here is similar to Lemma 3.2;

the principal difference is that the interpolation error

is now averaged over each A instead of in the neighbourhood of each sampling

k

paoint M Further complications arise from non-uniformity of the mesh and

K
variability of the coefficients aij' These are essentially perturbations

to the superconvergence effect and we deal with them first.



We use the notation:

g = 9% T A%y 0 B
Baq T 312% T Ay . B
and b = b11
b21
By the chain rule,
K
ag (e,v) = )
h k=1

Je de

where w = [——-b + — b
ax

11 y

v
21} X

_']6_

de
[EE'b12 *

We will examine the first term in (5.1) in detail:

oV

considering first the extent to which

h_1(80/35k] in element T, .

Lemma 5.1 Let

Then

5,0 % et lull g vl g

Proof Consider a single element TK'

In this element,

v dv .~ °. v

'a—'é' = h W + F(X) a_x‘

where F(v) i e = [o] Lo
13 (1,0)

A A

K

(X,Y) are viewed as functions of

evaluated at some fixed point

that if (X,Y)(0,0) = (X,

.YOJ then

(£,M)

K
) |5y (beve) e m(T)
k=1t 7 ]GK K

h

2oy 9V

+ F(Y) Y

0,0

= t(x,y) unless otherwise stated.

(X,¥)(1,0)

]

»

(£.n) (hence the ©

(X0+h.YD].

av/9X differs from the constant

(Recall v € Sg(Qh]; see Fig. 3).

(As before we drop the subscript

)} and everything is

(5.1)

(5.2)

(5.3)

(Recall
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>

~

x>

—
]

Now if X is linear in (£,n) then 0. So by the Sobolev

Lemma and Lemmas 2.1 and 2.2,

[F(X)| s ch2|X|W£[T] < ch? .

Similarly I?[?]] £ ch? and (5.3) becomes
l[%%l-—-— SR IR B 1S L SO <
(x,y) (E,n)Er
(x,yIET
£ ch sup IZyI
T
< ¢ ||v|] 1.7 . (5.4)

We sum over k. By Lemmas 2.2 and 3.1 and Cauchy-Schwarz,

|S1| s § |E§ﬂ . Fg%] )- l[g}s I- kyglG *m(T,)
k=1 GK - Tk TK K K"
E Il vl | ull
s c{lv scec ||u =ch?
k=1 1.Tk B,Tk
< ch? ||ull

livli
3. "V,

The next step is to bound the variation of b over each element.

Recall M, (k = 1,...,k) are the stress points (as in Fig. 2).

K
Lemma 5.2 Let
5, = E h™] [%g ((bevel . - [bl, -« [Vel. )em(T,)
2 s r, “==Te T =n =g K
Then
Is,| = en? |lull 3_thlvll e,

Proof Again, we consider a single element, TK' and drop the subscript K.

We denote by Z the matrix whose [i,j]th glement is aij and write

=

[bl. - Ib], =

. " (121 * (21 ) (191, - [9X1)

+

([Z]G = [Z]M]([EX]G + [ZX]M]J.



Now X € Wi and each element of

and |ZX|

wl(T)
|tblg - (bl

from Lemmas 2.1 and 2.2.

|[av/ag]T|

_']8_

P 2
Z 1is in w2+€. Therefore both Izlwl[T)

are bounded and we obtain

< ch

Furthermore, from (5.4) we have

<

vl

The result now follows directly from Lemmas 2.2 and 3.1 and Cauchy-Schwarz.

