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Abstract

Numerical solutions of the two dimensional Davey-Stewartson equations are presented
along with a review of the one dimensional analogue, the nonlinear Schrédinger equation.
The numerical solutions are based on a two dimensional extension of the Runge-Kutta and
split-step Fourier methods. Numerical simulations are performed on the focussing Davey-
Stewartson II equation to study the formation and evolution of lumps and rational solitons
which continue to propagate after collision, without distortion. Further simulations are
performed on the evolution of distorted lumps and Gaussian-type initial conditions in an

attempt to find the asymptotic form of the wave for arbitrary initial conditions.
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Chapter 1

Introduction

In recent years the Davey-Stewartson equations have attracted a good deal of interest in
various physical and mathematical problems. The Davey-Stewartson equations are non-
linear partial differential equations, depending on one temporal and two spatial variables,
and can be thought of as the two dimensional analogue of the nonlinear Schrodinger
equation (NLS). The NLS equation is used extensively for modelling non-linear optical
phenomena. The Davey-Stewartson equations are used in fluid dynamics and plasma

physics and many other branches of physics[4]. The DSII equation is

1
tug + E(umm - uyy) + Ulu|2u —upr = 0, (11)

Gzz + ¢yy - 20(|U|2)m = 0. (12)

and the DSI equation is

1
tug + §(um + uyy) + a|u|2u —ugp, = 0 (1.3)

¢zm - ¢yy = 20(|u|2)$

I

(e
=
=
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with ¢ = —1 for the focussing case.
These equations can also be written in terms of the complex parameter z = = + 4y,

for example the focussing DSII becomes|[2]

’iUt -+ Uzz + Uzz -+ 4(9 + g)u = 0 (15)

29: — (luP): = 0 (16)

where z = z — 4y, u(z, Z,t) and g(z, Z,t) are complex valued functions (g contains o).

The function u(z,y,t) is the amplitude of a surface wave packet (the main flow) and
¢ is the velocity potential of the mean flow interacting with the surface wave.

The equations fall in to the special class of integrable equations. Examples of other in-
tegrable equations are the KdV and the sine-Gordon equation in one spatial dimension|8],
and the KPI and KPII in two spatial dimensions(1].

There are several possible definitions of an integrable PDE; one of its defining prop-
erties is the existence of infinitely many conservation laws. In one space dimension, an
integrable PDE can be written as the compatibility condition of two linear ODEs depend-
ing on a complex parameter: this is the basis of the inverse scattering transform method,
a complicated and much celebrated linearising transform discovered thirty years ago. The
use of this transform leads to the complete analytic solution of the Cauchy problem.

In two space dimensions, some integrable equations admit an analogue of the in-
verse scattering transform; however, these inverse scattering transforms are only defined
formally; the analyticity is not guaranteed. Hence only very few analytical results are
available.

The Cauchy problem for integrable equations in one dimension can be completely
solved using the inverse scattering technique[l]. Carrying out this analysis leads to the
discovery that, asymptotically, all decaying, travelling-wave solutions have a specific lo-

calised structure. Some of these localised solutions were already known, at least their
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analytic expression was. What was not known was their asymptotic significance.

In one dimension these special localised structures are generally called solitons; and
some forms are known as kinks, antikinks and breathers. Some such localised solu-
tions have been found for the two dimensional DS equations and are called dromions
or lumps. Dromion deriving from the Greek word ”dromos”-tracks. The distinction be-
tween dromions and lumps is that lumps require no boundary conditions whereas dromions
require solitons as boundary conditions. Example analytic expressions of these coherent
structures are:

Soliton of the KdV equation

azx

u(z,t) = 3(12sech2(2 — a3t) (1.7)
Soliton of the NLS equation
i(prz+(ph—p})t+n)
u(z,t) = LB t (1.8)
cosh(pr(z — 2prt) +1
where pgr, pr and 7 are real parameters.
Lump of the DSII equation
. 2 —92 t -
u@zﬂzﬂmmw+p)+m PZ) (1.9)

|z + o + 2ipt|2 + | B2
where a, 8 and p are complex parameters. o = 0+ 04, 5 =2+ 0{ and p = 1+ 07 are

suitable values.

Dromion of the DSI equation

diexp(—(z +y+4t) —i(z +y))

+ (1 + exp(—2z — 4¢))(1 + exp(—2y — 4t)) (1.10)

u(z,y,t) = 1

or
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Figure 1.1: The Coherent structures of some integrable equations

B 2v2phexp(—A(z + y) + 2i)%¢) .
U9 8) = 3 + exp(—2A0)(1 1 ezp(~29)) (L1

refer [15] and [1] for full descriptions of these equations. A = 1 and p = 1 are suitable
values. Figure(1.1) displays the forms of these structures.

The soliton solutions have a particular significance in 1-D as they emerge from any
initial waveform carrying enough energy (amplitude). Hence they are the asymptotic
structure of any decaying solution. For one dimensional integrable equations such as
the NLS and KdV equations, there have been many numerical studies that any initial
condition breaks up into some number of solitons after some sufficient time (Figure 1.2).
This is also proved analytically using the inverse scattering transform.

In 2-D we do not know if all analogous phenomenon occur; hence this numerical study
has been performed for the Davey-Stewartson equations. It is the goal of this research
to study the solution for arbitrary initial conditions of the DSI and DSII equations, and

particularly, to investigate the emergence of a lump structure in the case of the DSII

10
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KdV Equation, one gaussian initial condition

Figure 1.2: The splitting of a Gaussian initial condition in the focussing KdV equation.

equation.

One important difference between the KdV and the NLS equation is that the NLS
has imaginary parts, and the NLS soliton has an ¢* term (see [8]). This term determines
the speed of the soliton. Compare the KdV soliton where the speed is proportional to
the amplitude. If a real initial condition is given then the NLS equation will evolve
without moving; while physically meaningless, this is useful for studying the evolution
without concern over boundary conditions. In contrast all initial conditions in the KdV
will form travelling waves. The DS equations are two dimensional analogues of the NLS
and we expect the same amplitude/speed relation to be present. Real and imaginary
initial conditions in the DSII equations were studied for this report.

We concentrate our attention on the DSII equation which is simpler; the DSI equation
is more involved because it requires a boundary condition for the emergence of localised
structures.

This report is organised as follows. In chapter 2, we give the expressions for two
important one dimensional integrable equations, the NLS and KdV equations, and their
2+1 dimensional counterparts, DS and KP. We also review the numerical methods used

in the literature and outline the numerical methods used in this research.

11



MSc Project, Summer 2002 Malachy McConnell

Numerical results for the NLS equation are given in chapter 3 and numerical results
of the DSII equation are given in 4. Concluding discussions are given in chapter 5.

The appendices A through F contain algebraic derivations for various results, notes
on practical application of fast Fourier transforms and matlab source code listings. Ani-

mations of the matlab output are available at www.mathsconsultancy.co.uk.

12
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Chapter 2

Integrable equations of
mathematical physics and their

numerical solution

An example of an integrable equation in one dimension is the nonlinear Schrodinger equa-

tion (NLS)

iy + OUgg + AuPu =0 (2.1)

where o = )\ is the focussing case; in this case solitons are supported (figure 3.2). While for
o = —\ the equation is defocussing (figure 3.3) and universally dispersive. The imaginary
term in the NLS arises from physical nonlinearities so it models nonlinear media such as
optical materials, plasma, and water waves in the presence of gravity and tension, e.g.
capilliarity.

Another equation in this class is the Korteweg-de Vries equation (KdV),

Uy + Uy + Ugze = 0 (2.2)

13
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The KdV equation balances a nonlinear hyperbolic term uu, and a linear dispersive
term uzgz. The KAV equation does not have an imaginary term and does not contain a
focussing parameter.

The two dimensional (2+1 dimensional) extension of the KdV equation is the Kadomtsev-

Petviashvili (KP) equation.

(ut + Buug + Ugzg), + 302uyy =0 (2.3)

where 02 = %1, see [1] relating to this equation.

A two dimensional extension of the NLS equation gives the DSI and DSII equations.

