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1 Introduction

Mathematical models for simulating physical, biological and economic systems are now often
more accurate than the data that is available to drive them. In particular, complete infor-
mation describing the initial state of an evolutionary system is seldom known. In this case
it is desirable to use the measured output data that is available from the system over an
interval of time, in combination with the model equations, to derive accurate estimates of the
expected system behaviour. The problem of constructing a state-estimator, or observer, is
the dual of the feedback control design problem. For very large nonlinear systems arising in
numerical weather prediction and in ocean circulation modelling, traditional control system
design techniques are not practicable, and ‘data assimilation’ schemes are used instead to
generate accurate state-estimates. The aim of these schemes is to incorporate observed data
into computational simulations in order to improve the accuracy of the numerical forecasts.

Currently, variational data assimilation schemes are under development[7]. These schemes
are attractive because they deliver the best statistically linear unbiased estimate of the model
solution given the available observations and their error covariances. The problem is formu-
lated as an optimal control problem where the cost functional measures the mismatch between
the model predictions and the observed system states, weighted by the inverse of the covari-
ance matrices. The model equations are treated as strong constraints and the controls to
be determined are the initial states of the system. The constrained minimization problem is
typically solved by a gradient iterative procedure for finding the optimal controls. The gra-
dient directions needed in the iteration are obtained by solving the linear adjoint equations
associated with the problem.

In practice the model equations do not represent the system behaviour exactly and model
errors arise due to lack of resolution, to inaccurate physical parameters, or to errors in bound-
ary conditions, in topography or in other forcing terms. To account for model error, the sys-
tem equations can be treated as weak constraints in the optimization problem. The residual
errors in the model equations at every time point are then treated as control parameters.
Statistically the model error is assumed to be unbiased white noise which is uncorrelated in
time. This approach is not practicable, however, due to the excessive size of the optimization
problem and due to the need to propagate the covariance matrices of the model errors at each
time step. Furthermore, the statistical assumptions made in this approach are not generally
satisfied in practice, since the model errors are expected to be time-correlated.

Recently, the problem of accounting for model error in variational assimilation in a cost-
effective way has begun to receive more attention [2], [6], {8], [1]. Studies on predictability in
meteorological models have shown that the impact of model error on forecast error is indeed
significant. The results given in [1] lead to the conclusion that the predictability limit of a
forecast might be extended by two or three days if model error were eliminated. There is,
however, a lack of quantitative information on model error in such forecast models.

Although the general form of the model error is not known, some simple assumptions
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about the evolution of the error can be made. The control variables then reduce to the
unknown initial values of the model error and the corresponding optimization problem can
be solved efficiently. A major advantage of this approach is that the gradient directions with
respect to the model errors can be obtained directly from the adjoint equations of the original
problem at very little extra cost.

In the next section, a general representation of model error for use in data assimilation
is introduced. The technique of state augmentation for estimating serially correlated com-
ponents of model error is then described. The variational problem for the augmented state
system is defined in Section 3 and the corresponding adjoint method is developed. Using
simple models it is shown in Section 4 that a constant error, or bias error, can be used as a
control to correct for model error in a source term. The extension of this approach to the
treatment of time-correlated advection error is also demonstrated.

2 Model error and state augmentation
The system is modelled by a discrete nonlinear set of equations, given by
Xe+1 = fe(xk) + €, k=0,...,N—1, (2.1)

where X, € € IR™ are the model state and the model error at time ¢ and f; : R™ — IR"
is a nonlinear function describing the evolution of the state from time #x to time txyq1. It
is commonly assumed that the error e is stochastic and that it is unbiased and serially
uncorrelated with a known Gaussian probablility distribution. A Kalman filter technique
can then be used to solve the assimilation problem [5]. For large systems, such as weather
and ocean systems, this method is generally too expensive for operational use due to the
enormous cost of propagating the error covariance matrices.

