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Introduction

In Sweby & Baines [2] convergence of Roe's scheme for a scalar non-linear
conservation law is proved. However Roe's method suffers from an inability
to deal satisfactorily with expansion fans.

In the present report a special procedure is devised for dealing with
expansion fans and this is described in detail below. The resulting scheme
is then put in a more general framework, which reduces to the scheme in
Sweby & Baines (loc cit) away from expansions.

Consider the scalar non-linear equation

u, + f(u) =20 -0 < x <o, 0<t<T (1a)
t X

with initial data

ulx,0) = uo(xl. (1b)

which is assumed to be {a) uniformly bounded in the L™ norm, and (b)

of uniformly bounded variation, namely, for all real & and R > 0

f luD(x + 8) - uo(x)ldx < c (R) ]¢]. (2)
|x|<R

We divide the x  axis uniformly into cells [xk_1,xk)' with
X, = X + h (3)

and take a time step At, defining the constant g by

At
We now define the piecewise constant projection uh(x,t] of ulx,t)
onto the computational grid by
L 5
uh(x,tJ Uy (5)



P s S n
xk_1,xk+%) x (n-igh,n+igh), where u, ere nodal values

generated by a finite difference scheme. The initial data is projected by

for (x,t) e

the restriction

X
o 1 [ K

u_. = m uO(xJ dx s (8)
2

We now develop the scheme for generating the nodal values u, .

=

For brevity we adopt the notation

k= u2+1
(7)
u, = ul
3 Kk

whenever there is no danger of confusion.
Due to the piecewise constant nature of uh[x.t) we can, for sufficiently
small At, treat the advancement of the solution in each cell from t = Tt

to t =1+ At as the solution of the local scalar Riemann probleml i.e.

ug + f[u]x =0 (x,t) ¢ [xk_1.xk) x (1,t+At)

k-3 , (8)
ulx,t) =

with At chosen such that the characteristics do not intersect.

of

Let alx,t) = alulx,b)) m be the wave speed and, to ease notation, make

the following change of variables:

(8)

—
n
ot
1
~

The problem (8) has solution (in terms of the new variables) [1]

U1 X/T < aL
ulX,T)

1

(10)
u X/T > aR

k
where aL, aR are the left and right wave speeds respectively, i.e.

L

a = a(xk_1,T]
R _
a = a(xk,TJ
and -0 < aL < aR < o



If the discontinuity is a shock then aL = a = a(xk_i,T] with

e(xk_i."} = flu,) - f(uk_1) (113

Y T Yk-1

being the shock speed given by the Rankine-Hugoniot relation (see Fig. 1).

t
t = t+ At
u [ X
k=1 T—B(Xk_%,T]
Yk
t =
T | L x
k-1 k-1 XK
Fig. 1

If, however, aL < a(xk_l,rl < aR then the correct physical solution is
2

an expansion wave [1], i.e.

L
U X/T £ a
ulXx,T) = u + 0(u,_-u ) aL < X/T < aR (12)
’ k-1 k™Yk-1
R
u, X/T 2 a
(X/T-a")
where 8 = W (13)
(a ' -a’)
(see Fig. 2).
t =
R
a
t = -
XK

Fig. 2

We now project the piecewise linear solution (12) onto the space

of pilecewise constant functions.



2. Approximation of the Expansion

The linear solution (12) is approximated by the piecewise constant

solution
L
Uy g X/T < a
L R
u(X,T) = U s a < X/T < a (14)
2
R
U | X/T 2z a
To obtain u s we integrate (1a) between Xy 4 and X at time t;
-2
d [k :
i.e. ot [ ulx,t)dx = -{$(u(xk,t]] = f[u(xk_1,t]J} . (15)
X
k-1
Changing variables to X,T gives
h
912 ux, Tax = -{flu ) - flu,_ )} (16)
CI k k-1
2