For the next result we recall (3.1) and group the elements into triangle

pairs Ak' rewriting numerical quadrature of Ve as a functional-pair:

EK[UJ N [ZQ]G m [TK] + [ZP]G 'm (TK.J {(k = 1,...,KAJ.
Kk K
Lemma 5.3 Let
K
& -1 [av
Sy =} o l3e (bl, - F (u)
k=1 k|t k
k
Then
|5l = en? [l vl
3 3.Qh 1’Qh
Proof This is essentially the same as that of Lemma 3.2. We fix k
initially, dropping the subscript. As before we write T,» T_ for the

triangles with vertices {(0.,0), (1

with Tt Ut_=a . (See Fig. 3).
. 1/6
F(E2) =
172 (€ (1 - €
-~ 1 2 - 2
E[gn] _ |1/86(n? - n2)
(176001 - 2¢_In
. B 0
and F(n2) =
E/B[”i - n?)
If a were a parallelogram E

only close to a parallelogram, so we recall the praojection

exactly as in Lemma 3.2, use (5.5)

((26_ - 1n_ - (26, - 1n,)

IDJ, [£+In+]}ﬂ "{(O'O)) (E_‘n_:]! '(1I0]}I

Then the relations (3.3) hold and we have

—

) = €+[1 = £+J]

_ - (1 - 2¢n))

would vanish for quadratic U. But a

R of (3.8) and,

to obtain

(5.5)

is
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IA

|E(Ru]| Chlulz,a

and |E;G‘- §G1| < C|G|3 “

So by Lemma 2.2
|Feul| = oh |F(0)] s ch® flull 2

and the result is obtained, as in the last two lemmas, by summing over K.

We now complete the superconvergence proof with:

Theorem 5.1 Let u and uI be as defined and let v € Sg(Qh].

Then

la* {(u, - u,v)l < ch’llu“ HVH
9] h I 3,Qh 1,Qh

Theorem 5.2 As an immediate consegquence of (4.6) and Theorems 4.1 and 5.1,

Ky Ay
2
h E=1 D, uy, - [Zu]mk] s oh (lull 5 o +llfll, o)

Proof of Theorem 5.1 We note that 30/3£k = 0 in each Bk' For

(see Fig. 4) in every Bk the nodes NkO and Nk1 lie on BQh. But

v € Sg[Qh] and so v =0 at NKU and NK1 and varies linearly between them.

Hence the compaonent of Vv parallel to NkONk1 is zerao.

Therefore by lemmas 5.1 - 5.3,

k -
av
IE_1 l}s(' [E'Ze]} . m[TK]| = lS,] + S2 + 83[
B k

s ch? [[ull 1Ml
3,9h 1,Qh

Returning to (5.1), we have bounded the first term; the second is bounded

similarly. We have now derived £2 superconvergence of the recovered gradient

at element edge midpoints.
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6. THE MESH GEOMETRY

In this section we relax the triangulation conditions of section 2, but on
general curved regions Q we do not then expect superconvergence in the global
sense of sectlons 3-5. For these cases we propose a local form of the superconvergence
property.

We refer to any region for which Theorem 5.2 holds (Yu € H3(Q), £ € HZ(Q)) as
"superconvergent”. For example, it is clear that this includes any region whose
topologically equivalent triangulation in the (X,Y) plane is the mesh shown in
Fig. 5(a).

The region shown in Fig. 5(b) does not satisfy the triangulation specifications:
however with a modified recovery scheme it is superconvergent. This property is true
for all (sufficiently smooth) meshes with exactly six elements meeting at each
internal node. We call then "chevron meshes” (Fig. 6); their definition is
sufficlient to ensure that Qh can be exactly partitioned into "bands" of
triangles. A "band” consists of one or more adjacent, entire columns (or
rows) of the squares which make up the triangulation Qh, plus any left-over
triangles [BKJ at the two ends (i.e. on BQh]. @ is triangulated as before,
except that all the diagonals in a band may have (X,Y)-slope -1 instead of +1.

This generalisation affects only two stages of the superconvergence proofs
in the previous sections. We recall that Lemma 5.3 requires the sum (5.1)
to be partitioned into two terms. The first term (5.2) has as a factor the component
of Vv which is (almost) constant over triangle pairs with common edge (almost)
parallel to the X-axis - see Lemma 5.1 - similarly for the second term and the
Y-axis. It is this partition which we modify here, dealing with each band
separately. We consider without loss of generality a region § with band-boundaries