Moreover, for such evolutionary systems the model error is likely to depend on the model
state and hence to be correlated in time. We therefore introduce a more general form of the
model error that includes both serially correlated and random elements. We write

€x41 = Trer + gy, (2.2)

where qr € IR™ are unbiased, serially uncorrelated, normally distributed random vectors
and e € IR™ represent serially correlated components of the model error. The matrices
Ty € R™™ are prescribed matrices, with rank(Tx)= m, that define the distribution of the
serial error terms ey, in the model equations. The evolution of the serial error terms is assumed
to satisfy the general equation

er+1 = 8k(Xk, ex), (2.3)

where gi : IR™ X R™ — IR™ is some function to be specified. In practice we know very little
about the form of the model error and need to specify a simple form for the error evolution
that reflects any available knowledge. Examples of simple forms of error evolution include:

e Constant bias error : e, =e Vk.
This choice allows for a constant vector of unknown ‘dynamical parameters’ which, in
the deterministic case (i.e. qx = 0), corresponds to the correction term of [2]. In the
stochastic case, the constant correction e can be interpreted as a statistical bias in the
model error, which needs to be estimated. This form is expected to be appropriate for
representing average errors in source terms or in boundary conditions.
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¢ Evolving error with model evolution : ey = Fyey.
Here F, € IR™*™ represents a simplified linear model of the state evolution. This
choice is appropriate, for example, for representing discretization error in models that
approximate continuous dynamical processes by discrete-time systems.

o Spectral form of model error : e, = (I, sin(7)I, cos(£=)I) e.

Here the constant vector e is partitioned into three component vectors e = (ef, eg, eg:)T
and 7 is a constant determined by the timescale on which the model error is expected to
vary, for example, a diurnal timescale. This choice approximates the first order terms

in a spectral expansion of the model error.

Other choices can be described using the general form (2.2)—(2.3), including piecewise con-
stant error, linearly growing error, and combinations of any of these types of model error (see
[3])-

Together the system equations and the model error equations (2.1)-(2.3) constitute an
augmented state system model. The aim of the data assimilation problem for the aug-
mented system is to estimate the expected values of the augmented states x; and ey for
k=0,...,N — 1, that fit the observations. The solution delivers the maximum likelihood
estimate of the augmented system states, given the error covariances of both the observations
and the model errors. Although this formulation takes into account the time evolution of
the model errors, the data assimilation problem remains intractable for operational use. If
the stochastic elements of the error are ignored and the augmented system is treated as a
deterministic model, then the size of the problem is greatly reduced. The aim of the data
assimilation, in this case, is to estimate the serially correlated components of the model error
along with the dynamical states of the original system model. In the next section the data
assimilation problem for the augmented deterministic problem is described and the adjoint
method for solving the problem is discussed.

3 Data assimilation problem
The augmented state system for the model states and model errors is written

Xk41 = fk(xk) + Trek, (3.1&)
€Lyl = gk(xkaek)a (31b)

for k=10,..., N — 1. The observations are related to the system states by the equations
Yk :hk(xk)+6k, k=0,...,N-1, (3.2)

where y, € IRP* is a vector of p; observations at time ¢ and hy : R™ — IRP* is a nonlinear
function that includes transformations and grid interpolations. The observational errors
6, € IRP* are assumed to be unbiased, serially uncorrelated, Gaussian random vectors with
covariance matrices Ry € IRP**XPk, [t is also assumed that prior estimates, or ‘background
estimates,’ xg and eg of xg and ep are known and that the covariance matrices of the errors
(%0 —x%) and (e — €}) are given, respectively, by By € R™ and Qg € IR™. The observational
errors and the errors in the prior estimates are not correlated.

The aim of the data assimilation is to minimize the least square errors between the model
predictions and the observed system states, weighted by the inverse of the covariance matrices,
over the assimilation interval. The control variables are the initial values xg and eqg of the
model state and model error, which completely determine the response of the augmented
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system (3.1). For the problem to be well-posed, in general, the mean square error between
the prior estimate and the control variables must be included in the objective function. The
data assimilation problem is then given by

Problem 1 Minimize, with respect to Xg and eg, the objective function

N 1
= —(xO — xO)TB l(XO b XO) ‘|‘ Z h (x]) yj) R (h (xJ) )
+%(eo — )75 (o — b), (3.3)

subject to the augmented system equations (3.1).