Since u 1is piecewise constant we can evaluate the integral in [185 as

h aLT aRT h
[ 2 ulxX,TIdX = { u_,dX [ L U _gdX + ( 2 U, dX
-h -h aT : arT
2 2
- rale, b R, _ L h _ R
(a T+ 2)Uk—1 + (@aT - a T]uk_% + (2 a T]uk (17)
So carrying out the differentiation in (16) we obtain
aL[u -u, L)+ aR(u -u, ) = Fflu ) - flu, )
k-3 k-1 k k-3 k k-1
= a{uK - Uk—1} ; (18)
with a as defined in (11). Thus
R L _ _ L R _
(a a ]uk_% = (a - a Ju 4+ (a a]uk g (19)
. . N ] L A L R
Next we define numerical approximations a_  ,, a, ,, a , for a-, a
k-2 k-3" k-3
and a, respectively, by
5 Tk Fie . 0 70
—1 - - -
kg Ye = Yk k= k-1 (20)
, of
approximation for o Uk = Uk-1
Xk-1



L , B
8y .y = Min {ak_1,ek_£}

(21)
£« max {a. .8, ),
k-3 k-4’ "k
where a , a are approximations for o (u.), o (u ), respectively.
k' k-1 ou k77 du k-1
Note that the minimum and maximum in (21) ensure that at_% < ak_l < ai_l.
2 2

We now have the situation as shown in Figure 3, and can devise a difference

scheme as follows.

t =1+At

t=rt
Kk
3. The Finite Difference Scheme
We define left- and right-moving increments ¢k_l and ¢i-l as
2 2
follows;
Xy 1 Xk
L 2
¢ 4, = 2 u dx, ¢R . il u dx, (22)
k-3 h . K-z h «
k-1 k-3
with a total fluctuation for the cell of
T+AL
a Xk 1 k
¢k—% i~ Ix udx = -+ [T [x fx dx dt
k-1 k-1
(arising from integrating (1) over the cell between t =1 on t = T+At)
T+AL
=pm =
A fr [f[uk] f(uk_1)]dt
At
=" %k-t (u Uy q) (23)
. At o 1
The assumption -+ [f (UJIS 3 _ (24a)
and therefore AE—Ial < 3 (24b)



for a =

8 " ai_%, 8.1 is made throughout, ensuring that discontinuilties
from adjacent cells do not interact

s
manner as for (16).

X _1 Xo_1 X, _1a
¢L , = A kez u dx = 1 k-3 ulx,t+At)dx - k=3 ulx,t)dx
k-3 h h

Xy g X X

k-1
N S el 3308
: {Ek( ak_%] At + uk_%[f ak-%) (

bk K
ap.y) At ¢ U G- (e ) At} - {

We now perform the integration for ¢t 3 ¢E 1 in (22) in a similar

r\:l:r
S

~ R L _
=g (-a 3 - ;](Uk k‘) + (aK ;)(u -yu } (25)
where b’ = i(b + 'bl] is the positive part of b.
Defining
vk—% = q ak_% [28)
we may now write (25) as
¢k—% ( Vk—%) (u, Uk-%) + ( vk_%) (Uk-% uk_1J. (27a)
Similarly
R o R + _ _ L _ :
¢k—% 8 (vk_%] (u, uk_%) (v k- ;] (u, - K_,I]. (27b)
We observe that
L R _ _R _ L _
D O T L I CIFR )
= -vk_%(uk-uk_1] from (18)
= ¢k_% ’ [28)
as would be expected due to conservation
Note that if vR = vL =V then
k-3 k-3 k-3
R
¢l};1=¢k_1'¢K_l =0 i-F \)k1 <0
2 2 2 2 (29)
L R
= 0, = ‘ if >0
k- -y ™ Py k-4



(1) First Order
L R .
Incrementing Uy _q by ¢k-% and u_ by ¢k-i over a time step At
yields the first order scheme

k L R
N I (30)

which is shown graphically in Figure 4.

t + At o

L
t ey br-1 Fg-1

Xk-1
The First Order Scheme
Fig. 4
We note from (29) that this scheme is equivalent to Roe's first order

scheme [3] everywhere except at expansions.