1
iup + i(um +ayy) +olulfu—up, = 0, (2.4)
¢zz + ¢yy - 2U(lu|2)x = 0 (2'5)
) 1 9
tuy + §(um — Uyy) + olulu —ugpy = 0 (2.6)
bzz — by — 20(Jul?)e = O (2.7)

In one dimension, popular numerical methods for solving these equations are the split
step Fourier method and the Runge-Kutta method via an integrating factor. In the split
step Fourier method the equation is split in to a linear part and a nonlinear part which
are then iterated in time sequentially. In the integrating factor method, an integrating
factor is used to remove the linear part leaving a nonlinear equation in a form suitable
for using a Runge-Kutta method.

For (2+1) dimensional equations, White and Weideman[15] use the split step Fourier

method on the DSII and DSI equations. Yajima [9] studies the DSI equation using a

14
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pseudo spectral method for the numerical integration and either Burlish and Store method
or fourth order Runge-Kutta method with adaptive step size control for the time inte-
gration. Besse and Bruneau use a modified Crank-Nicolson finite difference scheme also
studying only the DSI equation[1].

We will concentrate our attention on the focussing DSII equation. This equation can

be written in many equivalent ways; for example from White and Weideman[15]

il
i + = (Uyy — Ugz) + olulPu—ug, = 0 (2.8)

2
Paz + Pyy — 2‘7(|u|2)w =0 (2.9)

The form modelled for this project is

1
iU + = (Ugg — Uyy) + OluPu—ug, = 0 (2.10)

2
oz + Sy — 20(Juf?)e = O (2.11)

Note the change of sign which essentially comes through as a change in the direction

of the time, t. Fokas [6] uses the form

iug + Uy +uzm +4(g+gu = 0 (2.12)

29z — (Jul*). = 0 (2.13)

This form is preferred for analytical investigations. See Appendix ref on deriving
White from Fokas.

Besse and Bruneau [3] describe a full family of DS equations:

15
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iy + Ougg +uyy = x|ul*u + bud, (2.14)

Pz + Mbyy = U(I“IQ)m (2.15)

where the constants 8, x, b, m and o are real. This system describes the evolu-
tion of water surface waves in the presence of gravity and capilliarity. Follow-
ing Ghidaglia-Saut, we classify these systems according to the sign of (4, m)
as elliptic-elliptic for (§,m) : (+,+), elliptic-hyperbolic for (+, —), hyperbolic-

elliptic for (—,+) and hyperbolic-hyperbolic for (—,—).

The DSII equation described in this report is hyperbolic-elliptic.

Two numerical methods were used to model the NLS and DS equations: an integrat-
ing factor paired with a Runge-Kutta time-stepping scheme, and the split step Fourier
method. The one dimensional case will be reviewed first, then this is extended into two

dimensions. The numerical results are in chapters 3 and 4.

2.1 The NLS equation

2.1.1 The Split-Step Fourier Method in 1D

For the split step method the equation is split into a linear part 'L’ and nonlinear part

‘N’

L:du+oug, =0 (2.16)

N dug 4+ Au|?u=0 (2.17)

The linear part is solved in discrete Fourier space. In discretising and transforming to

Fourier space. ..

16
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u — Uy
d_.
Ut —_— —1U
at
PN
Ugr — —k U

M M 2
k= (—7+1,...—1,0,1,...7> (ﬁ>

see appendix A for detail of the discretisation, Fourier transform and explanation of the

expression for k.

Equation (2.16) becomes

= —ik%0Ty

which is a separable ODE for @ with exact solution

ak — Ae—ikzat

and setting A = ug at ¢t = 0 gives

Uk (t)

Uy, (t + At)

-~ e—ikzot

= ’U,O

— ak (t)e—ikzoAt

The nonlinear part is solved analytically too, by observing that the equation

dug 4+ Aal>u =0

has solution

17

(2.18)
(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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u(z,t) = aeMalt (2.26)

for any function a(z) € C, particularly a(z) = u(z) whence the solution is

w(z, b+ At) = u(z, t)eMH@DIPAL (2.27)

where |u|? has been taken as time independent because [ |u|?dzdy is conserved.
Then the solution is progressed in time by taking a small time step using the linear
solution(2.24) followed by a small time step using the nonlinear solution(2.27). Schemat-

ically

’U.(t + At) £ NAt{LAtu(t)} (2.28)

or, to second order accuracy

u(t+ At) = Nac{La{Ngeu()}} (2.29)

The second order accurate scheme was used exclusively in this research.

2.1.2 The integrating factor method with Runge-Kutta time stepping
in 1D

Before using the Runge-Kutta method for time stepping the nonlinear Schrodinger equa-
tion needs to be manipulated so that the linear part is absorbed by an integrating factor.

First the equation is Fourier transformed and multiplied by —i

V0, + i0k?T — iul?u =0 (2.30)
Multiplying by the integrating factor, found by inspection, e"'i"kzt, we obtain

18
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. 2, ) . . 9 . e — . 2
ek, 1 iok et R — i\ u|2ue TRt = 0 (2.31)

~ k2t~ ~ . k2t~ k2 ~ B _iok?
Define U = et9%°t3; then U, = iock2eT9%°1q + e1i0k°tg, and 4 = Ue tGkEt_ 6%

U, = iok?0 +etioh’i, (2.32)
ety = U, —ik*U (2.33)

and substituting (2.33) into (2.35) gives

0, — iok?U + iok?0 — iA[ulPue o™ = 0 (2.34)
which rearranges to
U, = i\[ul2uetiok™ (2.35)

Recalling that @ = Ue™"*"t and that u = F~'(4Q) where F represents the Fourier

——— .
transform, the term |u|?u can be written as

[ufPu = F(F (e ¥4 0) 2 F L (e ¥ 1)) (2.36)
fuf? u
and (2.35) becomes
U, = iNF(|F~He o 0 2F -1 (=% D)) (2.37)

which is now in the form

@) (2.38)

19
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and can be solved for U using a Runge-Kutta method. The Runge-Kutta method of

fourth order is defined by the following algorithm:

forn=20

ap = Atf(Untn)

as == Atf(ﬁn - %al, tn + 54t)

as = Atf(U, + Lag, ta + 2AL)

a4 = Atf(U, + a3, tn + At)

thr1 = tp+ At

Unt1 = Up+ L(a1+ 20 + 2a3 + as)
next n

where f(Un, tn) = iNF(|F~L(e~o* tn ) |2F 1 e~k [,,)), and Ty = e®F(uq) = F(uo).
The algorithm generates the solution of U at time t, + At. The desired answer, u at

time ¢, + At is then calculated from

u(z,t) = f_l(ﬁe_wkzt) (2.39)

Accuracy and limits of stability were not calculated.

2.2 The KdV equation

The KdV equation can be analysed in a way similar to the one just outlined for the NLS.
See Trefethen(12] for an integrating factor method and efficient RK4 code. Figure 1.2
shows the splitting behaviour for a Gaussian initial condition. The KdV causes the initial
disturbance to split into any number of solitons of different amplitude. The soliton with

greatest amplitude travels fastest and leads the wave train.

20
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2.3 The DSII equation

2.3.1 Split step Fourier method for the DSII equation (2D)

We now turn to the DSII equation (2.10, 2.11), and split it into linear and nonlinear terms
as described in White and Weideman [15], following the method of the previous section,

but this time in two dimensions.

L:du — %(uyy —Ugg) = O (2.40)
iug + olulPu —up, = 0 (2.41)
N ¢og + dyy —20(Jul*)e = 0 (2.42)

Solving the linear term, we approximate the discrete u by the two dimensional discrete

Fourier series

Ujp =3 Y Tppe Hm@iTonvi) (2.43)
m n

where uj, &~ u(z;, yx), see appendix A for definitions of x;, yk, tm, vn, j, k, m, n, and

series limits.

21
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The transformations

M M 27

N N s
v = (—3+1,...—1,0,1,...3> (ﬁ)

are used to write the Fourier space equivalent of the linear problem 2.40

AU,

1 =
dt E(Ngn = Vv%)umn =0

which is a separable ODE with solution

U () = T (0)el 3 BRI

which gives the incremental solution

T (£ + AL) = By (£) (3 R 1RAY

White and Weideman[15] summarise this step. ..