The constrained minimization problem can be converted into an unconstrained problem
using the method of Lagrange multipliers. Necessary conditions for a solution to Problem 1
require that the system equations together with a set of adjoint equations be satisfied. The
adjoints can be written

Ak = F (k) Mkt + GF (ks ) s — Hi (1) Ry (hi(xw) = yk),s (3.4a)
By = T;;F)\k+1 + FZ(Xk,ek)HkH, (3.4b)

fork=N-1,...,0, and
AN=0, wux=0, (3.4¢)

where A\, € R", u; € R™ are the adjoint variables and Fy € R™", Hy € R™*P* and G €
IR™*™ are the Jacobians of fy, hy and g; with respect to xj, respectively, and Ty € R™*™
is the Jacobian of g with respect to ey.

The gradients of the objective function (3.3) with respect to the initial data x¢ and eg
are then given by

onj = BO_ (XO —XO) Ao, (35&)
Ve = @5 (ea ~ €8) — pio. (3.5)

For the optimal it is required that the gradients (3.5) be equal to zero. Otherwise these
gradients provide the local descent direction needed to find an improved estimate for the
optimal initial values of the augmented system using a gradient minimization technique.

In the special case where the model error is assumed to be constant, the adjoint equations
can be simplified. In this case Gy = 0 and only the values for the adjoint variables Ax need
to be calculated. The gradient of the objective function is then given simply by

Ve, J = Qo €0 — eo) Z (3.6)

Hence there is little extra computational effort needed to compute the gradients of the ob-
jective function in the case where the controls consist of the initial data for the model state
and the model error.

4 Applications

The performance of data assimilation with the augmented system is examined for two cases
using the initial state, the model error and both together as control vectors. In the first case
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a constant bias error correction is applied and in the second case an evolving model error
correction is developed. In both cases the minimization problem is solved using the conjugate
gradient method. The convergence criterion for the iteration is given by ||V4J|| < 1076,
where u denotes the control variables. (Here ||:|| denotes the Lj - norm.)

The results are presented in Figs 1-4. In all figures a solid line indicates the solution
to the ‘true’ system, from which the observations are taken; the observations are error-free
and are denoted by +; a dotted line shows the unassimilated solution to the ‘imperfect’
model equations; and a dashed line represents the analysed solution to the data assimilation
problem. The assimilation is applied on the interval [0,0.5] and a forecast is produced on
the interval [0.5, 1], starting from the assimilated solution at time ¢t = 0.5. The covariance
matrices of the prior estimates and the observations are taken, respectively, to be By = 0,
Qo =ql and Ry = %I, Vk.

4.1 Example 1

In the first case the system is derived from a standard explicit finite difference approximation
to the heat equation

vy = 0z, + 8(2), (4.1)

with zero boundary conditions at z = 0,1 and a point source s(z) = (1/3)é(z — 0.25), where
6 denotes the Dirac delta function. The model equations are given by

x?ﬂ = .’L‘f = oAt (33;?—1 = 297;? + wf+1) /AZ2 + s;At, (4.2a)

eb =0, k=0, (4.2b)

for j=0,1,..,J, k=0,1,.., N, where the model variables xf approximate v(jAz, kAt) with
At = (1/N), Az = (1/J). The discretized source term is given by s, = 1/(3A2) and
s; =0, Vj#J/4.

The ‘true’ states, from which the observations are taken, are the solutions to the discrete
equations (4.2) with initial values z? = 1, where At = (1/80), Az = (1/16) and ¢ = 0.1. The
positions of the observations, shown in Figs 1-2, do not coincide with the finite difference
grid and the function hg(xx) = Cxy, where C' € IRP*", defines a fixed linear interpolation
between the model grid and the observation positions. In the model equations, the source
term is omitted, making the model ‘imperfect.’ It is assumed, however, that the prior estimate
of the initial values is exact. The aim is to estimate the state of the ‘true’ system using the
observations and the ‘imperfect’ model.

Fig. 1 shows the assimilated solution obtained by using the the initial state alone as the
control variable. At the initial point the assimilation does not produce the ‘true’ initial state,
but instead generates initial values that compensate for the model errors and ensure that the
assimilated solution is as close as possible to the observations over the whole interval. The
estimated state at the end of the assimilation interval (¢ = 0.5) is therefore closer to the true
state than the background (unassimilated) solution. The forecast from this position is still
poor, however, due to the inaccuracy of the model.