(ii) Second Order
We now introduce an antidiffusion stage by transferring some of the allocated

fluctuation [2]. The result is a second order scheme almost everywhere (see

below).
Let %y = 101 - lvk_%ll (31)
L . L L
bk-% = minmod {ak_% ¢k-%' L ¢k+%}
. (32)
bR , = minmod {a, |, ¢L s 0. 3 ¢R 3}
k-3 k-2 "k-2" k-3 K“E

where minmod {+,*} selects the argument with minimum absolute value. (In the
case of arguments with equal modulus but opposite signs the first argument is

chosen).

At the antidiffusion stage the guantity bt_l
. 2

is transferred right to left (see Fig. 5). Again

L R
k-3 OF By-a

is transferred left to right

in the cell whilst by

except at expansions either b will be zero as a consequence of

(28) and (32).



‘\\ 7

t { ¢
*Kk-1 XK
The Second Order Scheme
Fig. 5
This scheme can be written
k _ L R
UTT U Bt fiey T Bkeg Ok (33)
where

L L

1+ (Bpoy ~ By 4=, 70

L k3
Ek+% = ¢k+l
L =

d Okey T O (34)
R R

- (b -1 bk+%] ¢i_1 40

R
¢k'%
L, =
k-3 R
1 ¢k—1 = 0

and is second order accurate except at discontinuities of u (see below).

The scheme [33), (34) is equivalent to Roe’s second order scheme [31],
except at expansions, as studied by Sweby & Baines [2]. TIf the minmod operators
in (32) always choose the first argument then the scheme is the Lax-Wendroff

scheme [4]. If the second argument is always chosen it is the Warming and Beam

fully upwind scheme [5].

3. Proof of Second Order Accuracy

We now deomonstrate that the scheme (33), (34) is second order accurate

away from discontinuities of the solution by comparing it with the Lax-Wendroff

scheme.



A necessary and sufficient condition for a scheme formulated as in (33)

to be second order accurate is that

_ LW L oW R 2 N
LW

where Ek+1' th% are the appropriate coefficients for the Lax-Wendroff
2

scheme.

Except for the case when <0< vi_l, the Lax-Wendroff scheme is
2

k-1
achieved by choosing the first argument in the minmod operators in (32) so
it is only necessary to show that the arguments of the minmod operators

differ by 0(h2). That is we seek to show that

L. 2
ak_'_i ¢k 1 a 1 ¢k—% = D[h ] [38]

+3 k-2

and

' R o R 9 :

%-3/2 ¥k-3/2 T k-3 $k-p T 0N (37)
We shall verify only (38) here, but (37) may be verified in a similar

manner. Assuming that u is smooth enough to be expanded in a Taylor series in

x (and hence that f can be expanded as a function of xJ,

L 1

Oay $py = T - |vk+%|) q (f,, - T
= -1 - ) Ha_:f_ 2
11 [vk_%l + 0h)) g (h—], + 0(h?))
BE 3f 12
(ak_% + 0(h}) g (h iy T 0(h<))
= - ﬁ 2
%1 @ A i 0(h4)
L
But also o,y $_, = o, qh-%g o+ 00n2)
Hence o ¢L - ¢L = 0(h?) verifying (36).
k+3 "k+} k-3 "k-3

At discontinuities of u the Taylor expansion is invlaid and hence we
cannot claim second crder accuracy at such points. Note, however, that the scheme
is still second order at points where the minmod selection in (32) changes.

In cells where Vv -1 <0<v

1t is well known that the Lax-Wendroff

scheme may produce a non-physical solution, and thus we cannot use this comparison



to claim second order accuracy at such points.