The linear problem can therefore be solved as follows: Given the data ujk(t),

(2.44)
(2.45)
(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

compute the coefficients U(t) from (2.43). This requires one two dimensional

discrete Fourier Transform. Next advance the solution in Fourier space accord-

ing to (2.51). The solution uji(t + At) follows by taking the inverse Fourier

transform [of Ty, (t + At)].

To solve the nonlinear part, equation 2.42 is the Laplace equation which is efficiently

22
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solved using spectral methods compared to five- or nine-point finite difference formula.

In this particular case the Fourier representations

el = D23 fumn[Peitmes e
m n

ik = Zzaei(#m%+vﬂyk)
m n

are used to solve for ¢(x,y) by writing the Fourier transformation of (2.42)

(B2, + V) bmn + 203 [tmn]? = O
which rearranges to

. —20in [ 2

G = mlemn® 20

(12, +v2)

(2.52)

(2.53)

(2.54)

(2.55)

Note that $00 is undefined, but this does not hinder the solution because the required

function for substituting into (2.41) is ¢,

(b2)jk = Z Zipmamnei(ﬂmxﬁl/nyk)

and clearly the m = 0, n = 0 value is zero.

To solve equation 2.41 the method of [15] is used.

... we follow the suggestion in [1] and use the strong coupling limit of the DS

equations derived in [11]. Substituting u = rie®® into (2.41), with both r and

0 assumed to be real functions of x, y, andt.

which leads to the solution

23

(2.56)



MSc Project, Summer 2002 Malachy McConnell

uj(t + At) = ujk(t)e(i(0|Ujk(t)lz—(fﬁm)jk(t))At) (2.57)

Now equations (2.57), (2.56) and (2.51) can be used to solve for u(z,y,t). White and

Weideman[15] summarise the method. ..

The first order split step method for the DSII system proceeds as follows: Given
the data uji, at any time step t, first solve for (¢z)x as indicated by 2.56. Then
advance the solution according to the nonlinear part 2.57. This becomes the

initial data for the linear problem which is solved by 2.51.

Great care must be taken when defining the variables in the numerical code particularly
the definitions of 5, k, pm, Vn, M, N, and the grid size, P. See appendix A for a detailed

description.

2.3.2 Integrating factor with Runge-Kutta method for the DSII equa-
tion
Here the method of section 2.1.2 is extended to solve
. 1 9
iug + E(um — Uyy) + (o|u|” — ¢z)u =0 (2.58)

where ¢, is found using (2.56). As before, the first step is to multiply (2.58) by —i,

discretise and Fourier transform...

B~ il — 2~ F[i (oluf? — 62) u] =0 (2.59)

Now times this by the integrating factor of e_%(kg_k?/)t, which was found by inspection.

ez ke =Ryt _ %z(vﬁ — ufn)ﬁe_%(kg—ks)t — F i (ofuf® — ¢z) u] emski—kt = o (2.60)

24



MSc Project, Summer 2002 Malachy McConnell

Defining U = e~ 2 (k2=F)'g 50 that

-~ ) CA(R2 L2V o (212
0, = (s, — et ¢ gemHO

which rearranges to

- ~ P2 _ ) -
G = Uettn %)+§(M?n—- 2)il

substituting in (2.60) gives

e‘%(ki—kﬁ)t ﬁte%(#?n_ 2) + _;_(’u?n _ g)a _ %’L( T2L_ uzn)ae—%(kg—kz)t
—F [ (0'|u,|2 — ¢z) ul e—2kE-kDt g

ﬁt - F [z (U|u|2 — qu) u] 3Bkt —

~

and u = F~! [fje%(’ﬁn_”%)] so finally we have

(2.61)

(2.62)

(2.63)

(2.64)

O, = Fli(oul®— ) u] e 2*a5(2.65)

O = F (ol [TedthD] - g, ) 771 [TebthmD] | emst2-H) (266)

Comparing equation (2.37), this is in the suitable form for solving using the RK4

algorithm in section 2.1.2.
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2.4 The DSI equation

2.4.1 Split step Fourier method for the DSI equation (2D)

The DSI equation

1
tug + i(uyy + Uzz) + 0|u|2u —ugp, = 0 (2.67)

boz — byy — 20(ju*)e = 0 (2.68)

is harder to solve because equation (2.68) is hyperbolic. Further, White and Weideman

[15] point out

... the boundary conditions ¢, — 0, 2% + y> — 0o, do not give rise to any
interesting solutions: all initial profiles simply disperse away (see [7]). To
obtain coherent structures like dromions, non-trivial boundary conditions on ¢

need to be specified at infinity.

To prepare the DSI for the split step method a change of variables to £ = z + v,

n = z —y is made. This is the approach taken in {7]. The DSI system is transformed into

U + (Ugg + Uyy) —uV =0 (2.69)

where

3 13
V= 50' (/—oo (\u|2)ﬂ d§ + /—oo <|u|2>5 dﬂ) + ¢E(§7 _Oo>t) + ¢n(—00,n»t) (2'70)

Equation (2.69) can now be split into linear and nonlinear parts and solved using the

split step method. The equation is split
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L: ’l:’U,t + ('Ua::z + Uyy) = 0 (271)

N:iug—uV = 0 (2.72)

The linear part is solved as before, by taking the Fourier transform, advancing in time,

and returning to physical space by an inverse transform. The equations are. ..

e Urs, N 1

o 5(#31 + V3 lmn = 0 (2.73)

which is a separable ODE with solution

By (t) = Tyn (0)c T W R (2.74)

which gives the incremental solution

T (£ + AL) = Ty (£)e2 BRI (2.75)

The nonlinear part (2.72) is solved as before by using the strong coupling limit [7, 15].

This leads to the solution

u(t + At) = u(t)e”V AL (2.76)

where the approximation ftt+At Vdt = V(t)At + O(At?) has been used.

The first order split step method is progressed by firstly using (2.76) which provides
the initial data for the linear problem which, in turn, is solved using(2.75). The second
order method proceeds as before; a half nonlinear step using (2.76) followed by a full
linear step with (2.75) and finally a half nonlinear time step using (2.76)again.

The hard part here is calculating the function V. White and Weidman [15] write. ..
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It remains to discuss the computation of V from (2.70) when u and bound-
ary conditions ¢¢(£, —00,t), ¢p(—00,1n,t), are supplied. Continuing to assume
boundary conditions u — 0 as €2 +n? — oo, we consider the computational
domain [—P, P] x [=P, P] as an approzimation to R x R. Thus the boundary

conditions are assumed to be supplied at £, n = —P rather than —oo.

Before we look at the detail of the calculation, it is worth pointing out here that we were
unsuccessful in reproducing the examples of White and Weideman [15] most likely because
of incorrectly computing V. Peter White points out[14] that in his simulations he modified
the boundary function from that at —oco to that at —P using algebraic software to find the
function ¢ at —P exactly for the analytic dromion, rather than assuming ¢¢(§, —o0,t) ~
$e(¢,—P,t) as we have done here. The application of the modified boundary is left for
future work.

