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Abstract

This study presents a clear and simple algorithm for the solution of a free surface
problem by solving the Navier-Stokes equations in an Eulerian framework with finite
difference and using a pressure correction philosophy. The fluid interface is captured
using a Marker and Cell (MAC) method. The problem solved is the collapse of a fluid
column using different marker particle spacing, and shows the reflection off the
boundary. It is found that the problem can only be solved successfully with a marker
particle spacing of 0.01. The model shows numerical instability when there is large
deformation in the flow even when using adaptive timestepping. This is probably due
to the Poisson equation for the pressure being solved with insufficient accuracy. The
results for the reflection of the collapsed column off the wall show that the results

could be improved with further refinement in the mesh.
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1.0 Introduction

In Computational Fluid Dynamics the Navier-Stokes equations are often used as the
governing equations for fluid flow calculations. These equations are used to model
viscous incompressible flow in a wide range of problems. The incompressible Navier-

Stokes equations can be written as

The Continuity Equation

6_p+8(pu)+6(pv)+6(pw)=o (1.1)
ot Ox oy 0z

The Momentum Equations

_ o pu) o or, 07, or
X - component : Rl e/ HEA v£5 V)= 424 +—= + 1.2a
P or (our) ox oOx 8y Oz A (122)

0 0 0
y - component : M+ V-(pvV)= _?ﬁ_,_ fo [Ty Oy +p0f, (1.2b)
2

ot ov  Ox oy 0
0 op 0 dt,, 9
z - component ; %-FV'('OWV):_a_f—F aT;z+ 6; + aTZ” +0f, (1.2¢c)

Where p is density of the fluid, V' is the velocity of the fluid, ,v,w are the velocity
components, ¢ is pressure, pfy is the body force acting on the fluid and 7, are the
shear and normal stresses on the fluid.

These equations or variants of these equations have been solved successfully in both
Eulerian and Lagrangian frameworks using finite differences, finite elements and
spectral or pseudo-spectral methodologies. Eq. 1.1 and Eq. 1.2a-c are the time
dependent formulation of the Navier-Stokes equations. Removal of the time derivative

will result in the calculation of the steady state solution.



This study concentrates on using a finite difference representation of the equations in
an Eulerian framework to solve a time dependent problem. The problem concerned in
this study has the added complexity of a free surface.

Free surface representation is a large topic in itself, therefore a review of current
methods is presented in Section 2. The problem to be solved is a dam break problem

on a dry bed, the initial configuration of which is shown in Fig 1.1.

Incompressible

Fhiid
— |
—
Solid
boundary

Fig 1.1 The initial configuration of the dam break problem at time t =0,

This is a good problem to solve as it has a simple initial configuration and has been
studied extensively with available experimental results. It is also a good problem to
illustrate the modelling of a free surface since all orientations of the upper surfaces are
represented. A Marker and Cell technique is used to track the free surfaces and this is
outlined in Section 2. There are many ways of numerically solving the Navier-Stokes
equations such as Poincare iterations and Newton-Raphson iterations but in this study
we have chosen the pressure correction philosophy to solve the equations. Section 3
gives the details of the numerical procedure for the solution of the incompressible
Navier-Stokes equations and the surface tracking method. Section 4 gives the results
of the computations for different refinements of marker particles. Section 5 suggests

further improvements to the model and summarises the main findings of the study.
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2.0 Interface Capture Methods for Multi-Fluid Flow

In the numerical computation of many free surface and multi-fluid problems there
must be an accurate representation of the interface between the fluids. The method
must be able to track detached and merging fluids and have a sharply defined
interface on which to accurately apply boundary conditions.
Currently there are two main methods for the computation of free surface flows

¢ Surface methods (direct methods)

e Volume methods (indirect methods)
Surface methods concentrate not on the whole fluid but just on the interface itself; this
class of technique includes Particles on Interface and Level Set methods. Volume
methods are applied over the whole computational domain, identify all fluids and
attempt to approximate the interface shape between adjacent fluids; this class of

technique includes Marker and Cell (MAC) and Volume Fraction methods.

2.1 Surface Methods

This class of method has the interface marked by special marker points, of which

there are three main techniques.

2.1.1 Particles on Interface

Presented by Daly (1969) this involves marking the fluid interface with massless
marker particles, as shown in Fig 2.1, which are advected with the local velocities of
the fluid. This method is very sensitive to the number of marker particles used and the

spacing between them.
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Fig 2.1 The Particle on Interface method

In order to apply the surface boundary conditions correctly the surface curvature must
be known. This requires that the marker particles are sequentially numbered on the
interface which means it is necessary to add and delete particles during the
computation when they become unstructured. This is the major disadvantage of this
method since when a fluid merges or detaches this sequential numbering is difficult to

achieve,

2.1.2 Height Function

Presented by Nichols and Hirt (1973) this method is an extension of the Particles on

Interface method in which the marker points are referenced from a set point or plane

as shown by Fig 2.2a.
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Fig 2.2 The Height function technique

Each height can only refer to one reference point and therefore it is impossible to
model situations where the reference height must hold multi values such as a breaking

wave as in Fig 2.2b
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2.1.3 Level Set

This method involves the use of a level set function ® (Osher and Sethian (1988)),
over the whole computational domain. The Level Set function measures the distance
away from the interface and is positive outside the fluid and negative inside and thus
® = 0 on the actual interface at shown by Fig 2.3.