4, Convergence of the Scheme

We now conslder convergence of the scheme after first giving some

useful definitions.

k-1
S _ + =
Moy = (v, s =L s = L,R (38)
2 u, = u
v.)" s =R k = Yk-1
2
b-3/%1 -y by 7 0
Bk—l = s = L,R (39)
2
S —
! by 7 0
S S S
P-1/%e1 Fes by 70
Yees ® s = LR - 40)
S
1 bpoy = 0

We observe, from (24) and (31), (32), (38), (40), the inequalities

0 < Oy S i
s )
IBK_%I <1, IYK—%y <1 s = L,R (41)
and from (24) and (27), (38),
s ™~
0 < uk_% <1
(42)
L
0 < Wy <3

For convergence we require a uniform bound on the variation of the
solution and also a uniform bound on the solution itself [2]. Sufficient
conditions for the total variation to be non-increasing, and hence the variation

to be bounded due to (2) are:

L
0 < -8y Moy
(43a)
| R
0= 2y 4 My
R L
< -
0 T-1 M-y Ek_; Mimt <1, (43b)



see [2].

The criterion we use for bounding the solutlon 1s

: K
influ, Pl i s SUP{UK-1'UK'UK+1} (44)

17"k Yk +1
which ensures that, as well as preserving monotonicity of the data (also

implied by a non-increasing total variation), maxima will not increase nor

minima decrease. This implies in turn that the solution is bounded by the initial
data in the L norm [2]. An additional sufficient condition to (43a) for

(44) to hold is

R _ L
< gk_% Myt €K+% Hies < 1. (45)

[If both (45) and (43a) hold the solution will also be bounded in the

21 norm by the initial data (see [71)]

We note that, using (39}, (40), equation (34) may be rewritten as

) L L
€k+é =1 (Yk-% h Bk+') O+l
. . (46)

Ck_% = 1 - (Bk_% Yk""J ak %

The inequalities (43a) then follow from (41).
Away from sign changes of f'(u) either ¢L or ¢R is zero.
Consequently either uL or uR is zero, and the inequalities (43b) and (45)
are easily verified [2]. It only remains to verify (43b) and (45) for expansions
and shocks. This is done in (i) and (ii) below.

(i) Expansions

Consider first an expansion, the scheme for which is shown graphically in

Fig. 6
R R v <0 v >0 L L
wo=¢ = U( | | —— yHu =¢ =0
L
b —° ol b
r‘
Fig. 6
The Scheme L
for an )
expansion ; ;
k-1 k+1 k+2
R0 <—-—~4
> L
buo

44~



It 1s easily seen that (45) holds. Now consider

R L
1 - = AV L
Ck+i ‘k+% £k+% uk+% g k+%)' say (47)
\V] 2
Clearly, from (43a), gl k+%) 0.
L . .R _ , ,
Since bk+% bk+% 0 and uk 7 uk+1 for an expansion we may write
) L L ) R R
B0) = 0 My Aay) Py T U S Sy Sy
Yk+1 Yk Yk+1 Yk
= v (e vE Lo Ve mud 2y YR 3 Yu -u ) (48)
k k-3 k+} " Tk+i Tk k+1 k= k+3’ " "k+1 “k+3°,
(g™ (a4
Using (19) we obtain
Yk+d " Yk Ykt - Vked
Yk+1 T Yk Vk#1 - Yk
(49)
and Upeq = Uk st _ vk+% - vy ‘
ke 7 Y V41 T Yk

Again for an expansion v 7 Vs SO the denominators are non-zero.

k+1
Substituting in (48) yields

ooy Vv ) L B R
g(vk+%) = v,k K+3 [1+Yk—% ak+é] + vk+1(vk+% vk) [1+Yk 3a, )

+="k+1
(v, .7V, ) o — 2
k+1 “k (vk+1 ka
-V (Vv -V v v oo-
5-% é:_ K%kt Vket) Vi Ve vki} : (50)
v v
k+1 k
(using (41)), and therefore
3 3 < .
< max ["‘EVK; '2—Vk+,l] =1, (51)

since (50) is linear in Vv, ,.
K+3

Thus (43b) holds, which completes the conditions for expansions.