Notwithstanding the boundary function, it is worth examining V' and explaining its
computation. To compute V from (2.70) the function is discretised and Fourier trans-

formed. Taking the term

¢
/_oo (lul?), dé (2.77)

of (2.70) we proceed as follows, . .
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o = D b ) e b = F(ufY) & uff = 7 )

5 .
/P (|U|2)nd§ = /_P (Zmenel(#m£j+Vn"lk)> d¢ (2.78)

n

= / Zmenw eilBm&tvane) - ge (2.79)

m

3
_ {Z Z b ’LVn l(l‘mgj +Vn77k)jl (280)

m#£ED N
= Zzb Yn 1#m£g+Vnnk) Zzb Un w( —pm P4vnni) (2.81)
m#0 n m#0 n
(2.82)

and for m = 0, put m =0, y,, = 0 in (2.79) giving

3 .
= / i > bonivnerdé (2.83)
- n
) 13
= ) bonivne / d¢ (2.84)
= 3 bonivnenm™ €% (2.85)
= (5.7 + P) Z bOniVneiVnnk (286)
finally then
(1) (2)
6 o o : -, - L : =
/ (|U|2)n d¢ = Z Z bmnﬁn_ez(#miﬁunnk) _ Z Z bmnie*(_“mpﬂ’"”k)
- mg#0 n & m#0 n Hom
R
+(& +P) > bonivne™ ™ (2.87)
n
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The translation of equation (2.87) into computer code is worth a few remarks. Term
(1) is a two-dimensional inverse fast Fourier transform, with the m = 0 result ignored and

is coded

bmn = fft2(abs(u)."2);

dummyl = kyyuneven./kxxuneven.*bmn;

dummy1(:,1) = 0; %pad the m=0 column with zeroes
dummy1(:,M/2+1) = 0; %pad the other m=0 column with zeroes

Vterml = real (ifft2(dummyl));
Term (2) is the j =1, £ = —P column of term (1) and is coded

%subtract the j = 1 ie x(j) = -P column from every column in Vterml
dummyl = Vtermi(:,1);
for s = 1:M
Vterml (:,s) = Vterml(:,s)-dummyl;

end

Term (3) is a one-dimensional inverse Fourier transform and can be coded

dummyl = (1/M)*real (ifft (i*2xpix(kyuneven)’ .*bmn(:,1)));
dummy2 = dummyl;
for‘s = 2:M

dummy?2 = [dummy2 dummyl];
end
for s = 1:M

dummy2(s,:) = dummy2(s,:).*(x+P);
end

Vterml = Vterml+dummy2

Note in these code snippets z = &, y = n,kzz = p and kyy = v.
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Boundary terms for V

Figure 2.1: Visualisation of the boundary terms of the DSI equation

The process is repeated for the second part of equation (2.70) with n and ¢ inter-
changed. The remaining part of V is constructed from the boundary values ¢¢ and ¢y,
We advise that 'boundary value’ is an unfortunate term because in the transformation to
¢, 7 these terms now run throughout the &,7 plane, and are no longer associated with the
boundary. It is better to think of these as the mean flow (the tracks for the dromion).

For the DSI dromion to be supported ¢¢ and ¢, are given by

¢e(€,t) = —2sech®(¢ + 2t) (2.88)

Pp(m,t) = —2sech?(n + 2t) (2.89)

which in the computation of V, look like figure(2.1). The full function V is visualised in

figure(2.2) along with individual plots of the constituent parts of equation (2.70) for V.
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J(ul), d& luf®),dn

Figure 2.2: Visualisation of the function V, bottom right, and its constituent parts.
2.5 Boundary considerations

The Fourier method can be used because the numerical domain can be chosen to be
large enough that the initial function is close to zero around the boundaries; hence for
numerical purposes, the problem can be considered to be periodic. However, the DSII is
a wave equation and in the study of long time evolution the boundaries are not always
zero as energy (amplitude) travels toward the boundary.

This places a limit on the numerical method; namely any result after the function
approaches the boundary is no longer valid. When the solution reaches the boundary it
aliases round the back of the model and comes into the opposite boundary. In some cases
this continues to be valid but is not a recommended modelling strategy.

To stop energy wrapping around the boundaries a filter can be used to ensure the
boundary is all zero. Unfortunately, in a spectral method the presence of a filter causes
reflection of energy back into the numerical domain all be it with significantly reduced

amplitude. Nishinari & Yajima [9] use a linear edge filter in their model to good effect.
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Cubic Filter

Figure 2.3: The serpentine filter function. This was not always used because it causes
reflections, but is very useful in cases where small amplitude fast moving structure shoot
off toward the boundaries.

The serpentine curve was used to design a filter. The serpentine curve was studied
by Newton in 1701[10]. This curve was chosen because it is a smooth S shape (cubic).
For Fourier methods smooth functions are preferred because they have no sharp changes,
that is, no high frequency components. A cross section of the filter function is given in
figure B.1 and the full three-dimensional effect on the computational domain shown in
figure 2.3. Although the filter is useful in some cases, the best results are found using a
large domain which forces a high number of grid points M and N; this in turn leads to
long computational time.

The filter was used to good effect when studying Gaussian initial condit where small

'wavepackets’ move away quickly and reach the model boundary within a few time steps.
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Chapter 3

Numerical results of modelling the

NLS equation

In this chapter the numerical results of the NLS equation are presented and discussed.
Both the split step and RK4 methods were implemented in matlab. Figure 3.1 shows
the single soliton of equation (1.8) advancing in time without a loss of amplitude and no
dispersion. Figure 3.2 shows two solitons travelling with different speed interacting and
passing without exchanging energy; this is a celebrated result, and in fact this interacting
property is sometimes taken as the definition of integrable equation. Figure 3.4 shows
an initial gaussian function shedding energy and transforming into a single soliton in
agreement with theory. These are all important characteristics of the one dimensional

integrable equations and soliton solutions. Fokas writes[6]

... [Pasta and Ulam] discovered the defining property of Solitons: After in-
teraction these waves regained exactly the shapes they had before. ...1t can
be shown that q(x,t) asymptotes to qn(z,t), where qn(z,t) is the ezact N-
soliton solution. This underlines the physical and mathematical significance
of solitons: they are the coherent structures emerging from any initial data as

t — oo.
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Figure 3.1: A soliton modelled using the split step Fourier method.

NL$S Equation, focussing
Two-soliton initial condition
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Figure 3.2: Two initial solitons propagate and cross over without change in shape.
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NL$S Equation, defocussing
Two-soliton initial condition

Figure 3.3: When o = 1 the NLS equation is defocussing and solitons are not supported.

All these results were known from modelling and analytical studies. The reproduction
here serves to show that the numerical schemes are working correctly.

An important characteristic of the NLS equation is that the gaussian initial condition
sheds and moves. Previously this characteristic had not been modelled for the DSII
equation and this research aims to model two gaussian initial conditions in a repeat of

figures 3.5 and 3.6 for the two dimensional DSII equation.
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Figure 3.4: A Gaussian-type (6_0'2“”2“””) modelled using the split step Fourier method.
Observe the shedding of faster moving waves as the initial Gaussian profile narrows to a
soliton profile. Note the log scale.

NLS Equation, focussing, two gaussian initial condition

Figure 3.5: The two initial Gaussian inputs decay into solitons then continue to propagate

without change of shape even after passing over each other.
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Figure 3.6: As figure 3.5, but plotted on log scale. Note the shedding and regaining of
shape after crossing.
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Chapter 4

Numerical results of modelling the

DSII equation

In this chapter the numerical results of the DSII equation are presented and discussed.

4.1 Verifying the model

4.1.1 Reproducing known results

The first test was to reproduce the results of [15] where by the rational soliton, equation
(4.1), was modelled for t in the interval (-3.5, 3.5), z x y = [-16, 16] x [-16, 16] and

M = N = 64, using a time step of At = 0.01 and ¢ = —1, the focussing case.

22t (y—t)

L+ (z+1)2 + (y — 2t)? (41)

u(z,y,t) =

Visually comparing figure 4.1 of this report with figure 1 of [15] is very encouraging,
those results looking identical. The integrating factor and Runge-Kutta method code,
referred to as RK4 from here on, was also used to reproduce this result. However, the
spatial resolution of A = % = 0.5 is insufficient to model the rational soliton (see figure 4.2

- by t = 7 the tip is rounded and has fallen in amplitude). Figure 4.3 has M = N = 256
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abs u

120

Figure 4.1: A reproduction of the result in [15]. A rational soliton propagates without
distortion.
giving h = 0.125 and the rational soliton propagates as expected.

The same initial function was used with o = 1, the defocussing case. Figure 4.4 shows
the initial rational soliton diffusing away as expected. The same occurs when the RK4
model is used but the figures are not reproduced here because they visually identical to
figure 4.4.

For an additional test the one lump solution, equation (1.9), was modelled. Figure
4.5 shows that the initial lump propagates without dispersion or loss of amplitude as
expected (o being equal to —1, focussing, for the remainder of these tests). We note
that the one-lump has an amplitude equal to one for lossless propagation but the rational

soliton requires an amplitude of two.
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Figure 4.2: A reproduction of the result in [15], by the RK4 method. Note the resolution
of h = 0.5 is insufficient and the initial wave form has started to disperse. See figure 4.3
with increased resolution.