The Level Set function is a scalar function, which is advected using a convection
equation. The main drawback of this method is that at present there is no effective

method of eliminating numerical diffusion from the advection process since @ is not

A -

N_ ®<0

conservative.
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Fig 2.3 A random fluid region represented by the Level Set function, ®

2.1.4 Surface Fitted Methods

This method fits the mesh to the surface as shown by Fig 2.4. The advantage of this
method is that it cuts down on computer storage for marker cells, ensures a sharp
interface and avoids partially filled cells, which means that surface boundary

conditions can be applied accurately. The problem here lies in the fact that if the fluid



has large distortions then the fluid domain must be continually remeshed, which

means added computational cost.
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Fig 2.4 Collapse of a liquid column with a surface fitted method at time t = 3.0 and 4.0 from
Ramaswamy & Kawahra, 1987, Int J. Numer. Methods Fluids, Vol 7 Fig 5

2.2 Volume methods

This class of methods is applied over the whole computational domain, where two or
more fluids are identified. The following methods are then used to approximate the

position of the interface between the separate fluids.

2.2.1 Marker and Cell Method (MAC)

This is an easy method to implement and involves the use of massless marker
particles over the whole fluid domain (Harlow and Welsh (1965)). A cell flagging
procedure is used over the domain, whereby a cell is either full, empty or a surface. A
full cell initially is any cell with a marker particle present within it. An empty cell is
any cell without a marker particle within it. A surface cell is any full cell adjacent to
an empty cell. The MAC method can model highly deformed fluids and can also
model detached and merging fluids. However it is heavy on computer storage,

especially in three dimensions, as every marker particle’s position must be stored.



2.2.2 Volume fractions

The volume fraction technique is simply a scalar function, C, which determines
whether a cell is full, empty or partially filled. So if a cell is full C = 1, if it is empty

C=0, and if a cell is partially filled 0 < C < 1, as shown by Fig 2.5.

0_15//,0,4:2/%%16

0.48 1.0 1.0 \Sl

0.09 \?SE"‘M/O.17

Fig 2.5 An example of the volume fraction function.

This volume fraction is then advected with the local velocities to update the fluid
domain. Three main methods that have been considered are

e Line Techniques

¢ Donor-Acceptor Techniques

¢ Higher-Order Differencing Techniques

Line Techniques — There are many methods which fall into this category, e.g.
SLIC (Noh and Woodward, 1976), Hirt and Nichols (Hirt and Nichols, 1981),
Youngs’ Method (Youngs, 1982), FLAIR (Ashgriz and Poo, 1991), HELMIT
(Giddings, 1999). All these techniques represent the interface in a piecewise linear
manner, and some of them are illustrated in Fig 2.6. The SLIC method reconstructs
the interface parallel to either the x or y axis and uses an operator-split algorithm.
The operator-split algorithm only uses information from neighbouring cells in the
direction of the flux, i.e. an interface can have a different representation for the x

and y directions. Once the reconstruction has been performed the fluxes are



calculated geometrically. Hirt-Nichols also uses a reconstruction that is parallel to
either the x or y axis using a block of nine cells to calculate the interface. However
in the Hirt-Nichols technique the interface is either vertical or horizontal depending
on the magnitude of surface normal components. Youngs® method uses
information about the normal of the surface to place a line according to the average

normal of that cell.
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Fig 2.6 Examples of Volume fraction interface reconstruction

FLAIR extends this idea by placing the interfaces on the cell faces. HELMIT extends

these oblique line techniques further in that the intersection of a cell face by the



interface is a point halfway between its own intersection and that of its neighbouring
cell, the additional volume being represented by an appropriately placed isosceles
triangle (full details of this method can be found in Appendix B). All these techniques
assume that the grid is rectangular to accommodate the operator-split method. If
unstructured meshes are used then both the fluid advection and the interface

reconstruction become very complex.

Donor — Acceptor Schemes — These schemes use volume fractions in the downwind
cell to predict the volume of fluid transported through the relevant cell face. This
method experiences instability problems resulting in smearing of the interface or the
volume fraction becoming non-physical. Hirt and Nichols (1981) presented a Volume
of Fluid (VOF) method based on this donor—acceptor scheme which tries to overcome
some of these problems, with some success. However it can only manage to reduce
them, but not to completely resolve the problem. This VOF method also uses the

operator split method which assumes a rectangular grid.

Higher Order Differencing Schemes - This method is an attempt to minimise or
resolve the difficulties encountered using the scalar convection equation. An example
of this is STOIC (second and third order interpolation for convection) by Darwish
(1993). This scheme is bounded and non-diffusive but fails to keep each step within
one cell, resulting in other stability problems with the Navier-Stokes difference
equations. Ubbink (1999) proposed a scheme CICSAM, an implicit bounded scheme
which relies on a predictor-corrector type application. This prevents non-physical
volume fractions occurring, and also can be applied to unstructured, non-quadrilateral

meshes.



3.0 Approximate Solution of the Navier-Stokes Equations

In this section we give the governing equations for incompressible fluid flow and
describe a specific numerical method that can be used to solve a range of

incompressible fluid flows.

3.1 The Complete Navier Stokes Equations

The governing equations for three dimensional unsteady, viscous, compressible flow

can be written in conservation form as

Continuity Equation

Z—IZ+V-(pV)=O (3.1)

Momentum Equations

a(pu)+V-(puV)— % %%, Oy + 9 +of. (32

X — component :

ot ot ot
y—component:?(—ptvz+V-(va)=—(—9£+ >+ 2+, (33)

: 0
z— component : @+V~(WV)=—%+67” + T +6T” +0f, (3.4)

Energy Equation (3.5)

%[,0(6+1/2V2)]+V.[p(e+1/2V2)V]=pq+§c_(k%§j+%(k%J+ai;(k%)

_ug)_o:p)_olwe)  Slur,)  dury) olur,) obr,) dbr,) obr,)
Oox oy 0z ox oy 0z Ox oy oz
ﬁ(*;rm)ﬁ(vgyfyz)ﬁ(vgu)wf,v
X z

-10-
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where p is density of the fluid, V is a vector of the fluid velocity, V is a scalar of the
fluid velocity, u,v,w are the velocity components, ¢ is the pressure, pf; is the body

force acting on the fluid, T is temperature, pgis the volumetric heating of the
element, 1/2V? is the kinetic energy per unit mass.

