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Abstract

A three-point difference scheme recently proposed in {2] for the mmerical
solution of a class of linear, singularly perturbed, two—-point boundary value
problem is investigated. The scheme is derived from a first-order approximation
to the original problem with a small deviating argument. It is shown here that
in the limit, as the deviating argument tends to zero, the difference scheme
converges to a one-sided approximation to the original singularly perturbed
equation in conservation form. The limiting scheme is shown to be stable on any
uniform grid. No advantage arises, therefore, from using the deviating argument,

and the most accurate and efficient results are obtained with the deviation at
its zero limit.
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Camments on the Numerical Integration of a

Class of Singular Perturbation Problems

N. K. Nichols

1. INTRODUCTION

Recently a novel three-term difference scheme for the mmerical integration
of a class of linear, singularly perturbed, two-point boundary value problems
with a boundary layer at the left end of the interval has been proposed in [2].
The scheme is obtained by approximating the original problem by a first-order
differential equation with a small deviating argument. The authors state that
the method does not require a very fine mesh size and that iteration on the
deviating argument may be used. Numerical experiments are presented to
substantiate these results.

In this paper we examine the proposed difference approximation in more
detail and show that, in the limiting value of the deviating argument, it reduces
to a one-sided scheme for the original singularly-perturbed problem in
conservation form and that this scheme is stable and accurate to the order of the
step size for any mesh. No advantage arises, therefore, from using the deviating
argument and the most accurate results are cobtained with the deviation at zero.

2. NUMERICAL SCHEME

In [2] the following singular perturbation problem (SPP) is considered:
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ey''(x) + a(x)y'(x) - b{x)y(x) = f(x), 0<x<1, (1)
y(0) =a y(1) = 8. ' (2)
Here ¢ is a small positive parameter such that 0 < ¢ < 1; a, g are'given
constants; a(x), b(x), f(x) are sufficiently continucusly differentiable
functions on [0,1); and a(x) > M > O on {0,1], where M is some positive constant.
The assumption
b(x) 2 O, (3)
is also made in [2]. Under these conditions, the SPP problem (1)-(2) has a
unique solution y(x) € 02[0,1] which, in general, displays a boundary layer of
width O(e) at x = O for small values of e. It can be sho;m. moreover, that the
solution is uniformly bounded in the L _-nom as ¢ - O, [(8]. If it is assumed,
alternatively, that
b(x) + a'(x) 2 0, (4)
then the same results can be shown to hold, by arguments similar to those in [5]
and [1]. (See Appendix I for proof.) Assumption (4) is the npatural condition
for the equation (1) in conservation form (where the term ay' is replaced by
(ay)' - a'y).
The original differential equation is approximated in [2] by a first-order
equation with a small deviating argument, given by
y'(x) - p(x)y'(x - 8) - q(x)y(x) = r(x), (5)

for 6 < x { 1, where 8 is a small positive constant such that 0 < 6 << 1 and

p(x) = e¢/[e + 8a(x)],
g(x) = 6b(x)/[e + sa(x)], (6)
r(x) = 6f(x)/[e + 6a(x)].

The difference equation is then obtained by integrating (5) over the interval



3
[xj,xjﬂ] using the trapezoidal quadrature formula together with the

approximation

y(xj - &) =~ vy + <’5[yJ = Yj_]_]/h .
The three-point scheme found by this technique is given by

V31 T F¥y T O T Ty @
where

l?-:j = (S/h)ij + (h/2)p3]

Fy =1+ (3/h)py,, - (B/2)p),,]

- (1 - B/h)[pj + (h/2)p3] + (h/2)qj.
Gj =1 - (1 - 6/h)[Pj+1 - (h/2)P3+1] . (h/z)qj"‘l’

Hj = (h/2)[rj+1 + rJ],

Py = p(xj). q = q(xj). ry = r(xj)

h=1/N, x,=3h, J=0,1,2,...,N.

J
In the next section we show that in the limit, as the deviating argument & - O,
this scheme reduces to a one-sided difference approximation to the original
equation (1).