4.1.2 Conservation laws

In their paper[15] Peter White and J.A.C. Weideman give two conservation laws for the

focussing DSII equation

+00 +00
I = / / |u2dz dy (4.2)
—00 —0o0

40 ptoo
I, = /_ /_ (luy|* — |u|® — olul* + %(qﬁi + ¢2))dz dy (4.3)

and comment, ..

It is easy to show that our scheme preserves the discrete analogue of the integral
I, and this was verified for the simulation. On the other hand, our method

does not conserve the integral Iy. In practice, however, its discrete analogue
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Figure 4.3: A reproduction of the result in [15], by the RK4 method. It was necessary to
increase the resolution to M = N = 256 for the model to correctly simulate the rational
soliton initial condition.

abs u

Figure 4.4: Any initial waveform diffuses away when o = 1.
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Figure 4.5: A propagating 1-lump solution, equation (1.9) with « =0, 8=2,p =1

was found to be constant to at least siz significant digits over the period of the

stmulation.

The integral I; was evaluated for the split step method and varies by the machine
precision (figure 4.6). Evaluating I7 in the RK4 model, figure 4.7, shows a slight reduction
in I; due to the loss at the boundaries; the RK4 method does not have cyclic boundaries.

The integral Iy was not evaluated successfully (or I3 is not conserved in the schemel).
This is left for future work. We are reasonably confident that the model is correct because

it seems to model the correct evolution of the exact lump solutions.

4.1.3 Step size and grid resolution

The step size dt and grid spacing h; and h,, were also varied. It was noted that misleading
results occur when the grid spacing, h, is too large. Great care must be taken that these
false solutions are not interpreted as valid waveforms. For the split step method, it was

found that the grid spacing needed to be h < 0.5. The RK4 works for A < 0.5 but it is
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Figure 4.6: The split step fourier method preserves conservation law I; to machine preci-

sion.
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Figure 4.7: The RK4 method shows a 0.5% loss in I; here, due to loss out of the boundary.
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DSII : Peak height as a function of time
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Figure 4.8: Incorrect tip height for a lump modelled with grid spacing h = 1.00. See

figure 4.9 for the correct result.

better with A < 0.25. See figures 4.8 and 4.9 which show the tip height as a function of

time; each of these models is on the same one lump initial condition, so the tip height was

expected to be constant over time.
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DSII : Peak height as a function of time
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Figure 4.9: Tip height for a lump modelled with grid spacing h = 0.50.
4.2 Numerical Experiments

Having verified that lump and rational soliton initial values behave as expected, experi-
ments were performed with different initial functions to investigate if the initial function
would split into some form of slowly decaying lump or other coherent structure. Consid-
ering that the DS equations are the two-dimensional manifestation of the NLS equation,
we might expect the initial real Gaussian to focus to a single ’soliton’ as per the NLS
result(3.4) and as per the DSI result reported by Yajima and Nishinari[9].
Yajima and Nishinari studied Gaussian type initial conditions, u(z,y,0) = aexp[— p(z?+

y?) 4 6], for the DSI equation and concluded that a standing form of dromion solution is

formed by the shedding of energy along the main axes. In their paper they write

As for soliton equations in one dimension, such as the KdV equation and the
nonlinear Schrodinger equation, the initial value problem is well studied by the

inverse scattering transform or numerical analysis. These analyses show that
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solitons emerge from an initial wave packet emitting radiations. In these one
dimensional equations, solitons have their origins from the zeroes of scattering
data, while dromions do not. Since dromions come from the focusing effect
of boundaries, the effect of boundary conditions can be considered to play an

important role in their formation.

To begin with we investigate lump and rational soliton initial conditions and combi-

nations of these functions.

4.2.1 Lumps and rational solitons

The situation of propagating lumps is very sensitive to every parameter in the DS equa-
tion and the initial condition. To demonstrate this the lump and rational soliton initial
conditions were tested with 5% variation in initial amplitude, A. Figures 4.10 and 4.11
plot the maximum of function u(z,y,t) with time for the three cases A =1, A = 1.05,
and A = 0.95 for each type of initial condition.

The rate of growth of the rational soliton is greater than that of the lump because the
rational soliton starts with a larger magnitude and travels faster. Whether this is blow
up or not is a moot point.

The increase in initial amplitude causes growth of the peak as the nonlinear term
dominates. The shorter amplitude diffuses away because the nonlinear term is not strong
enough to over come the diffusion process. For the case of A = 1 the diffusion and
nonlinear focussing are balanced perfectly and the resulting waveform propagates without
change.

Fokas comments[5] that this is not so curious because we have only changed the am-
plitude and not the speed. But he is not sure what should happen: Is this a blow up
condition or is the lump growing up into some other lump? This is left for future work.

To observe larger amplitude solitons, the speed also needs to be increased appropri-

ately. Unfortunately it is beyond the scope of this project to understand the theory behind
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DSII : Peak height as a function of time
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Figure 4.10: Tip height for a lump modelled with grid spacing h = 0.25.
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Figure 4.11: Tip height for a rational soliton modelled with grid spacing h = 0.25.
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Figure 4.12: Two lumps approach, combine and pass, without interference.

the analytic relationship between speed and amplitude. Numerical testing of the evolution
of large amplitude initial conditions is left to future work because there are many variables
and the large amplitude tests require high grid resolutions of A < 0.0625 to resolve the
high frequencies of the sharp tips.

Here we will concentrate on the combination of lumps and rational solitons in collisions
to investigate if they propagate, mix, and pass without change. Figures 4.12 to 4.15 show
examples of these coherent initial conditions passing without change. A detailed study of
phase changes has not been made.

The fact that these initial conditions all pass over each other without change is en-
couraging because if we look at the superposition at the point of intersection it represents
a large amplitude initial condition decaying into many lumps. In the next figure 4.16 the
initial condition is the linear superposition of four lumps which evolves into four separate
lumps. This raises the question 'Can we find less contrived initial conditions that decay

into one or more lumps’.
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DSII : Peak height as a function of time
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Figure 4.13: Tip height plot of the simulation in figure 4.12. We propose the slight
reduction in amplitude after crossing is due to insufficient resolution.

Figure 4.14: Two rational solitons approach, combine and pass, without interference.
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DSII : Peak height as a function of time
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Figure 4.15: Tip height plot of the simulation in figure 4.14. We propose the slight
reduction in amplitude after crossing is due to insufficient resolution.

ahs u

Figure 4.16: The initial condition is the linear superposition of four lumps. The initial
amplitude is 4, rises to 7, then the individual lumps separate and move off.
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4.2.2 Gaussian type initial condition

Modelling the Gaussian type initial conditions is difficult because the initial forms move
very slowly or not at all and require a high grid resolution (A < 0.25 to resolve any

shedding). Three Gaussian type initial conditions were tested. They are the real Gaussian

u(z,y,0) = AeHE+v?) (4.4)

where p is a real parameter typically p ~ 1. The complex Gaussian

u(z,y,0) = Ae @ +y?)+i6 (4.5)

0 a real parameter, and

u(z,y,0) = Ae~H@+v°)+iby (4.6)

which we call the moving Gaussian because this is the only form of Gaussian initial
condition found, that travels as the model runs. The speed is slow, and dependent on
6 - the higher @ the faster the movement, but the model requires smaller h in these
cases because 0y represents large frequencies for large 8 (6 > 3). We note u(z,y,0) =
Ae#E* ) +ibz glso moves.

The real and complex Gaussian initial conditions do not travel. The real Gaussian
is not a physically meaningful solution, although mathematically valid, however it is the
simplest to study.

Figure 4.17 shows a low amplitude real Gaussian initial condition diffusing away. When
the amplitude is increased to A = 4 (figures 4.18 and 4.19) and A = 6 (figures 4.20 and
4.21), the initial function sheds energy like the NLS except that the amplitude increases
and the dominant peak narrows. Compare figures 4.18 and 3.4.