These equations are a coupled system of partial differential equations and are very
difficult to solve analytically, with no closed form solution currently found with the
exception of very special cases. The conservation form of these equations is often
referred to as the divergence form. The normal and shear stress terms are functions of

the velocity gradients and are defined as

7, =AUV -V)+2u— (3.62)
ox
r, =MV-V)+ 2;19 (3.6b)
oy
T, =/1(V-v)+2y@ (3.6¢)
oz
v 8
Ty =T, = ylﬁa+5§} (3.6d)
[ou  ow]
- = M 3.6e
ow v ]
T, =T, =/ —6;+E (3.61)

where u is the viscosity coefficient and A is the secondary viscosity coefficient with
A = - 2/3 p. When referring to a solution of the Navier-Stokes equations we take this
to mean solving the full set of Navier-Stokes equations although Navier-Stokes

equations just refer to the momentum equations.

-11-



3.2 The Incompressible Navier Stokes Equations

In the previous section we have summarised the full Navier Stokes equations. The
incompressible form of the equations can be derived simply by setting density equal
to a constant. Therefore with p = const Eq. 3.1 becomes

V-V=0 (3.7

and assuming y = const, then Eq. 3.2-3.4 combined with Eq. 3.6a-f become

o(pu) o6 ., u_ dfow ou). dfou
——+VApul)=——+2 +tp—|—+— |+ u —+— + 3.8
o (uv)= o+ 2o bo\a ) el T ) T GV

Ap) v, (ovV)= _o¢ . “e (ﬂ#au +2ya—2v+y3(@+@—)+pfy (3.9)
X zZ

ot 8y ox 0oy o oz\ oy O
2
_a_(,OW_)_'_V.(pWV):__ai_Fﬂ 0 (au+@)+ﬂ£ @_F_a_v_ 0 Zv
ot ox ox\ 0z ox oy\ oy Oz 0z

Note that all terms involving V -V can be set to zero by virtue of Eq. 2.7, thus from

vy, ¥ M _, (3.11)
ox ay bz

we have by rearrangement

ou ov ow 6.12)

ox oy oz
and then differentiating with respect to x we obtain

2 2 2
o0“u ov  ow (3.13)

ox? vy oxdz

2

Now adding :—Z—?to both sides and multiplying by u we obtain
x

0’u 0*u o*v 0w
- - - 3.14
ot Yo Yoaxay Voxez Bul9)

2u

and if we substitute into Eq. 3.8 we obtain

-12-
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a(pu)+V-(puV)=—% o’u %y *w o%v

+ - - +
o ox Yo Moy Yoy HMagy s s
2u 2 2W ( : )
tU—S U +Uu +0f
oy "ot Texoy T
Simplifying Eq. 3.15 gives
d(ou) o¢ o’u v 9w
———+V\pulV)=-——+ + + + 3.16
- (pul)= =+ = e A (3.16)
which can be written as
M+V-(puV)=—a¢+,uV2u+,Qfx (3.17)

ot ox
Applying a similar argument to the y and z momentum (Eq. 3.9-3.10) results in the

incompressible Navier Stokes equations, written

Continuity @-+§X+@= 0 (3.18)
ox oy Oz
x momentum %+ V-(puV)= —Z_¢+ 1V u+ pf, (3.19)
x
y momentum -‘?%;'i)+ V-(ovV)= —%+ IV + of, (3.20)
z momentum g(’;w—)+V-(pwV)=—-(Z—¢+yV2w+;fz (3.21)
Z

These 4 equations completely describe an incompressible flow and contain 4
dependent variables #,v,w and ¢. Using the assumption that p and u are constant the
Energy equation has been completely decoupled. This means that the continuity and
momentum equations are all that is required to solve for the velocity and pressure
fields. If a given problem involves heat transfer, then the temperature field can be
calculated from the energy equation after the velocity and pressure fields have been

calculated.

13-
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3.3 Numerical Solution of the Incompressible Navier-Stokes Equations

Considering Eq. 3.15 and substituting

V- (oul)= a(g;‘ )+ a(gy“v) (3.22)

together with the assumption of two dimensional flow in the x-y plane,

opu)  olpu?), opw) _ 04 |:62_u+62u]+pf (3.23)
at ox oy ox ox? oy’ * '

Defining the Reynolds number and the Froude number as
1
B gz

Re=lc= Fr= (3.24)

we obtain the non dimensional form of (3.23) as

2 2 2
éﬁ+—au—+%=—%+L 624+6124 + lzgx (3.25)
o ox Oy ox Relox® oy Fr

Applying the continuity equation to Eq. 3.25, differentiating Eq. 3.22 with respect to

x and y, we obtain, respectively,

’u 0% v 0%u

(3.26)

o ooy a°  oxdy
Direct substitution of these into Eq. 3.25 will yield Eq. 3.27-3.29, our basic governing
equations for two dimensional time dependent incompressible flow in non

dimensional form, i.e,

ou Ov

Continut —+—=0 3.27
ty o (3:27)
2
X momentum : _6_u+6L+gu_v_:_%+Li du oy -!-(y,2 . (3.28)
o ox oy Ox Redy\dy ox Er
2
y momentum g+§ﬂ+av—=——{M+—l—i e o +(1 2)gy (3.29)
ot ox oy oy Redx\oy ox Fr

-14-



3.3.1 Staggered Gridding

Consider the following velocity distribution,

_4 25 l 15 l 25 15 L_ZS
7 3 7 7
15 25 15 25 15
— & ——
3 7 3 3
X
25 15 u=25 15 25
N —& © 3 »—
7 3 v=7 3 7
15 25 15 25 15
—e & *—
3 7 3 7 3
25 15 25 15 25
7_T 3 T 7 3 7 T_
>y

Fig 3.1 A checkerboard pattern for the velocity distribution

If we use central differences to approximate Eq. 3.27 (the continuity equation) we
have

u u

i+l

2Ax 2Ay

i-1,j

(3.30)

The above checkerboard velocity distribution will now satisfy the continuity equation,
but the above velocity distribution in Fig 3.1 is not physically possible. This problem
is unique to incompressible flow, whereas if the flow is compressible then the density
variation term present would correct this problem.