We remark here that, in the case a(x) < - M < 0 holds on {0,1], a unique
solution to the singular perturbation problem (1)-(2) exists if either (3) or (4)
is assumed, but it has, in general, a boundary layer of width O(e) at the right
hand end of the interval (i.e., at x = 1). In this case a correspornding stable
three-term difference equation can be found by the method of [2], provided the

integration is taken over the interval [x ] and the approximation

317
Y(xj -68) = Yj . G[Yj+1 - YJ]/h
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is used to obtain the recurrence relation. The scheme found by this procedure is -

given by
E5¥3-1 7 F¥y * Oy¥an T By ®
where
fﬂ =-1+(1+6/M)py, + (h/2)pi_,1 = (h/2)q,_,,
Fy=-1+(1-8/py - (h/2)p}]

) + (8/n)lpy_y + (W/2)p) ] + (h/2)qy,
(.33 = (45/h)[pj - (h/2)p5].

Hj = (h/2)[rJ + rJ-I]’ j=1,2,...,N1,

In the limit, as the deviation 6 -+ O, this scheme also canverges to a stable

one-sided approximation to (1), by arguments given in the next section.

3. ANALYSIS

We now establish the behavior of the difference scheme (7) in the limit as
the deviating argument 6 +» O. This analysis is necessary to validate the use of
iteraticn on 6. We show that the recurrence relation (7) reduces to a one-sided
difference appraximation to the original singularly perturbed differential
equation (1). '

We begin by observing that the first-order differential approximation (5),
(after division by &), converges in the limit, as 6 - 0, to the equation

y''(x) + [a(x)y(x)]'/e - [a'(x) + b(x)] y(x)/e = £(x)/e, (9)
which is easily seen to be equivalent to equation (1) in conservation form. This

result follows fram
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lim [y'(x) - p(X)y'(x - 6)]/6 = y''(x) + a(x)y'(x)/¢,
850

1lim g(x)/6 = b(x)/e,

8-0

lim r(x)/8 = £(x)/e,

540

together with the relation
a(x)y'(x) = [a(x)y(x)]' - a'(x)y(x).
It is easily showm, furthermore, that

lim (1 - p(x)]/86 = a(x)/e,

50
1im p'(x)/6 = lim - ea'(x)/[¢ + 8a(x)]? = - a'(x)/e,
80 &0 =

and that

1im p(x) =1, lim p'(x) = O.
&0 &-0

From these results it follows that the coefficients of the difference scheme (7)
(divided by §) converge to the limits

1in £,/6 = (1/h),
520

lim F_/86 = (2/h) + a_ /e + (h/2)(al + b.)/e,

o0 3 3 it

Lin Gy/6 = (1/0) + 2y, /e = (W/2) (@), + byyq)/e,
lim H /6 = (h/2)(f, + £, .]1/e.

e 37 Fn

The approximation (after division by &8 and h) thus converges, as 6§ - 0, to the
difference equation

[Yj-l = 2Yj + Yj+1]/h2 + [aj+1Yj+1 = anj]/‘h

_1
+b _§[f +f

P 1 '
7 (B4Vy + 34,V ¥ By¥y + by Yy, )/ 51 fi4qd
Equation (10) is clearly a one-sided approximation to the original differential

/e.  (10)

equation (1) written in conservation form (9).
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The recurrence (8), for right-end boundary layers, converges similarly to
the equation
¥4y = 275 + ¥yuy1/0° + vy - ay vy 1/¢h
-3 [ 1y, ) +ajyy + by gy, ) + biy,1/e =2 (£, + £51/6 (11)
which also approximates (9).

We remark that, provided both the schemes (7) and (10) (or (8) and (11)) are
stable for all 6, h (and ¢) and are convergent, then, as the step size h tends to
zero, the accuracy of the approximations given by (7) (or (8)) will be dominated
by the error between the solution of the approximate differential equation (5)
and that of the true equaticn (9); that is, the error will be determined by the
size of the deviating argument &, for all h sufficiently small. For larger
step-sizes the error in both methods is expected to be of the order of the
step—size, since both can be shown to be methods of order one. There is no
advantage, therefore, in using scheme (7) (or (8)) in preference to scheme (10)
(or (11)), and in fact, the latter schemes are computatiocnally less expensive, as
well as being more accurate.