What is not known is what these are evolving into. They appear to be stationary lumps

which maintain shape and amplitude -this may be a consequence of the grid resolution.
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absu abs u
et T, —

Figure 4.17: The real Gaussian initial condition, equation (4.4), diffuses when the initial
amplitude is small, A = 2 in this case.

It is observed over many simulations that the tip height depends on the resolution, h.
The complex Gaussian, equation(4.5) exhibits the same behaviour as the real Gaussian
and the results are not given here.
The moving Gaussian initial condition acts in a similar way to the real Gaussian. For
amplitudes A < 2 moving Gaussians disperse away; figure 4.22 shows this for § =2, A =
2, h = 0.25. For larger amplitudes the moving Gaussian has a more complex splitting;

figure 4.23. We suspect this is due to insufficient modelling resolution.
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Figure 4.18: The real Gaussian initial condition, equation (4.4), sheds, narrows and grows
for A > 2, A =4 in this case. This 2D plot is a cross section through the y-axis.
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Figure 4.19: The tip height plot of the simulation in figure 4.18, above.
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Figure 4.20: The real Gaussian initial condition, equation (4.4), sheds, narrows and grows
for A > 2, A = 6 in this case. This 2D plot is a cross section through the y-axis.
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Figure 4.21: The tip height plot of the simulation in figure 4.18,

above.
4.19.
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Figure 4.22: The moving Gaussian initial condition, equation (4.6), travels and diffuses
for initial amplitudes A < 2.
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Figure 4.23: The moving Gaussian initial condition, equation (4.6), breaks into many
peaks, then diffuses away when the initial amplitude is large, A = 6 in this case. Compare
the real (static) Gaussian of figure 4.19 which grows to a single (apparently) stable peak.
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Chapter 5

Conclusion and further work

5.1 Conclusion

The NLS and DSII integrable equations were successfully modelled using both the split
step Fourier method and fourth order Runge-Kutta method. Results from the NLS con-
firmed that soliton waves do not change after collision, and that Gaussian initial wave
forms shed and evolve into solitons. From modelling the DSII equation we have learned
that lumps and rational solitons can also interact and cross over without change in shape.
When the amplitude (but not the speed) of the lump is increased the wave form grows,
and may or may not blow up; we were unable to confirm the asymptotic state in this
case. For Gaussian initial conditions we observed that a complex parameter which scales
with y (or x) position evolves into a moving wave which either diffuses or splits into some
number of wavelets depending on amplitude. Gaussian initial conditions with constant
or no complex part do not travel, but evolve in situ. If the initial amplitude is small,
then the initial disturbance diffuses away, but if the initial amplitude is large then the
disturbance sheds some energy and narrows into a single large stable structure. The form
of this structure is not known, and the stability may be a consequence of the limited

model resolution. The DSI equation was not modelled successfully.
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5.2 Further work on the DSII equation

The relationship between speed and amplitude of lumps should be investigated to try to
understand if the initial conditions are growing into stable structures or if they are blowing
up. We would like to study the break up of moving Gaussian type initial conditions with

high resolution models to see if lumps or other coherent structures evolve.

5.3 Further work on the DSI equation

The numerical model for the DSI is advanced but still not working. We suspect the
interpretation of the function V, equation (2.70). Peter White[14] suggests using the
analytic solution to calculate ¢¢ and ¢, at the boundary rather than at —oco. The code
does require some inspection because we feel there is some incorrect scaling. Figure 5.1
shows the model running with the boundary functions reduced by 1/(2v/2) which slows

down the blow up.
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Figure 5.1: The result of incorrectly modelling the DSI equation with a dromion initial
condition, equation (1.10) and corresponding boundary conditions, equations (2.88, 2.89).
The initial condition at t = 0 should propagate without change. Correction of the code is
left for future work.
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Appendix A

Practical considerations for

numerical Fourier transforms

A.1 Introduction

In this appendix we aim to give advice on the use of fast Fourier transforms (FFT) by
drawing on our own experience. It is a confusing subject, but two excellent books for
learning about Fourier transforms are Numerical Recipes[13] by W.H. Press et al and

Spectral Methods in Matlab[12] by L.N. Trefethen.

A.2 The Fourier transform

The continuous form of the Fourier transform and its inverse, for some function g(x) are

66 = [ o) do (A1)
o@) = [ Gweme au (A.2)

where p is the spatial frequency and has units m~1. These transforms are continuous and
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contain infinite frequencies. However, in the practical world of computer modelling both
the initial function g(z) and its Fourier transform are discrete (sampled). The discrete

Fourier transform and its (discrete) inverse can be written in many forms, here we write

M-1
Glum) = h Y glz;)esitn (A-3)
7=0
| THE '
o@) = 7 3 Glam)eomm (A4)
M
m=—%
where
z; = jh (his the sampling interval) (A.5)
domain size!
j = 0,1...M—1 (M is the number of samples) (A.T)
m2m
Pm = Fr (A.8)
M M M
e =R, 9

Using these definitions, we note that the exponential term e®ikm can be written

mam

TR = 20Nt (A.10)

which is done in Numerical Recipes[13], but not here because it confuses the derivative
terms. Trefethen[12] chooses to rescale everything to a domain size of 27 so that h = ZM’T,

always, then

m2r  m2rM
= = =m All
Hm = Mh =~ Mor (A.11)
11f we define the domain [P, P] then the domain size = 2P and j = —% — % -1
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and the exponential term e®i#m becomes simply

e im (A.12)
and Trefethen[12] writes
M—1 ‘
Glum) =h Y g(z;)e™"ms (A.13)
3=0

as the discrete Fourier transform (to compare (A.13) to that in [12], translate the symbols:
our m = Trefethen’s k).

We do not use the efficiencies suggested by Trefethen either. We stick to

M-1
Clum) = h) glzj)e®hn (A-14)
=0
|
9(z) = 37 D, Glum)e™kn (A.15)
"
and remember that the u,, has the 27 in it.
Then
X space  space (A.16)
9(z5)z = pmG(um) (A.17)
9(@j)ez = —pHG(pm) (A.18)

Turning to computer code, the fast Fourier transform (FFT) and inverse fast Fourier
transform (iFFT) are efficient algorithms[13] for these transforms. The functions £ft and

ifft in Matlab are used with the following syntax
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M-1
G(um) = fft(g(z;)) compare G(um)=nh Z g(x;)e mikm (A.19)
j=0
1 M-1 '
g(z;) = 1f£t(G(um)) compare g(z;) = 77 > Glum)e ™ (A.20)
m=0

where g(z;) is a one dimensional array built from equation (A.5), for example
x = (domainsize/M)*(-M/2:M/2-1);

G(pm) however, is returned from the iFFT routine in the order that corresponds to

wavenumbers

HOs P by B Mo e (A.21)

Essentially shifting the negative frequencies to the top end of the array. ..

BoMoyq o Hely Hoy 1o i (A.22)
S —

Shift —»
Therefore, to use the Fourier method in finding the derivative g(z;); = if£t(iptm G (tm)),
pm needs to be in the order as above(A.21).
Matlab provides a function fftshift which performs shifting either way, or one can

simply define the array ., in this shifted order in the original definition (recommended)
mum = [0:M/2 -M/2+1:-1]*2%pi/domainsize;

Then, for example, plot (fftshift (mum), fftshift(G)) will plot G(u.m) correctly.
There is an additional subtlety here. For odd derivatives there is a loss of symmetry
and we have to set G(ua ) = 0. In other words we can define two arrays of the spatial fre-
2

quencies py,, mumodd = [0:M/2-1 0 -M/2+1:-1]1%2%pi/domainsize; for odd derivatives
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and mumeven = [0:M/2 -M/2+1:-1]%2%pi/domainsize; for calculating even derivatives.

See chapter 3 of [12].

A.3 Choosing h

The sampling interval, h is h = % and defining % as the spatial frequency, the

spatial frequencies, py,, run from

M 2xn M 2w
Y Y

This means that % is the maximum frequency in the transformed function G () and is
equal to half of the spatial frequency, % This is the Nyquist Sampling Theorem.