Similarly if we now consider the pressure distribution as shown in Fig 3.2 and
represent the pressure denvative terms in the momentum equations using central

differences, then we obtain

04 _ Py =iy 04 _ b =9

, (3.31)
ox 2Ax ay 24y

-15-
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Fig 3.2 A checkerboard pattern for the pressure distribution

According to the pressure distribution shown in Fig 3.2 the pressure derivative term
would be zero and the pressure distribution would not affect the velocity field, which
again does not make physical sense.

An acceptable cure for this problem is to use a staggered grid, i.e. all the pressures
are calculated at the solid grid points (i,j), (it+1,j), (i,j-1) etc, and the velocities are
calculated at a translation of + 2 Ax and + Y2 Ay, i.e. at the grid points (i+'%,j), (i—
Vi), (,j+%), (i,)-¥2). The velocities and the pressures are now all calculated at

different grid points, as shown by Fig 3.3.

Ax
b Vi Ax
="t
i-Vs,j+1 i+14,j+1 i+3/2,j+1
— & L © £ & 84—
i-1,j+1 ij+1 i+1,j+1 ) .
L ) ! Fig 3.3 A staggered grid
¢ i-1,j+% ® ij+e o it+1j+% &
i-%%,j i+, i+3/2,]
—e o o @ 3] —
i-1,j 1,j i+l
e .. A
o i-1,j-'% ¢ L]-%2 ¢ i+l,j-% ¢ 4
S e . ; 12 Ay
i-14,5-1 i+Y5,j-1 i+3/2,j-1
—a e - & &
i~1,j-1 ij-1 i+1,j-1

-16 -



The key advantage of this is that, for example, in the calculation of i+ the pressure

derivative can now be approximated as

% _ ¢i+l,j _¢i,j
ox Ax

(3.32)
This eliminates the possibility of a checkerboard pressure distribution. Similarly the
central difference approximation of the continuity equation would be

u u

b C— U, . V. . -V, .
i+1/2, i-1/2, i, j+1/2 i,j-1/2
J et 12 g (3.33)

Ax Ay
which again eliminates the possibility of a checkerboard pattern.
A point to note for later is that the translation oAx where o = %2 need not be

uniformly % but the translation could be 0 < o < 1, as long as the information is kept.

3.3.2 Numerical Procedure : Pressure Correction

The method of solution for this non-linear partial differential equation is to linearise
and solve on a staggered grid. The procedure can be described as follows. Initially let
us assume we have a known velocity field, u(x,t,) at time t, and that boundary
conditions for the velocity and pressure field are given. The updated velocity field at

t =t + 6t can be found as follows :
1. Let gZ (x,t,)be an arbitrary pressure field, which satisfies the correct

boundary conditions at the free surface.

2. Calculate the intermediate velocity field #(x,¢), from

~ 2 7
gﬁ: _@___6_uv__§?_+_1_i 5_“_92 +(1 ‘Z)gX (3.34)
ot O0x Oy Ox Redy 2 R

—~ 2 e
O _|_ouw v 0p 1 0(ou ov J,(/Y2 : (3.35)
oa | ox d &8 Redax\oy ox Iy

17 -



with %(x,t,) = u(x,t,)using the correct boundary conditions, We now
define the true velocity field as
u(x,t)=u(x,t)-V¥
with
V¥ =V .2(x,1)
so that u(x,t) satisfies,
V-u(x,t)=0
. Solve the Poisson equation,
VW =V u(x,1) (3.36)
. Compute the velocity field,
u(x,ty=u(x,t)- V¥ (3.37)

. Compute the pressure field,

b=¢ +% (3.38)

. Advect the fluid and reconstruct the fluid interface.

- 18 -
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3.3.3 The Finite Difference Equations

As with most Navier-Stokes calculations using finite differences, a staggered grid is

~

employed, the variables being pressure ¢, , the added velocity potential ¥, and the

i i
divergence D;; which are positioned at the cell centre, while the velocities u; and v;

are staggered by a translation of 6x/2 and dy/2 respectively, as shown by Fig 3.4.

Uiz @ O b ® Wij+i2

Vi1

Fig 3.4 A typical cell in the computational domain

The momentum equations (Eq. 3.28-3.29) are discretised and applied to the u and v

nodes separately. In finite difference form these equations become

~ ] il 3 = 43 (339)
Yinizg — Wiy ¢f.j 141, f
ol ox
n hn n n n n n n
N Uiii2,j-112Yin12,5-172 ~ Yisti2, j41/2Vins2, 54102 4 Uinira,j%ic112,; ~ Yiizia, j%i112,
% ox
n n n n n n n
+ 1Y %y T U000 — 2ui+1/2,j Virrjotrz ~ Visyj-12 ~ Yigarz TVi
2
Re oy oy
2
+(1/ Fr )gx
-19-
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~n+l _~ntl a _ ¢7’ (340)
Uiz “Hijnn @iy i+l
ot oy
n n n n n n hn n
Ui ni2Vica sz ~ Yz jerr2Viese, jaire + Vigr2Vig-1i2 = ViganViasa,;
Sx &
n ] H n n h n
1 Y Bz = Mz~ ¥anzga T, " 20, i — Vi o172 = Vi, je1/2
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The Poisson Equation (Eq. 3.36) is discretised using the 5-point Laplacian, which is

written as
49, -, - 0~ ¥, -Y,,a=-1D, (3.41)
where h = 6x = dy and the divergence, D is
. ﬁi+l/2,j - 17:'-1/2,;' + V:,j+1/2 - {’d.:.;—uz (3'42)

3.3.4 Domain Boundary Conditions

The boundary conditions for the domain boundary are as follows :

oY

o 0 on domain boundary (3.432)

n

o L

= 0 on domain boundary (3.43b)
"

Free slip is imposed on all domain boundaries, which can be visualised as follows :

Vi g -k
u=0 v:1=v1
T V=V
\) » * V,z
wall

Fig 3.5 The representation of the free slip boundary condition
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Hense the free slip has ui+1p; = 0 at the wall surface and vij+12, = V’ij+12. Other

orientations follow in a similar manner.