(almost) parallel to the X-axis (as in Fig. 6) and a band for which each

hypotenuse has (X,Y)-slope #1; instead of (5.1) we write
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e ae v v de se av
= — — — R : —_— - ¥ —— .
W [Bx bi1 * 3y sz [ax - 8‘{J ' E}x (b1o2byq) + 5y Py bzdav

(6.1)

Now (9v/3X + 9v/3Y) 1is (almost) constant over triangle pairs with common edge

of slope #1, i.e. over the squares which comprise the band. Therefore there are
no unpaired triangles Bk on the "long” edges of the band (internal to Qh)

on which v=0 is not guaranteed. So with the decompositions (6.1} we can write
aéh (e,v) as a sum of contributions from each band and Theorem 5.1 proceeds as

before.

The other aspect of superconvergence which is sensitive to mesh geometry
is the recovery of the stress component normal to element edges. The tangential
component (recall the bounding of ?1 in Lemma 3.2) is not affected. So Theorem
5.2 holds for all chevron meshes, if we remove from the average those normal stress
components which are directed through band-boundaries. We can, however, recover
the full stress at these points by means of a modified scheme: we average the
gradient over four elements, as shown in Fig. 7. The resulting error of this well-
centred difference scheme is bounded analagously to Lemma 3.2; we conclude that
with this new recovery scheme all chevron meshes are superconvergent.

We note bhere that the criss-cross mesh (see Fig. 8) required for derivative
superconvergence in the mixed method of Fix et al. (1981) does not have six
elements surrounding each node and cannot be arranged into bands. So (this is
independent of the choice of recovery scheme) Lemma 5.3 cannot be applied; the mesh
is not superconvergent. It is because of this necessary restriction that no
rectangular mesh on an octagonal region is superconvergent (Fig. 9(a)). This case
is qualitatively equivalent to the mesh shown in Fig. 9(b) where we obtain at

/2

1
best |a* (e,v)| = U[h3 ). This O0(h?®) drop in accuracy is confirmed numerically

2,

in section 7.
We conclude that, with the introduction of chevron meshes, the conditions for

superconvergence can be satisfied on a wide variety of practical problem domains.
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We are, however, still a long way from superconvergence on general regions;
there is a theoretical barrier (the "six element” condition) to further progress.
In the next section we present evidence supporting an alternative result: that

superconvergence holds in those subregions of which are bounded away

h
from areas where the mesh conditions (or, for example, the smoothness of u) break
down. A proof of this, combining sections 3-5 above with approximation properties
of Green's functions (Rannacher & Scott, 1982) is in preparation. It is

expected that this new result will give pointwise superconvergence, i.e. without
the need (as in e.g. Theorem 5.2) to take an & average over the stress points.

2

7. NUMERICAL RESULTS

(i) Centroid Recovery

The recovery scheme considered above is that of averaging the approximate
gradient between neighbouring elements; this yields an 0(h?) estimate of the true
gradient at the midpoint of the shared edge. We denote the &2 error of this

recovery scheme (averaging over all possible edges) by E A simpler though

mid”®
generally less useful procedure is to sample just the tangential component of the

gradient at the midpoint of each element edge; this is an 0(h?)} estimate of

that component of the true gradient. We denote this & average error by Et

2 gt”

We can also recover the gradient at the centroids, simply and to 0(h?}: we
first recover the gradient at the midpoint of each of the edges of a triangle and then
average these three gradients to obtain an approximateion to the gradient at the
centroid. (To prove that this scheme leads to superconvergence we either regard
it as the result of a linear fit to the recovered gradient at these three stress
points or make a straightforward change to Lemma 3.2). We then have a weighted
averaging scheme between four elements (see Fig. 10); we denote the & average

2

error by E -
rec
We now recall the claim that the gradient can be sampled to high accuracy

at the centroid of each element. That this cannot be to 0(h2?) follows simply

from Theorem 5.2 and Taylor's Theorem (for details see Levine, 13882). We denote
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the L2 average error for this sampling procedure by E

To compare these four measures of error, we considered Poisson'’s equation

cent’

on the unit square, @ = (0,1) x (0,1), with exact solution
u = x(1-x)y(1-y) (1+2x+7y]).