..12._



(1i) Shocks

Next consider a shock, the scheme for which is 1llustrated 1n Fig. 7.

bL = 0
Fig. 7
The Scheme for a Shock
We have immediately that
‘ R L
0% Bet Mot 7 ket Bk 51
verifying (43b), and also that
R L
0< Ck-% UK‘% EK"'% Uk+1 L
Moreover
R L _ R _ == Al
T L T
< (1 + ak‘;)\)k :|2_ - (1 + OLK_'_%)VK_'_%

A
N

using (31) if lvk+1| < 0.35 approximately
2

This result indicates that the inequality (45) may be violated if'0.35<]vk+%[<0.5
On close inspection we see that this only happens in the extreme case of
oscillatory data with |v| ~% adjacent to a shock. Although this is unlikely
to occur for most convex f, we may achieve (45) for certain by selecting the
sign of the first argument of the minmod operator adjacent to a shock.

Finally from the inequalities in (1), (ii) above we may use compactness
arguments [2], [7] to show that we may select from {uh} a convergent subsequence,

and have therefore shown the convergence of the scheme (33), (34).

-13_



5, Entropy for the Semi-Discrete First Order Scheme

The first order semi-discrete scheme may be written as

Mk 1
ey v -[f(uk+1)[1 6" 31!] so" %F(u JJ =0 (52)
1 v >0 in (Uk’uk+1)
] 0 v <0 in [Uk’uk+1]
where ek+% ) “kek k-1 vV, <0<V (53)
ViV k Vked : e
%(1+sgn[vk_%3 Ve SOV

We follow Osher [8] and multiply by UE wz Ax where ¢z is a positive

test function, and sum over Kk, n, giving
n n 3un 1 n n (54)
’ = = 0, 54
E {p u Z K+ x Yk uk A [F(uk+13(1 e ,) + eK ,f[uk)]}Ax 0 .

or

2{¢n —QI%UEZJ » 1 wE uE La, M- a_{e”
k

. Rey e 31 = 0 (55)

As in Osher's paper we now add and subtract a term

n
u
1 .n K+1 '
K Jun sf' (s)ds
k
and sum the A_ term by parts over k to give
n
9 1y - 1 k+1 i
Z{wk S u?) - (A\b ) fu sf' (s) ds
n - )
n n_1 .n ["k+ B n ' _ 56
rCRTRTH Ores BTk T ax Yk [U [s-ug-(a ul)e L3 F1(s) dsdbx = 0. ')
k

where f'(u) = 0. <
Note that the third term goes. to zero with Ax. After integration by
parts we obtain

n
Y+

n_9 N2y _ 1 n
z {lbk 3t [2Uk ) Ameer] fﬁ S‘F'[S] dS} Ax

n
K~ @00, 0F (s) dsAx. (57)

-']4_.



As A%, At + 0 the left hand side tends to
u

f e (4u2) -y, f_ sf' () ds}dx . (58)

u

We now consider the sign of the remaining term by examining the integral

(dropping n superscripts) in (57), namely,

u
= | k1 - _ .
Ik+% - Ju [s u, ek+% 4+ ukjf (s) ds, (59)

K

for the possible values of 8, ;.
K+3

Y . ] . E
If f'(s) is of constant sign in (uk. Uk+1] then 6k+% 0 or 1.
Take the case f' > 0, 8, , = 1 : then
k+3
u
- [ k+ _
Ik+% = f [s uk+1]F'(s] ds < 0,
u
k
and similarly, for f' <0, 6, ., =0,
k+s
u
I, .= k+1 [s ~u lf'(s) ds < 0.
k+3 u Kk
k
1 1 . ' :
If, however, T (uk] >0>F (Uk+1) we have U, >u> uk+1 (since
f dis convex) and uk+1
110 AP fuk £1(s) ds 2 0
AU B u
o, = L
k+1 (60)
A s Yk +1
0 if + ko Uy f' (s} ds <0
A Yy A U
+ Kk
Yk
1 if [ f'(s) ds 20
Yk+1
h- €2 O a1 © (61)
Yk
0 if J f'(s) ds < O
Yk+1