3.3.5 Free Surface Stress Conditions

Free surface boundary conditions are represented by

2 )
P Ol nxnx-a—u+nxny LI -, I (3.44)
Re ox dy ox Yoy
2nxmxa—u+(nxm +nm, 6_u+§X +2n,m id =0 (3.45)
Ox o oy o Y oy

where n = (ny,ny) the outward unit normal vector to the surface and m = (my,my) is the
unit tangential vector.
There are three main cases for implementation :

Case 1: Surface cells with one side contiguous with empty cells.

"

\ ® Uitizjn
&
-1/2 Vit1,j+1/2
\ @ Uinn;
&

Fig 3.6 An example cell with one side contiguous with an empty cell

Here the assumption is that as the surface cuts through opposite sides of the cell, ny or

ny will be small so that Eq. 3.44 and 3.45 can be represented by

¢— Ri(a;" j =0  where n represents either x or y direction  (3.46)
e\ On

ou 6v_

5+5; 0 (3.47)

Considering Fig 3.6 the finite difference representation of Eq.3.46 is
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Now the tangential stress can be represented by
Viejs/2 = Vijaa — ‘@}_(uiu/z,jn - ui+1/2,j) (3.49)

where Ui+1/2j+1 and w125 can be found by satisfying V-V =0.

Case 2 : Surface cells with two sides contiguous with empty cells.

Vij+12
Uiz & ® Uinj

Vij-1/2

Fig 3.7 An example cell with two sides contiguous with an empty cell

For these cells we assume that the outward normal is at 45 degrees and therefore Eq.

3.44 and 3.45 become

1{ou ov . )
=+—| —+-— | where the sign is the sign of ny.n 3.50
¢ Re[ay axJ gn gn y (3.50)
AL (3.51)
ox oy

For example a finite difference representation to the normal stress would

be

¢i, J

R R e e R Y R SR 5 Vigsz Y Vo2 ¥ Ve Y Vi
2Re oy ox
(3.52)

For the tangential stress du/dx and dv/dy must vanish separately. A finite difference

representation of this would be

Uiz, = Wisa,y » Vij+r2 = Vi

9L



Case 3 : Surface cells with three sides contiguous with empty cells.
These cells should not really occur as it is an indication of a poorly refined grid.
However if they do occur then one velocity should be adjusted so that V-V =0 is

satisfied.

3.4 Adaptive Timestepping

The computational timestepping involves the use of adaptive timestepping. The
chosen timestep is dependent on stability and accuracy requirements. Markham and
Procter stated that for numerical stability the fluid should not be able to cross more
than one cell boundary in a given time interval, that is,

Wor <&, pe<dy (3.53)

Following Markham and Proctor the adaptive timestepping procedure can be defined

as
2¢ 2
&, =2Re 4, -% (3.54)
o+ 9y
ox
o, =4 3.55
u 2 2Umax ( )
&
S =4, - (3.56
v 2 2Vmax ( )
where 0 < A; < 1. The time step used is now calculated following
8t = MINY{ét,,., &, , 6, } 4 (3.57)

where 0 < A < 1. In Eq. 3.54-3.56 reference is made t0 Upax and Vipay, If MAX ‘U ,."’j‘
1J

were to be used this would drastically increase computational time. Instead a

~

U ‘ 1s chosen. Now if 6t, or 8t is less than &t then the

compromise is made and MAX\U, ,

iJ

timestep is

~P3] -



revised and U ., 1s recalculated. The factor A is used to compensate for this use of

MAX‘UU‘ rather than MAX|U").
i g

3.5 Solution of the Poisson Equation

The discretised Poisson equation Eq. 3.41 leads to a linear system,
Ax=b (3.58)

The matrix 4 is formed by applying Eq. 3.41 to each full cell from right to left, whilst
b is a vector of the divergence (V . 5) calculated at the same time. Once the 4 matrix
is assembled then x represents the vector of the values of the potential function, V.

With the inclusion of the free surface in the problem then the 4 matrix can be shown
to be symmetric and positive definite.

There are two main points to consider when solving the linear system Eq. 3.58,
namely how the matrix can be stored and how it can be solved efficiently. Now, as the
A matrix is sparse and symmetric and positive definite an efficient linear solver would
be the method of conjugate gradients and an effective method of storing the non zeros
would be Compressed Sparse Row. Compressed Sparse Row involves the use of three
vectors to represent 4 and is best explained in terms of an example. Let us consider

the matrix M of order, n = 5 and with the number of non zeros, nz = 12

(100 0 2)
03 40 5
M=l6 0 7 0
08 0 9 10
0 0 11 0 12

and let us represent it using three vectors A(nz), Col(nz), RP(n+1). A(nz) is real

and contains the values of the non zeros in M. Col(nz) is integer and contains the

-24 -



number of the column for each of the non zeros which are stored in A(nz). RPt(n+ 1)
is integer and points to the position in the C_ol(nz) vector that each row starts: it
assumes that in Col (nz) the rows are in order 1,2,....n and that the final entry is a flag
ending the vector which takes the value @(l)+ nz. Now the three vectors should
hold the following values to represent M,

AE[123456789101112]

Col=[l 52351324533

RPe=[l 3 6 8 11 13]

In order to solve the linear system using conjugate gradients a matrix.vector
operation is required and the details for this algorithm can be found in Appendix B.
As the matrix 4 from Eq. 3.33 is symmetric and positive definite then this allows the
use of the conjugate gradient method effectively with the advantage that the search
directions will be orthogonal in the 4 inner product, the details of the algorithm used
can be seen in Appendix A. Note that implementation of pre-conditioners would
prove to be difficult as the order of the system is continually changing, however this is

an area for further research.