We triangulated © with a uniform mesh separation (x = X, y = Y] taking

- e A =n -
successively h = 2 5’8’ 10 12° We set f Au on © and g=u on 9@
and solved (4.10) to obtain up, for each h. We found that each error was within
10% (and usually 5%) of its asymptotic rate for h £ %1 these rates were

et 2
Etgt 2 1.4h
] 2
Emid 2 3.0h
E 2z 3.0h?
rec
and ECent =z 1.2h

Remarks
(a) The same problem has been solved with bilinear elements, where sampling at

centroids leads to superconvergence. Le Saint & Z1amal (1979) gave the

result E = 0.91h%.
cent

(b) To investigate the error introduced by numerical quadrature we solved the above

problem using exact integration instead of the centroid rule. Only a slight

~

improvement occurred (E = 2.8h%).

rec
(c) We solved this problem using the cross-cross mesh (Fig. 8) for which super-

convergence is not expected (under any recovery scheme). We obtained
E 2 0.45h
rec

and E 2 1.0h,

cent

indicating that there may be some value in using the recovery algorithm even when

superconvergence is absent.
(d) We considered a curved mesh, distorting £ into the sector shown in Fig. 11

by the transformation

1

(X + 2)/(1 + Y2/4)% - 2 ,

X
1]

(7.1)
Y(1 + x/2).

<
1]
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Superconvergence was again observed, with

o 2
Etgt 2 1.2h ,
~ 2
Emid 2 3.2h
and E =z 3.0h2.
rec

(ii) Local Superconvergence

We took @ to be the truncated unit square triangulated as in Fig. 9(b},

h = %; N ?1- and solved (4.10) for Poisson's equation as above, with exact
solution

u = (x-1)2 + y2,

(This is a function for which there is zero error on uniform superconvergent
triangulations- we chose it to highlight asymptotic behaviour for computationally
reasonable values of h. It has been our experience that when breakdown of
superconvergence is due to effects from a subdomain of € , such as the
neighbourhood of a line, the error is somewhat smaller than expected and the
asymptotic rate is not attained for pratical values of h).

As expected, we obtained
/2

E = 1.,9h3
rec

and E 2 0.47h .
cent

However, when we restricted the averages to elements in the subdomain (0,%1) x (O,
(this is bounded away from the region where the mesh conditions break down) we
obtained

E 2 1.8h2

(and E = 0.47h).
cent

This is the local superconvergence effect predicted in the last section. Its
implication, which is of practical significance, is that for any § there exists
a series of triangulations such that our superconvergence results hold in all

elements bounded away from 23Q .
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FIGURE 1
The global transformation (x,y) <-> (X,Y).
M ‘)h ahz,?hz)
T

Y

)’ lo,0) 4,9 0,0 3
6(R) (3

FIGURE 2

The local transformation of a triangle



X""'Xh X=Xk+k
FIGURE 3

The transformation of a triangle pair A > o. The midpoints of the diagonals

£ +
of o are at (3,0) and + S : " "), their separation is 0{(h).

2 2

FIGURE 4

A boundary triangle Bk'
The arrow gives the direction of

SEK )




(a)

FIGURE 5

% (b)

These two meshes are superconvergent.

FIGURE 6

A chevron mesh. The shaded region is

a band with hypotenuses of

v av
(X,Y)-slope + 1'(?? t oy is (almost)

constant in each "square";)



X

FIGURE 7
To recover the full gradient at the
point P - note that the union of
elements is not (even close to) a
parallelogram - average the
approximate gradient over elements

1, 2, 3, 4.

(a)

FIGURE 9

(a) The triangulation cannot be
completed so as to give a

superconvergent mesh.

X

FIGURE 8
A criss-cross mesh similar to that

used by Fix et al. (1981).

)

(b) This mesh too is not superconvergent
Note that there are internal nodes

which are not surrounded by six

elements.
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FIGURE 10 FIGURE 11
Relative weights of Vuh in four Distortion of © by (7.1]).
elements, yielding a superconvergent

[¢
approximation to Vu at the

centroid G.



