CONVERGENCE OF ROE'S SCHEME
FOR THE NON-LINEAR SCALAR WAVE EQUATION

P.K. Sweby and M.J. Baines

Numerical Analysis Report 6/81

Abstract

Convergence of the approximation generated by the second order scheme of
P. Roe to a weak solution of the non-linear scalar wave equation is proved,

when the wave speed does not change sign.



1. Introduction

In a recent paper Le Roux [8] proves convergence of a quasi-second
order scheme for the non-linear scalar wave equation. The scheme used
1s second order except where monotonicity-preservation fails when it is
only first order. In particular it is shown that the approximations
generated converge towards a weak solution of the Cauchy problem (sze
§2) in the case where the non-linear term f(u) in the equation is mono-
tonlc, i.e. when the wave speed is one-signed. In this paper we shall
prove the same result for the more accurate scheme of P. Roe (see §2)
which is second order everywhere except'at those points where the solu-
tion possesses an inflection.:

Le Roux also proves convergence for non-monotonic f(u) and stronger
convergence criteria. It is proposed to extend the result in the present
paper to these cases at a later stage.

The problem and Roe's second crder scheme are described in §2. Con-

vergence to a weak solution is proved in 83 and conclusions drawn in §4.



2. The Problem and Difference Scheme

Consider the equation

u, + Flu) =0 (2.1)
t X

for (x, t) in Rx 10, TL , T>0 and + in C'(R), with *
ulx, 0) = uU[x] (2.2)

for x in R and Uy in L (R) assumed to be of locally bounded varia-
tion.
The Cauchy problem on R x 10, T[ associated with (2.1}, (2.2) is to

find a bounded function u which satisfies (2.1), (2.2). A weak solution

to this problem is a function u in L” R x]0, T[} which satisfies

[u-g-% N ftulg—i]dxdt s | uotxdelx, 0)dx = 0 (2.3)
Rx10,TL R

for all test functions ¢ in C2(R x [0, T[) and compact supnort in
R x [0, TL.
We discuss the convergence towards such a weak solution of the approxi-
mation generated by the second order finite difference scheme of Roe [41.
Let the spatial grid size be h > 0 and the time grid size be At,

related to h via the fixed positive real number g through the relation
q = e— [2u4]

Around the grid point [kh, nAt] define the rectangle

Ik X Jn = J(k - $)h, (k + $Ih[ x 1(n - 3)gh, (n + 3)ghl (2.5)

for ke Z,nepl and n <N = [T/gh] + 1.
We shall show that a week solution u to (2.1), (2.2) in the sense of

(2.3) is approached by a piecewise constant function Ui defined on

R x 10, TL by

n

u (x, t) = u,. for (x, t) e I, x J_, (2.8)
h K n

k




where the initial condition (2.2) is projected onto the space of piece-

wise constant functions by the restriction

u’ = uU[x]dx (2.7)

Ty

0.1
Kk h

The values uﬁ are calculated by Roe's second order difference scheme.
This scheme has several different formulations (see [41, [51, [61, [71)
but the one we shall use here is as follows.

[The convention

u = ul
< (2.8)
uk - un+1
k
is used to simplify the notation.]
Consider the cell (xk_1, xk]. denoted by I, _, (see (2.5)).
2
Let vk‘% be the approximation
Af,
. Vk_% =qA—u-‘_ (2.9)
3
to the CFL number in Ik-%’ where Afk denotes L fk-1'
Let Sk—% = sgn[vk_%] (2.10)
be the sign of V-1 and
2
-y = -qAf, = -vk_%Auk (2.11)

be a flux guantity, proportional to the gradient [uk - uk_1]/h.

In Roe’s first arder scheme ths quantity B-1? associated with the
2 . 2

cell I is used to update the values of u at the ends of the cell

k-3
as follows:
L (2.12)
k=1 by gk_% if vk_, <0.

2

increment Uy by B-1 if v, 20

increment u

(Note that if Vk_% = 0 then Bk-1 = 0 so no ambiguity arises.)



This is simply the upwind scheme of Godunov. We now describe Roe's device
for making the scheme second order.