In order to establish stability and convergence, it is necessary to show
that the difference equations, together with the boundary conditions Vo=@ Yy =
B, have a unige solution and that this solution is uniformlvy bounded for all h
(and ¢). In the next section we investigate the stability of the schemes (7),
(10) (and (8),(11)) and demonstrate that, if condition (4) is assumed, then the

scheme (10) (or (11)) is stable for all choices of the step-size h.



4. STABILITY AND CONVERGENCE

The linear difference equations (7) or (10) (or (8) or (11)) together with
the boundary conditions Y, = 4 Yy = B, form a tridiagonal system of N-1
algebraic equations for the N-1 unknowns Yj’ j=12,...,N-1. It is well-known
that the coefficient matrix of such a system is non-singular if it is either
strictly diagonally dominant or irreducibly diagonally dominant [6]. Moreover,
if these conditiaons hold, the method of LU decomposition (or Gaussian
Elimination) provides a numerically stable technique for solving the system.
Written in recurrence form (3], this method is exactly equivalent to the discrete
invariant embedding algorithm described in [2].

It is also well-known that if, in addition to strict or irreducible diagonal
dominance, it is assumed that the diagonal elements of the matrix are strictly
" negative, the off-diagonal elements are non-negative, and the graph of the matrix
is strongly connected, then the coefficient matrix is an M-matrix and has a
negative inverse. From this result a maximm principle can be established for
the difference equatians and it can be shown that the solutians not only exist
and are unique, but are also uniformly bounded for all N (i.e., for all h = 1/N)
[71. '

In [2] it is shown that under the following conditions the solution
algorithin for (7) is mmerically stable:

J J J J 3
It is easily seen that these conditions are also sufficient to establish the

E.>0, G,>0, F,>E,+G and|Ej|5|Gj|.

existence and uniqueness of solutions and the stability of the difference scheme.

Under the initial assumptions made on the SPP(1)-(2), however, these relations
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cannot be guaranteed to hold for all h and &; in particular, for the diagonal

dominance property to hold, it is necessary that

[pj"'l . pj]/h + % [_ p5+1 . p5 + qj+1 + qj] 2 0, (12)

which requires, in general, that h be sufficiently small. The stability of the
difference scheme (7) carmot, therefore, be established by this argument for all
choices of the step-size.

The limiting difference equations (10) can similarly be shown to have unique
solutions and to be stable provided the inequalities

1+ha/o=.+h2[a'+b]/252

b [

j+1/e - h2[a3+1 + bj+1]/2e 2 0 (13)

are satisfied. These relations hold, in general, only if h is sufficiently small

J
1+ha

to guarantee that

aj - (a._'j + bj)h/2 2 0 (14)

- [ajﬂ—aj]/h+%-[a:"+1+a5+bj+1+bj] >0 (15)
We cannot show, therefore, that the difference scheme (10) is stable for all
choices of h by this argument either. (Similar conclusions hold for the schemes
(8) and (11) in the case a(x) { - M < 0.)

We observe that under certain special conditions the inequalities (12), (15)
are autamatically satisfied for all h. In particular, if [a'(x) + b(x)] 2 O and
a'(x) < 0, vx € [0,1], as in the examples in (2], then (12) and (15) hold for any

step-size. 1In these cases, to achieve stability only a relatively unrestrictive
1
E‘-
a(x), b(x), however, the inequalities (12), (15) cannot be expected to be

condition of form (14) need be satisfied for h < For general coefficients

satisfied for all choices of the step-length.
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The difference schemes (7), (10) and (8), (11) are all one-sided schemes,
however, and the results of [5], [1] and [4] strongly suggest that these schemes
may be expected to be stable independently of the grid-size. We now establish
that under assumption (4) (plus the initial assumptions on the SPP (1)-(2)), the
solutionr of the difference equations (10), together with the boundary conditions
yo =4, YN = B8, exists, is unique and is wniformly bounded for all h (ard e¢) and,
hence, is always stable. (A similar result holds for the difference scheme (11)
in the case a(x) ( - M < 0.) Since (10) (or (11)) is the preferred scheme if it
is stable for all grid sizes, we do not attempt to derive results for (7) (or
(8)).

