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Abstract

In a recent paper, an algorithm that produces dampening controllers based
on a periodic Hamiltonian was proposed. Central to this algorithm is the formu-
lation of symmetric and skew-symmetric damped algebraic Riccati equations.
It was shown that solutions to these two Riccati equations lead to a dampen-
ing feedback, i.e., a stable closed—loop system for which the real parts of the
eigenvalues are larger in modulus than the imaginary parts.

In this paper, we extend these results to include a broader class of Hermitian
and skew-Hermitian solutions and show that every convex combination of these
solutions produces a dampening feedback. This property can be used to vary the
feedback with two parameters and thus obtain more flexibility in the controller
design process.

Keywords: dampening feedback, damped system dynamics, periodic Schur
decomposition, periodic Riccati equation, Hamiltonian systems, linear quadrat-
ic control.

1 Introduction

This paper is concerned with the problem of finding a feedback for a linear time-
invariant system for which the closed—loop system poles are constrained to cones in
the left half~plane. At first glance, it seems that this problem may be trivially solved
by pole placement; however, this may not be desirable, especially for large systems,
as pole placement has been shown to be an inherently ill-conditioned problem [2, 9].
While this problem may be satisfactorally solved in a polynomial framework [4],
the formulation in a state—space framework had until just recently eluded simple
formulation. The additional effort to formulate the problem in state—space was
motivated by the desire to take advantage of the inherent numerical robustness of
state—space methods over polynomial methods [8].

The first steps towards a simple state—space solution to this problem was the
introduction of the Damped Riccati Algorithm (DRA) in a recent paper [3]. This
algorithm functions in the following way: Given the standard linear time invariant
system

¢t = Az + Bu
y = Cu,

(1)

with 4 € R, B ¢ R™™, and C € R™¢, the DRA, under most circumstances, will
compute a matrix F' € R™™ such that the eigenvalues of the closed-loop matrix
A + BF are damped, i.e., the eigenvalues of the closed—loop system have real parts
greater in magnitude than their imaginary parts. Integral to this algorithm is the



solution of the Symmetric Damped Algebraic Riccati Equation (SDARE)
X(A? - RS) + (AT —SR)X — X(AR+ RAT)X + (ATS +54)=0, (2
and the Skew-Symmetric Damped Algebraic Riccati Equation (SSDARE)
Y(A? + RS)+ (AT + SR)Y — Y(AR — RAT)Y + (ATS - SA)=0, (3)
as well as the more standard [1] Shifted Algebraic Riccati Equation (SHARE)
N(A+oI)+ (AT + oI)N — NRN + § = 0. (4)

Here, as for the rest of the paper R := BBT and § := CTC. It was shown in [3]
that if the SDARE and SSDARE have stabilising solutions, then the two feedbacks
Fx = =BT X and Fy = —BTY will produce closed-loop systems that are damped.
Since the SDARE is a standard Riccati equation, standard solvability theory [6] can
be applied to characterise when a stabilising solution exists. The close relationship
between the solvability of the SSDARE and the SDARE described in [3] also provides
the theoretical basis for the solvability of the SSDARE. Once a system is dampened,
it may be stabilised by computing an additional feedback which symmetrically re-
flects the poles across the imaginary axis. This is accomplished by computing the
stabilising solution to a degenerate SHARE with § = 0 and ¢ = 0. If ¢ > 0, then the
closed-loop eigenvalues will not only be stable and damped, but have guaranteed a
degree of stability o, in effect blunting the cone in the left half-plane which contains
the system poles.

In this paper, we introduce two parameters: one for the modification of the
SDARE and SSDARE and one for the convex combination of the solutions of these
two equations, and show that we again obtain dampening feedbacks.

2 Parameterised Damped Riccati Equations

In [3], it was shown that the solutions to the SDARE and the SSDARE are related to
the stable invariant subspaces of the matrix product Hx = HoHq and Hy = H11H,,

respectively, where
A -R -A R
Hllz[ S Ale,Hz::l S AT] (5)

If the columns of the 2n X n matrix
T
T, = ; 6
Eq ()
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span the invariant subspace corresponding to the stable eigenvalues of the 2n x 2n
Hamiltonian matrix Hy, then the symmetric stabilizing solution X of the SDARE
(2) (if it exists) is given by

X = T21T1_11- (7)
An analogous result holds for Y.

We will now introduce two parameters, one which scales the two equations and
one which defines a convex combination of the solutions. Let

o[ ]

where a = €*®, ¢ € [-7/4,7 /4], and consider the scaled matrices
Hy(a) = DH;D™', Hy(a) = D' H,D.

as well as
Hz(a) = Hy(a)Hi(a), Hw(a) = Hi(a)Ha(a). (8)

Associated with these products are the Hermitian Damped Algebraic Riccati
Equation (HDARE)

Z(A? — a?RS) + (AT — a’SR)Z )
—Z(aAR + aRAT)Z + (aATS + aSA) =0,

and the Skew-Hermitian Damped Algebraic Riccati Equation (SHDARE)

W(A? + a*RS) + (A?T + ?SR)W (10)
~W(aAR — aRAT)W + (@ATS — aSA) =0,

respectively.