Define a quantity a1 by
2

Iak_%l . !2' min{|(1 - |vk"%|)gk"%l' I(1 - |\’k_%_s

ngk-%-Sk_%|}

1
H
(2.13)

where the sign of 8 -1 is that of the term chosen by the min. operator.

11 - or
Thus 501 - v 4 Dg ., oE
a .y = | | (2.14)
2 1 .
5(1 = v _1_ ’)g _1_ .
NI T B N
Switch the quantity ac-y across the cell Ik_l against the direction of
2 2 f B

the flow so that the value of u at each end of the cell is increased or

decreased by a , as follows:

k-3

u = u - a

Kk k = %k-3
8y 20 (2.15a)
Uk-1 T Uk-1 T %~
Y T Yk T 8-
Sy SO (2.15b)
Yk-1 7 Yk-1 T -4

_1
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Time
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We have

ut = u gyt Aa, , [vk_% 2 0) (2.16a)

(vk , S 0}, (2.16b)
-3

where the terms on the right hand side are the zeroth, first and second

order terms, respectively. The scheme can be identified as either Lax-
Wendroff or the Warming and Bsam upwind scheme ([4], [51) depending on

(2.14).

It may be noted that whereas in some versions of Roe's scheme the second order

switch is defined in terms of the min{lgk_%l |}, the above defini-

,' lgk-%-sk-%

tion follows the original version [4] and compares |(1 - Ivk-%l]gk-1| and
2

lc1 - (see (2.13)).

|“k—%-sk|]gk-%-skl



3. Convergence for monotone f

We shall assume throughout that the CFL condition {3.1) below is satisfied.

Consider first Iv ll < 1 the case of monotene f, i.e. v one-
i :

k-

signed (including zero). We prove :
Theorem 1

Suppose f 1is a monotone function and Ug lies in LwUR] n B VléEUR]’

where the conditionr

sup|vkl <1 (3.1)
k

is satisfied. Then the family of approximations {uh} generated by Roe's

scheme (2.18) from (2.7) contcins a sequence {u,_ } which converges in

hm

1 . : '
Lloc°R x J0, T[) towards a weak solution of (2.1}, (2.2), as hm + 0.
Proo¥f
We follow closely the proof of Le Roux [87.

Consider the scheme (2.16a) for O < v, 1, namely,

K
U= Ut gy * e,y (3.2)

where, from (2.11) and (2.13),

=L - . At
By = vk_%Auk = Z;Afk (3.3a)
= 1 ; N =
IaK;%l t min{] (1 vk_%]gk_%l, | (1 vk+%)gk+%|} {3.3b)

the sign of A4l being that of the term chosen by the minimum operator in
2

(3.3b].
Define Ak+% and uk+% by
26k+% = —Ak+%Aqk = uk+%(1 = vk+%)gk+%' (3.4)
Then AK+% = (1 - vk-%]vk-é or
(1 - vk+']gk+l {3.5)
(1 -v, ;v z 2

k_§ k_% [1 - \’k_%)gk_%



so that due to the minimum selecting operator we have the 1lnequality

- = < < B .
(1 vk_%]vk_% Ak+% (1 vk_%)vk_%
Also By = 1 - vk_%]gk_% or
[1 - vk+%)gk+%
1

so that due to minimum selecting

Then, from (3.1), (3.2) and (3.3),

+ 3v f2 -

Ni=

U113y k-3
Consider the expression
1
%Ak+% : 2Vg-
occurring in both brackets in (3

(1 - vk_%]vk_%

i{vk-%[4 - ZVK_%]

1]

bt Vk_%(z = vk—i

<1

Hence the coefficient of uk in

The expression (3.10) also has t

%{_[1 - Vk_%]\)k_%

Hence the coefficient of wu, __,

From (3.11) and (3.12) we deduce

Min(uk, u, L) < u”

k-1

- uk'%[1 - Vk_%]]} +

uk'%[1 i vk_%]]}

I U et

.9, This takes a maximum valus of

+ Vk_%[a - Vk_%]}

}

for DSvh%s1.

(3.9) is non-negative.
he minimum value

1}

* vk-%[1 T Vk-1

in (3.9) is also non-negative.

the inequality

< Max(u )

k* Yk-1

(3.8)

(3.7)

(3.8}

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



known variously as conservation of local stability [3] and compatibility [4].