We have the following:
Iheorem 1. Given that a(x) 2 M> 0 and\l';(x) = a'(x) + b(x) 2 0, vx « [0,1], the
solution to the difference equations (10), together with the boundary conditicns
.

o T Yy = B, exists, is unique, and satisfies

-1 -1
uyuh'“ <M ufnh’1 + (1 +MC)(la] + |B8]), (16)
where C is a universal constant, independent of h, ¢, and a, 8, f.

(Here ll-llh o A0d Ilonh , are the discrete ¢ and él norms given by

N-1
1
il = max |v.|, nwvi = “2 v.l + v X

Proof: The proof follows similar arguments to those of [5] and [1], but the

result is more general. Let I,'h( ) denote the difference operator on the
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left-hand side of equation (10) after multiplication by ¢, and let w, be any mesh

J

function satisfying Lh(w j) =f By rearranging the difference scheme and using

Jl
the non-negativity of the coefficients we obtain

A I p e . Hn
G frzophyl <1+ Cr S g b gl + 5y Iyl

It follows that
0 ¢ e(lwy,y| = [wy[/B% = e(fwy| = [wy_, h/m?

1 .- . =
(aj+1|wj+1| - aj|wj|)/h+ 3 (bj+1|wj+1| - bjlel) + |fj| . (17)

(1) To show existence and uniqueness, let (uj), {vj) be two solutions to the
difference equations (10) satisfying the boundary conditions. Then wj = u‘_j - Vj

satisfies Lh(wj) = fj' where fj = 0, andwo =0 = Wy Suming (17) over j =1 to

N-1 then gives
0 < - efwy|/h% - eJwy_ |/B% - a fw|/h - 3B, |w ],
. 1 “N-1 3119 2
which implies w, = 0= W1 Repeating the argument gives WJ =0,
j=0,1,...,N-1, which ensures the uniqueness of the solutions. For linear

'equations existence is implied by uniqueness.

(1i) To establish the estimate (16), let w:i = Yj - ej, where Yj satisfies (10)

and the boundary conditions Y, = yN=p, and ¢, = g(jh) + a(1 - jh). Then

J
w =0=w, and w., J=1,,2,...,N-1, satisfies

o N J
1
Ip(vy) — Inllyg) =3l + £, = Inley).

Lh(w>=§

Now let |w | = wil, o 2 |w |» 3 =0,1,...,N; then, sumning (17) from j = n to

N - 1 gives
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. 2 2
0¢ - ‘”wn! B !wn_]_!)/h - é’!wN_l!/h
N-1
1 ~ -~
- a lw |/h- 3B |u|+ } l£,1- (18)
n
It follows from (18) and the conditions on a(x) and b(x) that
N-1 N-1
Mlw_ | sz h|fj| S ey o +§ h|t.h(ej)|.
j=0 J=0
To complete the result, it is not difficult to show that
_ -1
ety o, = max (la}. 18]}, Wely, 4 = 5 laj + |8}
and
N-1
2 hth(eJ)| ¢ nan (|| + |p}) + (na'n_ + ubn“)uenh'l.
Jj=0
The estimate (16) then follows immediately from WY, o S WL, o+ nemy with C
1

taken to be a positive constant which bounds hah + z (ha'i_ + wbil_). 0O

2
This Theorem, together with the relation llf'llh'l < ufn, implies that the
solutions to the difference equations (10) are uniformly bounded, independently
of the grid-size h and the parameter ¢, and we conclude that the scheme is stable
for all step-sizes.