3.6 Implementation of the MAC Technique for Interface Tracking

As described in Section 2.2.1 this techniqu§ is an easy volume technique to
implement and involves tracking the movement of massless marker particles over the
fluid domain with the local velocities of the fluid.

To implement this technique a system of cell flagging is used, that is if a cell is a

boundary it is marked B, a Full cell marked F, an empty cell marked E and a full cell
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adjacent to at least one empty cell is remarked as surface S. This is illustrated in Fig

3.8, although this is a much coarser example than is used in the computations.

B(B|{B|B|(B(B|B|B|B|B|B|B|B
B|E|E|E|E|(E|E|E|E|E|E|E|B
B|S|S|S|S|E|E|E|E|E|E|E|B
B|(F{F|F|S|[E|E|E|E|E|E|E]|B
B|F|F|F|S|E|E|E|E|E|E]|E]|B
B|F|F|F|S|E|E|E|E|E|E|E|B
B(B|B|B(B(B|B|B|(B|B|B|B|B

Fig 3.8 An example of a flagging system for a collapse of a liquid column problem

The marker particle co-ordinates are stored at each timestep and updated by solving

6_x= u and Q= v (3.59)
ot ot

Once the velocity field has been calculated for the timestep then Eq. 3.59 are solved
using Euler’s method for the updated position of the particle. The new particle

position can be found using Euler’s method as

x™ = Xy +u,ot (3.60a)

p

n+l

Vo =y, tv,0 (3.60b)

n+l n+l

where (x;, y;’,) is the current particle position and, (x s Vo ) is the particle’s

position at the next timestep. The velocities #, and v, are found using a weighting
scheme which uses the four nearest velocities in a two dimensional linear
interpolation. If we initialty consider just u,, then the linearly interpolated velocities

for cells (i ), ((i+1)), and ((i-1),j) are found according to Fig 3.9.
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w2 T w i, = opu, +(1.0-ph',
ép
e > X A s
) ] — 171=(§0u1+(1.0—5p)u'1
'3 & Us Uy = dpu, + (1-0 = §p)u'3

Fig 3.9 The equations of the linear interpolation weighting method

Now according to Fig 3.9 the interpolation in the y direction is
u,=(1.0-dh +3&u,  iféq>0

u, =(1.0+6q)u, - &u,  if6q<0
This weighting scheme generally works well and smooths out discontinuities in the

velocity field resulting from a badly refined grid.
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4.0 Results

4.1 Fluid Column Collapse with Marker Particle Spacing 0.02 units

Fig 4.1 shows the initial configuration of the fluid at time 0.0s, the massless marker

particles being equally spaced at 0.02 units between each particle.

2 s = P T R T BT A R T R

19 — S
18 |
17
16
15 —
14
13
12
11
1
0s

08 S

aunEn

07
06
05
04
03
0.2
01

| Ny -

0 —

0 01 02 03 04 05 06 07 08 08 1 11 12 13 14 15 16 17 18 19 2

Fig 4.1 The initial configuration of the fluid at time 0.0s

Fig 4.2-4.7 show sample time frames at 0.2, 0.4, 0.6, 0.8, 1.0 and 1.1 respectively.
These clearly show the column of falling fluid accelerating as time progresses. At
time 1.1 the fluid reaches the domain boundary and begins to reflect off it, at which
point the calculation was halted. The later frame times 1.0 and 1.1 begin to show
numerical instability, probably due to the CFL condition being violated, and therefore

the computation was stopped at this point.
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Fig 4.2 The evolution of the fluid at time 0.2
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Fig 4.3 The evolution of the fluid at time 0.4
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Fig 4.4 The evolution of the fluid at time 0.6
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Fig 4.5 The evolution of the fluid at time 0.8
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Fig 4.7 The evolution of the fluid at time 1.1
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4.2 Fluid Column Collapse with Marker Particle Spacing 0.01 units

Fig 4.8 shows the initial configuration of the fluid at time 0.0s, the massless marker

particles are now equally spaced at 0.01 units between each particle.

|
|
|
0 01 02 03 04 05 06 07 0B 09 1 11 12 13 14 15 16 17 1.8 18 2

Fig 4.8 The initial configuration of the fluid at time 0.0s

Fig 4.9-4.15 show sample iime frames at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4
respectively. Again they clearly show the column of falling fluid accelerating as time
progresses. The model’s timestep has been reduced to 0.0001, which keeps the

computation stable but increases the computational effort severely.
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Fig 4.12 The evolution of the fluid at time 0.8
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Fig 4.13 The evolution of the fluid at time 1.0
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Fig 4.14 The evolution of the fluid at time 1.2
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Fig 4.15 The evolution of the fluid at time 1.4
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4.3 Fluid Column Collapse including reflected wave with Marker Particle
Spacing 0.01 and 0.005 units

Fig 4.8 shows the initial configuration of the fluid at time 0.0s, the massless marker
particles are spaced at 0.01 units for 0 < x <0.35 and are spaced at 0.005 units for
0.35<x<0.42. This refinement is an attempt to capture the rapidly evolving

interface due to the reflected wave.