The HDARE and the SHDARE have a very close relationship with the SDARE
and the SSDARE; namely, the matrices Hy(a) and Hy(1) are similar for all o and
analogously the matrices Hy(a) and Hy(1) are similar for all a. This allows the
relations between Z and W to be derived analogously to those between X and Y.
In fact, the solution Z of (9) and W of (10) for the same « on the unit circle satisfy

ATZ - WA+ aWRZ + aS = 0. (11)

This equation is central to proving that both —(A — aRW)(A — &aRZ) and
—~(A—aRZ)(A—aRW) are stable and that (A—aRW) and (A—aRZ) are damped.

As it happens, « is not the only parameter that may be varied without affecting
system dampedness. Any convex combination of the two complementary solutions
aZ and aW produces a dampening controller as well. This is shown in the following
theorem.



Theorem 1 Let

K = BaZ + (1 - B)aW (12)
with Z, W being stabilising solutions of (9) and (10), respectively. For a = ', ¢ €
(=m/4,7/4) and B € [0,1] the eigenvalues of A — RK are within the closure of the
damped region of the complex plane (excluding the point 0) (see Figure 1).

Proof. Consider the Hermitian matrices
Mgz =—(aZ+aW)(A—aRZ)=ZRZ — aATZ —aZA - S
and
My = —(aZ + aW)(A— aRW) = WRW + aATW —aW A + §.

Lyapunov’s Theorem [7] shows (by analogy from Theorem 1 of [3]) that the stability
of —-(A— aRZ)(A— oRW) implies that Mz and Myw are positive definite whenever
S is positive definite. Introduce

Mg = pMz+(1-p)Mw
= —(aZ+aW)(A - RK) (13)
= —(A-RK)H(aZ - aW),

where K is defined as in (12). Following the proof of Theorem 1 in [3], dampedness
is proved if the following two conditions hold:

P; = —(A-RKHMyg -~ Myg(A-RK)*<0

Mr > 0. (14)

Attending to the latter condition first, we note that since Mz and My are positive
definite then My will be positive definite for 8 € [0,1]. With the substitution of the
expressions in (13) for Mk in the first equation of (14) and &% + a® = 2cos2¢ > 0
for ¢ in (—m/4,7/4), we have that

P; = —(A-RK) My —~ Mg(A- RK)?
= (A- RE)Y ((A- RK)¥(aZ + aW)+
(aZ — aW)(A — RK))(A— RK) (15)
= —(@+a®) (A~ REK)" (§+pZRZ + (1- B)WHRW) (A— RK)
<0

whenever § is positive definite. Asin Theorem 1 of [3], it follows that the eigenvalues
of A — RK are in the interior of the damped region of the complex plane. If ' is
only positive semidefinite then by continuity it follows that the eigenvalues are in
the closed damped region of the complex plane. D



Remark 1 The two nominal solutions with regard to the parameterisation a, Z(1)
and W(1), are real and correspond to X and Y in [3].

Remark 2 Consider equation (11) again. We can identify a simple relationship
between two solutions of the HDARE and the SHDARE corresponding to the same
parameter «; namely that

Z(a) = W(1a). (16)
Thus one family of solutions determines the other. It is noteworthy that for ag = e*®
with ¢ = £7/4, stability may not be proved by Theorem 1. Observe, however, that
for ap = €' with ¢ = 7/4, we have 189 = ap; thus by (16), Z(ao) = W (ap).
Equation (11) can therefore be written as the “rotated” Riccati equation

a0ATZ + 09ZA - ZRZ + § = 0. (17)

Similarly, for ap = e*® with ¢ = —1/4, we have 1@y = —ayp. Utilising the relationship
between Z(a) and W (a) in (16), we have Z(ap) = —1W(ag), obtaining the same
“rotated” Riccati equation.

. First and Third Quadrants

[] Damped Region

Figure 1: Regions in the Complex Plane

This “rotated” Riccati equation (17) functions as follows: Let

_ OtoA -k
Hns [ —S  —aoAT ]

where ag = €™/, Due to the Hamiltonian structure of +H2, half of the eigenvalues
of H, are in the first and third quadrants of the complex plane and the other half
are in the second and fourth quadrants. Suppose that (ZlT, Zg)T is a basis of the
invariant subspace of H, with respect to all of the eigenvalues in the first and third
quadrants of the complex plane, that is,

[ %]-[%)r
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where T is a n X n matrix with eigenvalues in the first and third quadrants. If Z;
is nonsingular, then Z = Z;Z7 " is a solution of (17). Moreover, the eigenvalues of
the closed-loop matrix agpA — RZ are in the first and third quadrants. Since the
transformation A — A/ap maps the first and third quadrants complex plane to the
damped region (v. Figure 1), it follows that the eigenvalues of A — GgRZ are in the
damped region of the complex plane.