If g(z;) contains spatial frequencies higher than ﬁ then there will be errors in the
split step Fourier scheme. See [13] for an excellent description of aliasing.

This leads to errors if the wave form in our model evolves higher frequencies, for

example when rising into a sharp peak c.f. figure 4.20.

A.4 Extension to two dimensions

All this extends to two dimensions, for a domain z x y = [-P, P] x [-Q, Q] with M x N

samples,

Gm,vn) = hahyd > glzj, ye)e Bmeitvese) (A.25)

1 —1 T+,
9(zj k) = WZZG(um,Vn)e (Bmz;+vnyk) (A.26)
kg
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where

Jha

M M—l

2 2
2pr
M
27rm_27rm
h,M ~— 2P

M M
0...7,—?-&—1.. -1
kh,

N N |
— g
2Q
N
27rn_27r_n
hyN — 2Q

N N

vei— —— 4 1...—
0 5 2+ 1

(A.27)
(A.28)
(A.29)
(A.30)
(A.31)
(A.32)
(A.33)
(A.34)

(A.35)

(A.36)

The interested reader will find the Matlab functions ££t2, ifft2 and fftshift very

useful for performing two dimensional Fourier transforms in Matlab.
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Appendix B

The serpentine function as a filter

The Serpentine function is any cubic of the form

22y +aby —a’z =0 ab >0 (B.1)

to design a filter for use in a Fourier method it is desirable that there are no fast changes,
or equivalently no high frequencies. The desired form of the filter will have zero gradient
at the start, a maximum gradient of one and zero gradient at the end. To control the

gradient, the derivative is required, rearranging (B.1),

a’z
= B.2
Y= (B.2)
SO
d_y _ a? 2z2%a?
dr ~  (z2+ab) (22 + ab)?
—aSb— @’a’ 0 at the turning point
= = e tur ints
(z2 4 ab)? £t
that is,
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a*b—a%z? = 0
a?r? = &%
22 = ab

z = =£Vab at the turning points

and we find y = +1a./%.

For a 45° slope at (0,0), putting £ = 0 and y = 0 into g—%

[4)
gm-!o,o =3
1

for 45°

so any a = b will do. When a = b, the turning points are (a, §) and (—a,—%).

Figure (B.1) displays a plot of the function (B.1) with a = 1. This shape was used to
create the filter of figure (2.3).
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Serpentine Curve X’y +y - x =0
0!5 T T T T 1] T T

0.3 S/

0.2 y

Figure B.1: The curve used as a filter to stop waves wrapping around the boundary.
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Appendix C

Matlab listings

C.1 NLS by split step

%Split step fourier method for the nonlinear schrodinger equation
#M.McC June 2002

% Set up grid and initialise variables
N = 512;
dt = 0.005;
hdt = 0.5+dt;

tmax dt*8000;

nplt = floor((tmax/25)/dt);
nmax = round(tmax/dt);
gridscale = 80;

sigma = -1; Ydispersive term
lambda = -1; Y%nonlinear term

x = (2%gridscale/N)*(-N/2:N/2-1)’;
k = (pi/gridscale)*[0:N/2-1 0 -N/2+1:-1]1’;
ik2sigma = ixk."2xsigma;

%Choose the initial conditions
u = 1.0%exp(-0.2x((x-40)."2)) .*exp(i*x*2)+1.0%exp(-0,2%((x+20).2)) .*exp(-i*x/1.0);
zmax = max(abs(u));

% Solve PDE and plot results:

udata = abs(u);
tdata 0;

for n = 1:nmax
t = n*xdt;

%Solve nonlinear part (half time step)
u = u.*exp(i*lambdaxabs(u)."2*hdt);

%Solve linear part in fourier space (full time step)
v = fft(u);

v = v.*exp(-ik2sigmaxdt); %analytical solution in fourier space

%Return to real space and solve final half step
u = ifft(v);
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u = u.*exp(i*lambda*abs(u) . 2+hdt) ;

if mod(n,nplt) ==
udata = [udata abs(u)]; tdata = [tdata t];
end

end

%Graphical Output

figure(2);

waterfall(x,tdata,udata’), colormap(le-6*[1 1 11); view(-20,25)

xlabel x, ylabel t, axis([-gridscale gridscale O tmax O zmax]), grid off
set(gca, ’ztick’, [0 2000]), pbaspect([1 1 .13])

C.2 NLS by 4th order Runge-Kutta method and integrat-
ing factor

%#RK4 method for the nonlinear schrodinger equation
%M.McC June 2002

% Set up grid and initialise variables
N = 256;
dt = 0.005;
hdt = 0.5xdt;

tmax dt*8000;

nplt = floor((tmax/25)/dt);
nmax = round(tmax/dt);
gridscale = 80;

sigma = -1; Ydispersive term
lambda = -1; Y%nonlinear term
x = (2%gridscale/N)*(-N/2:N/2~1)7;

k = (pi/gridscale)*[0:N/2-1 0 -N/2+1:-1]7;
ik2sigma = i*k." 2*sigma;

%Choose the initial conditions
u = sqrt(2.0)*sech(x+10.0) .*exp(~1%x/2.0)+0.8+sqrt(2.0)*sech(0.8%(x-10)) .*exp(i*x/2.0);
zmax = max(abs(u));

% Solve PDE and plot results:
udata = abs(u);
tdata = 0O;
v = fft(u);
ik2sigma = ixk."2*sigma;
U=v; %Etm = 1 vhen t = 0

for n = 1:nmax

t = n*xdt;

g = i*lambdax*dt;

Ep = exp(dt*ik2sigma/2);
Ep2 = Ep."2;

Em = exp(-dt*ik2sigma/2);
Em2 = Em."2;

Etp = exp(t*ik2sigma);
Etm = exp(-t*ik2sigma);

a = g.*Etp.* ££t( abs( ifft( Etm.* U ) )."2 ok (ifft( Etm.* U ) )
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g.*Etp.*xEp .* fft( abs( ifft( Etm.*Em.* (U+a/2)) ).72 .*x (ifft( Etm.*Em.* (U+a/2) )) );
g.%Etp.*Ep .* f£ft( abs( ifft( Etm.*Em.* (U+b/2)) )."2 .* (ifft( Etm.*Em.* (U+b/2) )) );
g.*Etp.*Ep2.* fft( abs( ifft( Etm.*Em2.*(U+c) ) )."2 . (ifft( Etm.*Em2.*(U+c) )) );
U + (a + 2%(btc) + d)/6;

S ao o
1

if mod(m,nplt) ==
udata = [udata abs(ifft(U.*Etm))]; tdata = [tdata t];
end

end

%Gr
fi

aphical Output
gure(2);

waterfall(x,tdata,udata’), colormap(ie-6%[1 1 1]); view(-20,25)

x1
se

abel x, ylabel t, axis([-gridscale gridscale O tmax O zmax]), grid off
t(gea, *ztick’, [0 2000]), pbaspect([1 1 .131)

C.3 KdV by 4th order Runge-Kutta method and integrat-

ing factor

% p27.m - Solve KAV eq. u_t + uwu_x + u_xxx = 0 on [-pi,pil by

%
h

Se
N
A
u
u
v
U

So

FFT with integrating factor v = exp(-ik~3t)*u-hat.

t up grid and two-soliton initial data:

= 256; dt = .4/N"2; x = (2%pi/N)*(-N/2:N/2-1)’;
= 25; B = 16;

= x.*0;

= 1250%exp (-20*((x+2).72))
= fft(u); k = [0:N/2-1 O =N/2+1:-1]1’; ik3 = 1i#*k."3;
=v; %Etm = 1 when t = 0

lve PDE and plot results:

tmax = 0.012; nplt = floor((tmax/30)/dt); nmax = round(tmax/dt);

ud.
fo

€en!

ata = u; tdata = 0; h = waitbar(0, ’please wait...’);

r n = 1l:nmax

t = n#*dt;

g = -.5ixdtxk;

Ep = exp(dt*ik3/2);
Ep2 = Ep."2;

Em = exp(-dt*ik3/2);
Em2 = Em,"2;