FI TS

03 04 06 06 a7 [04:] 09 1 11 12 13 14 15 16 17

Fig 4.16 The initial configuration of the fluid at time 0.0s

Fig 4.17-4.22 show sample time frames at 0.4, 0.8, 1.0, 1.2, 1.4 and 1.6 respectively.
With this model computation there are many errors in the final output due to factors
such as the grid being too coarse, not enough marker particles being used and
instability problems. The most significant error is that the grid is too coarse, this
means that when there is folding in the flow, this will be captured for a certain amount
of time before it assumes it has merged with the flow, due to the flagging scheme
denoting it as a full cell and applying the relevant difference equations. Despite using
adaptive timestepping the model initially displayed numerical instability in the later

timesteps, which was due to computer rounding error in solving the discretised
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Poisson equation for the velocity potential. It was found that the Poisson equation
must be solved more accurately with the residual driven to less than 10 to maintain
the numerical stability of the model and correct this problem.

The refinement in the grid works well to capture the interface effectively. It must be
remembered, however, that an increase in the amount of marker particles used will
increase the computational effort. Hence a computationally efficient method would be
to monitor the velocity field and add or remove marker particles according to the
evolution of the flow. This would also eliminate the problem of false voiding in the

flow due to an insufficient amount of marker particles present.
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Fig 4.17 The evolution of the fluid at time 0.4
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Fig 4.18 The evolution of the fluid at time 0.8
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Fig 4.19 The evolution of the fluid at time 1.0
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Fig 4.20 The evolution of the fluid at time 1.2
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Fig 4.21 The evolution of the fluid at time 1.4
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Fig 4.22 The evolution of the fluid at time 1.6
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5.0 Suggested Improvements

The problem of the dam break over a dry bed has been solved in a very elementary
manner. There is much that can be improved in the model, especially in the area of the
free surface stress condition. It would also be interesting to test the code on other

problems such as viscous bore modelling.

5.1 Accurate representation of the free surface boundary condition

Firstly recall that our free surface stress conditions are

¢_i nxnxa—u+nxny -aﬁ+—a—v +n,n 4 =0 (5.1)
Re ox oy ox Y oy
2nxmx%+(nxm +n,m, a_u_'_év_ +2n,m e =0 (5.2)
ox d oy ox 7oy

When problems like this were first solved, the pressure was set to zero at all surface
cells. Later methods were modified to include the normal viscous stress in the surface
cell pressure, but the pressure was still specified at the cell centre, regardless of the
location of the surface within the cell.

However, in this method we use a marker and cell technique to represent the free
surface. If we used a volume method such as that of Youngs’ then this would include
the calculation of the average normal of the free surface by application of the
divergence theorem (Youngs, 1982). We can use this additional information to
represent 5.1, more accurately. Whereas previously we assumed that either ny or ny is
small, we no longer have to make this assumption since we hold the value of the
normal n, where n = (ny,ny). Now, still assuming that a surface falls into categories 1,2
or 3, then we can calculate the average normal for the cell and then apply it to Eq 5.1

to gain an accurate representation of the free surface stress condition.
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Furthermore, following Nichols and Hirt, we can apply the pressure directly to the

free surface by means of linear interpolation.

%
G

Fig 5.1 A typical cell interpolation

The pressure at the cell centre is specified as the linear interpolation between an
adjacent full cell pressure and the required pressure at the fluid surface. The

interpolation formula is

8, = 1@, + )+ (1= 1)p, (5.3)
where ¢y is the surface pressure from the normal stress condition Eq. 5.1, ¢, is any
additional pressure applied to the free surface, ¢r is the current value of pressure in the
neighbouring cell, and 7 is the interpolation factor which can be determined following

Fig 5.1 as

=
n== (54)

A complete description of this method can be found in Nichols and Hirt, 1971.
Again, following this procedure the tangential stress condition Eq. 5.2 can now be
fully represented without any assumptions, since we have information about the

surface normal and configuration.

=434



5.2 Additional Test Problems

It would also be interesting to test the model further using the no-slip condition at the
domain boundary. At present for ease of implementation, the free slip condition is
applied to domain boundaries, but for our problem, this is not physically correct and
the correct domain boundary condition is that of no slip. This would induce a

boundary layer to form.

Vi V'
Free Slip No Slip
qu=0 vi=v vy =-v;
vi=wvy Vv’ =-v,
=
\) ® v’y
wall

Fig 5.2 The configuration of the free slip and no slip conditions

The sole difference between the free slip and the no slip slip condition as shown by
Fig 5.2 is that for no slip v’; = -vi However to model this condition properly a very
fine and geometrically progressive grid must be used around the area of the boundary
layer and this would have been beyond the scope of this study. Further attention needs

to be devoted to implementation of the no-slip condition.

5.2.1 Dam Break with an Obstacle

This test problem would involve all types of interfaces of the flow, resulting in empty
cells at the top, bottom, left and right of the flow. It would also be ideal to model
detachments to the flow and merging fluids. The initial set up is illustrated by Fig 5.3,
which is identical to our initial set up for the dam break problem but with the

inclusion of an obstacle as shown.
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Incompressible

Fluid
—
; a Obstacle
Solid
boundary |

Fig 5.3 The initial set-up of a dam break problem on a dry bed with an obstacle in the flow.