So by induction we have

ukl o <
LR x [0, )
We now turn attention to considering

establish results on bounded vériation.

(Uan

- u {1 -

K+3

- I{

+ (uk

u +

k-1 M

1
2k+

2

in which, from the same inequalities (3.11),

lug

u

1
2

iv

N (3.14)
L R

differences in order to

From (3.9),

Y

.

2

1 - vk+%]]}

- uk+%

(2 -w,_,00 - vk-é]]} (3.15)

k-

(3.12) above, it is seen that the

coefficients.of both [uK+1 - ukJ and (u, - uk_1] are non-negative.
Hence, for any K € N, taking absolute velues and summing we obtain
k+1 k
I -t s f e, -
|k <k |k|sx **1 K
+ (u ~u L)1 - 5 - v [2-u (1-v 1}
k+s, k+3 kts,, ° k*3, k*s,, k+3,
*lu o -u A v v, [2-uw, (1-v, 0}
k-1 k-2 k k 3, k 5/5 k 3,,
< Z lu - u | (3.16)
|k|SK+1 k+1 k
In the notation UE of (2.6). we can deduce that
¥ I,Dn n 0 0
, 2 |u -u | S X |u L, - u |. {3.17)
IKLSK k+1 K |k|SK+n K+1 K

Then for any R > 0, we can set K = [R/h]

and it follows that (3.17) is

bounded by the variation of the initial data ug on J-R, R[, which is finite. !

Moreover from (3.13) we have ‘

=< o - o (3.18) ‘

so that, in the notation of (2.8), |
Iug+1 - UEI < i|£K|u: - uE_1[ < |i|§K+n|uﬁ - ul | (3.19)

which for all n £ N is again bounded by the variation of ug on J-r, RL, é




which is finite.

Hence we have a family {uh}, each member of which satisfies

<

lug| g

LR x [0, T)) L™(R)
(3.14) and is of uniform bounded variation in space and time [(3.17), (3.19)1.
Following Le Roux [8] we now apply Helly's Theorem to extract from {uh}

1
a subsequence {uh }m which converges to a function u e L COR x J0, T

1o
as h-0. From (3.14), ue L R x 10, T[).
It remains to show that u 1is a weak solution of (2.1), (2.2), i.e. to
show that 1t satisfies (2.3). We introduce a test function ¢ e C2WR x [0, T[)

with compact support, whose L2 projection on the space cf constant functions

on each set I, xJ is

kK ™'n
b lxmy) = ¢ E s ¢(x, tldxdt (3.20)
h™™? k gh2 ’ i ’
Ikan
where (x, t) e I, xJ .
K n

Multiplying (3.2) by ¢E and summing over k and n gives
n..n _ .n-1 n,..n _ .n 0
| |E g[uk(¢k oy ) + q-F(uk)[¢k+1 ¢k]]h + E uk¢khl

n n n
s z Zlak+%|l¢k+1 B ¢K|ha (3.21)
kn -
carrying out summation by parts over k. Now, from (3.1) and (3.3a and b) we

have

1 .
|ak+%| < E-max{luk+1 = Ukl' |uk - Uk-1|}'

Hence using the mean value theorem and (3.17), the right hand side of (3.21)

becomes

= %3¢ i : h - 0.
'an ol , - ¢n|h < | <2 W ., - uo|h which =0 as
E E k+3 k+1 Kk 8qg’ ax Lw|K|£I+n k+1 k . -

Hence as h =+ 0 the inequality (3.21) becomes equation (2.3) and u 1is a weak

rd

4 L - P ) ro r
ssluticn of the praklsm 2.4, ¢



10.

4. Conclusions

We have proved that the approximation generated by the 2nd order scheme
of §2 converges to a weak solution of the Cauchy problem for the non-linear
scalar wave equation when the wave speed has constant sign. The weak solution
may be discontinuous and in this case uniqueness may fail. To overcome this
difficulty the convergence criterion of Kruskov [9] may be used (see [8]).

Le Roux shows convergence of the scheme in [8] in the sense of Kruskov under
more restrictive conditions but we have not considered it here. It is

proposed to prove weak convergence for non-monotone f(u) 4in & further paper

of this series. -
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