From Theorem 1 we can immediately establish an error bound. We have:

Corollary 1. Under the conditions of Theorem 1, the error e‘j = y(xJ) - Yj

between the solution y(xj) of the singular perturbatiocn problem (1)-(2) and the
solution Yj of the difference equaticns (10), with boundary conditions Y, = a

Yy = B, satisfies the estimate

< M Lirn (19)
<0

el h,1

h,
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where
|r| -2-h{ max [((a' + b)yy)'| +
j 1$x<xJ+1
max [tay)''| + max 2¢|y'''|/3) . (20)
J 1$x<x +1 _'] 1gx<xj 1

(It is assumed that the coefficients a(x), b(x) are sufficiently differentiable
to ensure that the solution y(x) belongs to 03[0,1]) :
Proof: Using the notation of Theorem 1, it is easy to show that Lh(y(xj)) = Tj’
where the truncation error r j satisfies (20), and, therefore, the error e j
satisfies e, =0 =gy and

Lh(ej) = Lh(v(xj)) = Lh(yj) =Ty j=12,...,N-1.

Defining o = 0 =r,., the estimate (19) then follows directly from Theorem 1. 0O

N’

We remark that the estimate (19) demonstrates that for hM > 1 the error
behaves essentially like O(hz) and hence the scheme (10) is satisfactory for
large step-sizes. If hM << 1, on the other hand, the accuracy may be expect'ed to
be relatively poor.

The estimate (19) also establishes the convergence of the difference scheme
(10) for fixed values of the small parameter ¢ > 0. To establish uniform
convergence using this error estimate, uniform bounds on the derivatives of the
solution to the differential equation are required for all e. Such bounds can be
determined from results found in [5]. Altermatively, it is sufficient to show
that the solutions to the homogeneous difference scheme are of bounded variation
uniformly for any grid and all ¢. Then the convergence result follows by the
arguments of [5]. We now establish the property of bounded variation for the
difference scheme (10). (We remark that the results of [5] and [1] are not
directly applicable here, due to the fact that the coefficient a(x) is variable

with x.)
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We have the following

Theorem 2. Given that a(x) > M > 0 and B(x) = a'(x) + b(x) >0, vx € [0,1], the

solution to the difference equations (16) for fj =0, J=0,1,...,N, together

with the boundary conditions Yo =4 Yy = B, is of bounded variation and

satisfies the estimate

N
} |yj - yj_1| < M-l(n.-,uua° + 2||t;||°°)||y||h'°° +nan (fjaf + {p])}. (21)
J=1
Proof. If we define A;j = Yj - Y:j-l' then the hamogeneous difference equation
(10) may be written
2 1.~ -
G-(Aj+1 - AJ)/h + (aj+1Yj+1 = anJ)/h - f(bj'flyj"'l + bJYj) = 0. (22)

Rearranging (22) gives
(1+bay /e)ag, = a5 - (2/e) (g, = a )/hly,

+ (h%/2¢) (b (23)

#1¥341 * By¥y)
From (23) it follows that
(1 +hM/e)[ag, | < [44] + (M/e) (hC/M) , (24)

where C = (ha'n + u!;u“)uyu Then, denoting « = (1 + I'N/e)_l. we find from

h'“.

jh
|4j+1| < xldjl + (1 - x)(hC/M),

(24) that the difference |A for j =1,2,...,N-1 satisfies the recurrence

which has the solutio.n

lay1 < a3+ (mem) | (25)

where A = |Al| - (hC/M). Summing (25) over j = 1 to N then gives
N

dlagi s (1 - &Masa - x) + om, (26)
1
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To complete the estimate we must, in essence, find an O(h) bound on |41| or,
equivalently, on A. We observe that if we sum (22) from j =1 to N -1 and
rearrange, we obtain

(1+ Ba/e)a, = 4y + (/M Laggy - vy = 5B Y(byygvey + By

J

It follows that

|41| < x|AN| + (1 - K)CO/M, (27)
where C_ = nan_(|a| + [8]) + ||S||°°uy||h'°°. Then, using (25) with j = N and the
definition of A, we find

(1 - &M 4] ¢ (x - mem+ (1 - k)M,
since ¥ < 1, and we have

(1 - «M)as(1 - &) ¢ c M - nEM. (28)
The estimate (21) then follows directly from (26) and (28). o