This problem would require a well refined grid. This would mean a geometrically
progressive grid, well refined at the boundary of the domain, and sufficiently fine to

accommodate high curvature which would be present in a problem such as this.
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6.0 Conclusions

The main objective of this study was to solve the incompressible Navier-Stokes
equations using a finite difference representation in a Eulerian framework. This has
been achieved using a pressure correction philosophy and a Marker and Cell method
of tracking the fluid interface. The problem studied was that of a dam break problem
on a dry bed. The results of the computation showed that the problem could only be
solved successfully with a small spacing of 0.01 between the marker particles. The

full algorithm for the solution can be stated fully as :

1. Setup the initial configuration of the fluid by use of massless marker
particles,

2. Determine the flagging of the domain for the timestep,

3. Let 5 (x,t,)be an arbitrary pressure field which satisfies the correct
boundary conditions at the free surface,

4. Calculate the intermediate velocity field #(x,¢), from

_ r 2 7
a_| ol ow ob, 1 ofm o) (1 ) | (34
o | ox d x Redyldy o Frt

1=t,

v oww v 8¢ 1 0(ou ov
O/ (20 T o +(y 2)& (3.35)
oo | x 0y 9 Reax\dy o Fr

1=t,

5. If the timestep used & > MIN{,,.,&,,, }- A then correct the timestep

and goto 4,

6. Solve the Poisson equation,
VW =V u(x,t) (3.36)

7. Compute the velocity field,
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u(x,t)=u(x,t)- V¥ (3.37)

8. Compute the pressure field,
~ ¥
=¢+— 3.38
p=¢ o (3.38)

9. Update the marker particle position position by Euler’s method using

x™ = X, +u,ot (3.60a)

P

n+l

Y, =y, tv,ot (3.60b)

10. Update the timestep so t =t + 6t and goto 2

The model used an adaptive time stepping procedure in an attempt satisfy the CFL
condition, maintaining numerical stability and also reducing computational effort.
However, it was found that even when using this adaptive timestepping procedure the
model could still demonstrate instability. This may be due to solving the Poisson
equation for the potential function with insufficient accuracy. This study has also
included a review of current interface capture methods and suggested further

improvements to the model.
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Appendix A

Linear Algebra Algorithms

CSR Matrix by Vector Algorithm

Using CSR storage, an effective algorithm to multiply a matrix 4 by a vector x would

be as follows

Let Y = Ax
fork=12 ..,n

e, = RPi(k)

at, = RPt(k +1)

Y(k)= Ale, - a,)- X(Colle, : @,))
end
Each loop of the algorithm computes a different component of the vector. This is an

advantage since it allows any component of the vector to be computed independently.
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The Conjugate Gradient Algorithm

The algorithm for the conjugate gradient method as given by Login [7] is as follows,

x° eR"; compute d° =r° =b— Ax°

Jork=1 2, ...,ncompute

ifk=1

dl - ro
else

dk—l _Ark—l

== T 4

dk — rk—-l +ﬂkdk_l
end if

dk .rk—l

RFTRT

x* =x"" v a,d"

r* =b— Ax*
end

This is an effective robust algorithm for solving the linear system, Ax=5.



Appendix B

HELMIT — Hinged Line Method of Interface Tracking

The disadvantage of the schemes discussed in Section 2.2.2 is the fact that they all

have discontinuities in the representation of the fluid surface, as depicted in Fig B1

discontinuity

\

\;m

Fig B1 — A discontinuity in the interface representation

HELMIT described fully in Giddings [9] goes some way to correcting this problem.

The algorithm involves three main steps.
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Fig B2 - The sequence of steps in obtaining the hinged interfaces

Step 1 : Use a Technique such as Young’s method to form initial interfaces.

-B1 -



Step 2 : Where cell interfaces do not meet, force them to go through a ‘mesh crossing
point’ (MCP) which is halfway between the interfaces as shown by Fig B2

Step 3 : Once the MCP’s have been placed. The points are joined with a straight line,
then an isosceles triangle is used to add or remove volume to adjust the volume

fraction to the correct amount as shown by Fig B3.

Mesh
Crossing
Point

\\

Fig B3 — The adjustment of the hinged surface to represent the volume fraction

Each interface now consists of the two lines which are hinged. This method is known

as the Hinged Line Method of Interface Tracking or HELMIT.

3.3.1 Exceptional Cases for HELMIT

The first exceptional case is when the volume fraction is adjusted using the isosceles
triangles, when it is possible that the apex lies outside of the cell. When this happens
the apex is retracted along the perpendicular bisector of the base until it lies on the

cell boundary. The MCP’s are then moved to correct the area.
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Fig B4 — An exceptional case of the adjustment moving outside of the cell boundary

The second exceptional case is that it is not always possible to find a suitable pair of
interfaces with which to create the MCP; an interface may have no partner or indeed

many.

Example a) Example b)
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Fig B5 — An exceptional case of no suitable pair of interfaces available to create MCP

For example a) this suggests that the interfaces themselves are not as important as the
body of fluid they enclose. Example b) shows a problem in defining the MCP for the
top centre cell and this is due to the interface in the centre cell. HELMIT deals with
this by theoretically filling in the centre cell and thus MCPs can be uniquely

identified.

3.3.2 Half HELMIT and Double HELMIT

When HELMIT is implemented in a code it must have available to it all Youngs’

interfaces, which means all interfaces must be stored since they may be used up to 5
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times per interface. Half HELMIT avoids this by reusing information calculated in the
original Youngs’ step. Youngs’ takes each bordering cell in turn and fits a straight line
through that cell and the centre cell, satisfying both volume fractions. This is known

as two square fittings.

MY N

R

Young’s
interface

r'q

N

Two square fittings
q g b\\\

Fig B6 — The relation between two square fitting and the Youngs’ interface

Half HELMIT stores and uses only the length of the common border between the two
cells containing material and discards everything else. MCP’s used to be placed
between two interfaces to make sure they joined up. However now there is only one
proper interface, in the centre cell and therefore placing an MCP using two Youngs
interfaces is no longer possible. It is therefore decided that the MCP should be placed
a fixed fraction ( 0 < A <1 ) of the distance from the Youngs interface to the two
square fitting. A value of A = 0.5 is often a reasonable choice.

Double HELMIT puts MCPs halfway between two Half HELMIT interfaces, which 4

is computationally more expensive but a more accurate representation of the surface.
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