Fig. 2 shows the results of the assimilation using the augmented system where the model
error is assumed to be a constant bias error and ¢ = 0. In this case the assimilated solution
exactly matches the true solution on the assimilation interval. (Theoretically this is expected
since the system is completely observable and the model error is constant in time.) Retaining
the computed model error correction over the forecast interval then gives a perfect forecast.
Equally good results are obtained if the correction terms are confined to a region around the
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Figure 1: Example 1. Variational assimilation using the initial data as the control vector.
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Figure 2: Example 1. Variational assimilation using the constant error as the control vector.
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source term. The dimension of the model error vector can thus be reduced and the efficiency

improved, if the location of the source is known.

Additional results are presented in [3], including examples where the prior estimate of the

mnitial data is incorrect and where the initial state and the constant bias error are both used
together as the control.

4.2 Example 2

In the second case the system is obtained from an upwind approximation to the linear ad-

vection equation

v+ v, =0,

(4.3)
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Figure 3: Example 2. Variational assimilation using the initial data as the control vector.
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with periodic boundary conditions on the interval z € [0, 1]. Initially the solution is a square
wave defined by

0.5 0.25 < 2 < 0.5,
v(,0) = a(2) = { ~0.5 2<0.25 or z>0.5.

Over the time interval [0, 1] this square wave is advected all the way around the model domain
and back to its starting position.
The model equations are defined by

(4.4)

t
ekt — gk = —%(w’? —z5 ), (4.5a)

©) = a(jAz), b= ak, (4.5b)

for j = 1,..,J, k = 0,1,.., N, with model variables a:;“ ~ v(jAz,kAt) and Az = (1/J),
At = (1/N).

The ‘true’ states in this case are the exact solutions to the continuous advection problem
with the given initial conditions. (These are generated as solutions to the model equations
with At = Az = 1/80.) The observations are taken from the ‘true’ states at 20 grid points on
the assimilation interval. The positions of the observations are shown in Figs 4-5. The model
states are generated from the exact initial states using At =1/80 and Az = 1/40. With this
choice of stepsizes, the discretization introduces model error and the upwind scheme exhibits
numerical dissipation, which smears the shock fronts.

The aim of the data assimilation is to reconstruct the ‘true’ states of the system, and in
particular the steep shock fronts, using the observations and the ‘imperfect’ model. In this
case taking the model error to be a constant bias error does not give any improvement in the
solution, since the average error over the time interval introduced by the discretization is zero.
The model error now depends on the true system state and hence the evolving model error
correction is used here. The error is assumed to satisfy the same linear dynamical equations
as the model states.

In Fig. 3 the results of the assimilation are shown for the case where the initial state
alone is used as the control variable and the error is not modelled. As noted previously, at
the initial point the assimilation does not reproduce the correct initial data, but generates
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Figure 4: Example 2. Variational assimilation using the evolving error as the control vector.
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an initial solution that compensates for the impact of the model error over the assimilation
interval. At the end of the interval, the assimilated solution is closer to the true solution,
estimating the amplitude slightly more accurately than the ‘background’ model solution, but
the forecast remains poor.

In Fig. 4 the assimilated solution found using the evolving model error correction with
g = 10 is shown. A much better approximation to the true state of the system is obtained
than in the case where the initial state is used as the control vector. Evolving the model
error along with the model state over the forecast interval then gives a considerably improved
prediction of the true state of the system.

The results of further tests on this example are given in [3].

4.3 Nonlinear example

The techniques described here for treating model error in data assimilation have also been
tested on a one dimensional nonlinear shallow water model [3],[4]. In addition to error in the
initial states of the system, various types of model error have been investigated, including
error in the topography and error in rotation (incorrect Coriolis parameter). Assimilation
with noisy data has also been examined. In these cases, the constant bias error corrrection
gives good estimates of the true solution over the assimilation interval. By retaining the model
error correction over the forecast interval, the forecast is improved significantly. Assimilation
using both the initial state and the model error as control variables to correct simultaneously
for initial and model errors has also been successful.

5 Conclusions

A technique for treating model error in data assimilation is described here. The aim of the
technique is to estimate the serially correlated components of the model error along with the
dynamical model states. A simple form for the evolution of the model error is assumed and an
augmented system for both the model state and model error is obtained. For different types of
error, it is found that different forms for the model error evolution are appropriate. The initial
states of the augmented system are used as control variables in the assimilation process. A
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modified objective function is minimized to determine the solution of the augmented system
that best fits the available observations over the assimilation interval. It is shown that this
technique is effective and leads to significantly improved forecasts.
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