Theorem 1 together with the estimate (21) ensures the bounded variation of
the solutions (y j}g to the difference scheme (10), independently of the grid-size
h and the parameter e¢. Following the arguments of [5], it can then be shown that
if, for given h and ¢, ¥**(x) is the wnique piecewise linear contimuous function
on x € [0,1] agreeing with {yj}g at the grid points and having jumps in its

derivative only at points x = xj, then for any pair of positive sequences hu — 0

h ,e

and e, — ¢, there extists a subsequence of functions y Y'Y which converge, in

the case ¢ # O, to y°" = y(x), the unique solution to the singular perturbation
problem (1)-(2) and, in the case ¢ = 0, to y°'° = y(x), a weak solution of (1).
We conclude that the difference scheme (10) (and similarly scheme (11)) is

stable for all choices of the grid-size h and is convergent in the limit as h - O
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to the solution of the SPP (1)-(2) for all € > 0. Furthermore, from Theoresm 2,
it follows that continuation on the parameter ¢ may be safely used. The accuracy
of the scheme is satisfactory for large grid-sizes, but if it is required to
resolve the boundary layer accurately, it is advisable to use a non—-uniform grid
or a more sophisticated approximation.

We remark that the condition a(x) > M > 0 (or, correspondingly,
a(x) < - M < 0) excludes the possibility of turning points in the solution. Many
other schemes are available for solving such problems. For cases where turning
points may occur and for certain classes of nonlinear problems, approximate

difference schemes are given in (4], [5] and [1].

5. CONCLUSIONS

A three-point finite difference scheme for solving a singularly perturbed
linear, two-point boundary value problem with a boundary layer at one end of the
region is investigated. The scheme is derived in [2] and depends ocn a small
deviating argument. It is shown here that in the limit, as the deviating
argument tends to zero, the seheme converges to a simple ocne-sided appraximation
to the original singular perturbation equation in canservation form. The
solution to the limiting scheme is shown, furthermore, to be uniformly bounded in
the ¢_,-norm for all values of the small parameter on any uniform grid and, thus,
to be uniformly stable. It is proved also that the solution is of bounded
variation for éll meshes and all values of the small parameter, and, hence, is

uniformly convergent.



16

It is concluded that no advantage arises from using the deviating argument,
and that the most accurate and efficient results are obtained using the limiting
finite difference approximation with the deviation at zerc. On a large uniform
grid the ane-sided limiting scheme is found to give reascnable precision, but to

resolve the boundary layer accurately, a non-uniform grid or-a more sophisticated
approximation is recommended.
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We show here that under the assumptions a(x) 2 M > 0 and g(x) = a'(x) +

b(x) > 0, the solution to the differential equation (1) with boundary conditions
(2) is uniformly bounded in the maximum norm for all e¢, and that the following
estimate holds:

g < M—lufn1 £ (1 +Mey(a] + (8], (29)
where C is a constant independent of ¢, «, g and f.
Proof Let L(:) denote the differential operator on the left-hand side of
equation (1), and let w(x) = y(x) - ¢(xX), where y(x) satisfies the SFP (1)-(2)

and €(x) = gx + a(l - x). Then w(0) = 0 = w(1) and

L(w) = L(y) L{¢) = £ - L(¢) = £. (30)

Furthermore, let |w(xn)| hwil_, and let X > X be the first point to the right

of x where w(x) changes sign. Then w'(x_) =0, w(x ) = 0 and
]
w (xm) <0 if w(xn) >0
> 0 w(x ) < 0.
n

Integrating (20) from X to X then gives

X X b
m m m
Jew" + (aw)' - bwdx = ew'(x ) - aw(x) - wadx= J £ ax, (31)
X X X
n n n

and multiplying both sides of (21) by —sgn(w(xn)) and rearranging leads to the
result
}Sn ~
Miw(x,) | ¢ f f dx(
X

n
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Finally, from

ien = max {|af, |B]), nen, =%(|a| + |8])
and
el
| [ L{¢)ax]| < []L(t)ldx < han (|al+]p]) + HbH ien,
% o

it follows that

X
m

[ £
X
n

where C is a constant which bounds liali |+ %- iibli | and is independent of h, ¢, &, £

S nfng + clfa] + |8))

and f. The estimate (29) then follows directly from

Iyl < iwill_ + nen ., a
©0 - -3 o0