..15_



Taking the first

1k+§

Yk
If J f1'(s) ds
Yk

of these as an example:

: [”k
u

k1

Cu - s]f'(s) ds

k+1

Yk Yk
= [ (u - s8)f(s)] + f(s) ds
k+1 uk+1 u
k+1
= (uk+1 - uka(uk] - (uK+1 = uklf(g) E e(uk+1. uk)
= (uk+1 = uk)[f[uk] - f(&))
Yk Yk
< 0 since [ ft(s) ds 2 [ f1(s) ds =2 O
¢ Yk
< 0 a similar argument gives I < 0.

1
K+3

. . . 1 1 . S
The remaining case is f [Uk+1] >0>F (uk) with Ugq > U > Uy

=~ h AY Y ]
Here 6K+% = vk+ - vk vk+1 with vy < vk+% < vk+1
k+1 k k+3
u
so, if [ e f'(s) ds 20, & , 21
u k+z
k
Uk-1
we have [ f'(s) ds < 0, ek+l < 0, which gives
u 2
k
u u
Ik+‘ = I k+1[s—c] f£'(s) ds, where c 2 u if [ k+1f'(s) ds > 0
! k+1
u Uk (62)
c<u if [uk+1f'[sl ds < O.
Uy
Yk+1
Taking the case f'(s) ds 2 0, c 2 Uppq? We have
u
k
u
I ., = ¥ [s-clf'(s) ds
k+3 u
k
u u
= [(s-c)f(s)] <™ - f K*1 £le) ds
k uk
= (uk+1-c)f(uk+1)-[uk-c]F[uK]-(uk+1-uk)ftgl E e(uk,uk+1)
o - ; § 63
(u —od{flu,  )-Flu )} + (o mu Y0l ) - FLEDD. (63)

-16-
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The first term 1is negative, whilst the second is positive since
U1 Ui+
f'(s) ds 2 £'(s) ds 2 0. Comparing absolute values of the terms,
g u
k

(uk+1-uk][f(uk+1)—ftﬁl)
l[c—uk](f[uk_1)~+(ukll

< 1, (64)

since ¢ 2 Uk+1 : hence the first term is dominant giving IP+‘ < 0.
u
k-1

Similarly if T f'(s) ds < 0, c S u  we again have I, . . < 0.
2

Uk

Note that if Vv, , = 0 we may consider 6, _, indefinity large,
k+3 k+3

i.e. c > u for the purposes of this proof: in the scheme itself

k+1”

8k+ vk+% is finite.

[

Collecting these results together, we have from (59)
{==(2u2) - ¥ sf'(s) ds} dx £ 0,
ot X -l-.l-
that is, in the sense of distributions,

v(u) , 36Uk o
at 9x

u
where V(u) = iu? is the entropy function, and G(u) = I V' (s)f'(s) ds
u

is the entropy flux.
It follows that the solutions of the first order scheme converge to

the correct entiopy satisfying solution of the equation

u, + +‘(u]x =0

for convex f(u). (See [61).

5. Results and Conclusions

Comparisons of Roe's Original Scheme [3], Osher's first order Scheme [8l,
and the modified Roe 1st and 2nd order schemes described here, are shown
for a centred rarefaction in Figs. 8-11, respectively. The test equation

used is
Ut+ (§U %
It can be seen that Roe's original scheme produces an entropy violating

solution, whilst Osher's, although giving the correct physical solution,

—17..



contalns a large "dog-leg"” compared to the two modified Roe schemes.
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