Remark 3 Despite the fact that a complex feedback is unrealisable for real systems,
numerical experiments show for the vast majority of randomly generated cases (999
out of 1000) A — R xreal(aZ) is damped. Indeed, for the two-by-two SISO case the
dampedness of A — R x real(@Z) may be shown analytically.

3 Examples

In this section, we illustrate the effect of the parameters o and § on closed-loop
eigenvalues. The system matrix A is constructed such that its eigenvalues are in the
undamped region. We show how these eigenvalues are transferred to the damped
region via solving the damped Riccati equation.

Example 1 In this example, we demonstrate the properties of the Hermitian and
Skew-Hermitian DAREs when performed under complex arithmetic for scalar inputs,
as was done in Example 1 in [3]. Let

A = a 4+w; , B = b+ , a = €9,

In complex arithmetic, we replace the transposition operation with the complex—
conjugation operation, and we seek to find the complex scalars Z and W which
form the optimal closed—loop scalars

A; = A-BBH@aZ) , Aw = A- BBH(aW).

It may be easily confirmed, with S = 0 that

_ (a%7—a?) _ —1(aZ—a)
Z = (ar cos ¢+a; sin qb)(b,2.+b?) ’ W = (a; cos ¢+arsin ¢)(b%+b?) ’
Az = (ai +ia,)p , Aw = (ai + iar)/p,

where .
_ a;cos+ a,sin ¢

T aycosp+a;sing’




Thus we obtain
(BAz + (1= B)Aw) = (ai +ia,)(Bp + (1 - B)/p)
implying that
| real (847 + (1 - B)Aw) | > | imag (847 + (1 - B)Aw) |
for |ag) > |a.|, B €[0,1], ¢ € [-7/4,7/4].

Example 2 In this example, we validate the assertions in Remark 3. We start with
a two by two matrix in controllable canonical form. Let us further write the system
matrix in a form akin to that which describes a standard second order system in
terms of its natural frequency w and its damping factor ¢ [5]:

[0 1 [0

2 S —w? —20.)(] g B S _1]
_ _ (18)
00 00

LR 0 1] » § = 0 0]'

Note that an undamped system as defined in this paper has ¢ € [0,1/v2]. Let us
assume that ¢ and ¢ are in the following interval [—7 /4,7 /4] and

1 1
— — 1
2COS¢<C<\/§, (19)
so that the eigenvalues of A are in the undamped region.

As this system is relatively simple, it is possible to get closed—form expressions
for Z and W

7 - 20(2¢%—1) (e + r_Tr)w2C aw
T 1=Clota) aw (a+a) |’

(20)
w

{1

20(2¢2=1) [ — (o — @) w?( —ow } '

143 (a—a) aw —(a—-a)¢

As mentioned earlier, the aim of this example is to illustrate the effect of the
feedback on the projection of the complez—valued feedback matrix onto the field of
real numbers. The paradigm of the parameterisation of a second order system in
terms of its natural frequency and damping factor is again exploited; the closed—loop



matrix A — R real(aZ) will be described in terms of wz and (z, whose definitions
follow from those of (18). The closed—loop matrix A — R real(aW) will likewise be
described in terms of wy and (y. These values are

_ 1 1-4¢2sin? ¢ } _ ¢ cos 2ih
Wz = W\ (dcos?¢-1) (z = V42 —1-4¢4 sin® 26

2 o2 dh—
= w (4¢* cos® 1)

(I.—!lc?ssin2 rﬂ) ?

(21)
{ cos2¢
/42 —1-4¢4sin? 26

(w =

Under the condition (19), values of wz, ww, (z and (w are well defined. Moreover
o Cleos2ey
27402 — 1 — 4¢*sin?2¢
is a decreasing function on (, since its derivative
—2¢(1 — 4¢(sin 26)?)
(4¢2 — 1 — 4¢*sin? 2¢)?

is less than or equal to zero. Thus ¢ = 1/4/2 minimises the function of (%, i.e.

il 1
CZ > (Z ( \/5) - \/5
This proves that the eigenvalues of Az and Aw are in the damped region. When ¢
is in the interval defined by (19), the eigenvalues of Ay and Aw are not only in the
damped region, but also stable. When 0 < ¢ < 1/(2cos ¢), however, the eigenvalues
Az and Aw are still in the damped region but no longer stable. In this case the
form defined by (18) is no longer valid.

4 Concluding Remarks

In this paper we have extended results of [3] on damped Riccati equations to include
a family of dampening feedbacks that may be parameterised over two variables. This
parameterisation may be of significance as it allows additional degrees of freedom
with which other control criteria in addition to dampedness may be achieved.
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