Etp = exp(t*ik3);
Etm = exp(-t*ik3);

a=g.*x Etm.*£ft(( ifft(Etp.* U ) DLr2);

b = g.*Em .*Etm.*fft(( ifft(Etp.*Ep.* (U+a/2)) )."2); % 4th-order

¢ = g.*Em . *Etm.*fft(( ifft(Etp.*Ep.* (U+b/2)) )."2); % Runge-Kutta
d = g.*Em2.*Etm.*£ft({ ifft(Etp.*Ep2.*(U+c )) ).72);

U=1U+ (a + 2x(btc) + d)/6;

if mod(n,nplt) ==
u = abs(ifft(U.*Etp)); waitbar(n/nmax)
udata = [udata u); tdata = [tdata t];
end
d

waterfall(x,tdata,udata’), colormap(le-6+[1 1 1]1); view(-20,25)

x1
se

abel x, ylabel t, axis([-pi pi O tmax 0 2000]), grid off
t(gca,’ztick’, [0 2000]), close(h), pbaspect([1 1 .13])
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C.4 DSII by split step

%Split step fourier method for the DSII equation
%DSII equation as per Peter White’s paper

%M.McC 12th June 2002

% Set up grid and initial data:

%initialise nonlinear coefficient
sigma = -1.0; %-1 NOTE : sigma = -1 focusses, 1 defocusses

%initialise time variables

dt = 0.05;
hdt = 0.5xdt;
steps = 200;

frames = 20;

%initialise space variables
M 512/2/2/2;

N 512/2/2/2;
gridscale = 32%2;

x = (gridscale/M)*(-M/2:M/2-1);
y = (gridscale/M)*(-N/2:N/2-1);
[xx, yy] = meshgrid(x,y);

%initialise wavenumbers

kx = [0:M/2 -M/2+1:-1]; % kxuneven
ky [0:N/2 -N/2+1:-1]1; % kyuneven
[kxx,kyy]l = meshgrid(kx,ky);

kxx kxx*2+pi/gridscale; %scaling
kyy kyy*2#pi/gridscale; %scaling

[0:M/2-1 0 -M/2+1:-1]";
[0:N/2-1 0 -N/2+1:-1]’;

%initial conditions
xscale = 1;
yscale = 1;
xoffset
yoffset
A
t
tscale
toffset
alpha
beta

p
n =

; tvector = [t];

wun oo
O, NOCOKROCNOO

Y%select initial function
u = A*onelumpsoliton(xx,yy,xscale,yscale,xoffset,yoffset,beta,p,alpha,t,tscale,toffset);

%initialise loop variables

tmax = dt*steps+t;

nplt = floor(((tmax-t)/frames)/dt);

nmax = round((tmax-t)/dt);

bmnfactor = 2+sigma*(kxx." 2)./ (kxx. 2+kyy."2);
bmnfactor(1,1) = 0; %divide by zero term = zero
linear_exp = exp(i/2*(kyy. "2-kxx."2)*dt);
%loop

for n = 1l:nmax

%half step
bmn = £ft2(abs(u)."2);
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ifft2(bmnfactor.*bmn);
u.*exp(i*hdt*(sigma*abs(u) . 2-phixjk));

phixjk
u

%#full step

amn = fft2(u);

aprimemn = linear_exp.*amn;
u = ifft2(aprimemn);

%half step
bmn = fft2(abs(u)."2);
phixjk = ifft2(bmnfactor.*bmn);
u = u.*exp(ixhdt*(sigma*abs(u). 2-phixjk));
if mod(n,nplt) == O %then record the solution and the statistics
mesh(xx,yy,abs(u))
end %if

end

C.5 DSII by 4th order Runge-Kutta method and integrat-
ing factor

Only the central loop is given here

bmnfactor = 2xsigma*(kxx."2)./(kxx. 2+kyy."2);
bmnfactor(1,1) = 0; %divide by zero term = zero
linear_exp = exp(-i/2*(kxx. 2-kyy. 2)*dt);

ikl = -0.5*i*(kxxeven. 2-kyyeven."2);

Exmt = oxp(-ikl#t);

\'j = fft2(u).*Exmt;
%loop

for n = 1:nmax

%precondition
if (usefilter == 1)
u = u.*filter;
end

%calculate phixjk from V

u = ifft2(V.*Expt);

bmn = fft2(abs(u)."2);

phixjk = ifft2(bmnfactor.¥bmn);

%variables used in the RK4 method
Expt = exp{(+ikl«t);

Expthdt = exp(+ikl*(t+hdt));
Exptdt = exp(+ikl*(t+dt));

Exmt = oxp(-ikl#t);

Exmthdt = exp(-ikl*(t+hdt));
Exmtdt = exp(-ikl*(t+dt));

=

RK4 method
a = dt*Exmt 4E££62( ix(sigma*abs(u)."2 - phixjk).*u );

u = ifft2((V+a/2) .*Expthdt );
b = dt*Exmthdt.*££t2( i*(sigma*abs(u)."2 - phixjk).%u );
u = ifft2((V+b/2) .*Expthdt );
¢ = dt*Exmthdt.*fft2( i*(sigma*abs(u)."2 - phixjk).*u );
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u = ifft2((V+c) . *Exptdt );

d = dt*Exmtdt .*fft2( i*(sigmatabs(u).”2 - phixjk).*u );
V =V + (at2x(b+c)+d)/6;

t = t+dt %move on to mext time step

if mod(n,nplt) == 0 Ythen record the solution

u = ifft2(V.*Expt);
%draw frames
figure(figl);
mesh(xx,yy,abs(u)
end
end Ymain for loop

C.6 DSI by split step Fourier method

5)211%/ the central loop is given here. Beware this code is not running correctly see section

%select initial function
u = A*onelumpsoliton(xx,yy,xscale,yscale,xoffset,yoffset,beta,p,alpha,t,tscale,toffset);

%initialise loop variables

tmax = dt*steps+t;

nplt = floor ({(tmax-t)/frames)/dt);

nmax = round((tmax-t)/dt);

bmnfactor = 2+sigma#*(kyy. 2)./(kxx. 2+kyy."2);
bmnfactor(1,1) = 0; %divide by zero = zero

linear_exp = exp(-i/2*(kxx. 2+kyy. 2)*dt); %note ’+’ for DSI

for n = 1:nmax

%4h half step (non-linear part) WAAAULAARAALLRAAL AL LK Rhh LKL
bmn = fft2(abs(u)."2);
dummyl = kyyuneven./kxxuneven.*bmn;
dummy1(:,1) = 0; %pad the m=0 column with zeroes
dummyl(:,M/2+1) = 0; Ypad the m=0 column with zeroes
Vterml = real(ifft2(dummyl));

%subtract the j = 1 ie x(j) = -P column from every column in Vterml
dummyl = Vterm1(:,1);
for s = 1:M
Vterml(:,s) = Vterml(:,s)-dummyl;
end
%m =0 part....

dummyl = real(ifft(i*2*pi*(kyuneven)’.*bmn(:,1)));
dummy2 = dummyl;

for s = 2:M
dummy2 = [dummy2 dummyl];
end
for s = 1:M
dummy2(s,:) = dummy2(s,:).*(x+P); Jmultiply each row element by the x vector elements
end

Vterml = Vterml+dummy2/M;
Whhhi%h% end of Vtermd LAAAALANALAAELALALRALALRDILhBIA bR

Whhlhlhd now do Veerm2 Ahhhhhhhhhhhhl il hhhbhhhhlh bl hhh
dummyl =kxxuneven./kyyuneven.*bmn;

dummy1(1,:) = 0; %pad the n=0 row with zeroes

dummy1 (N/2+1,:) = 0; %pad the n=0 row with zeroes

Vterm2 = real(ifft2(dummyl));
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%subtract the k = 1 ie y(k) = -P row from every row in Vterm2
dummyl = Vterm2(1,:);
for s = 1:N
Vterm2(s,:) = Vterm2(s,:)-dummyl;
end
% n =0 part....
dummyl = real(ifft(i*2+pi*kxuneven.*bmn(1,:)));
dummy2 = dummy1;
for s = 2:N
dummy2 = [dummy2; dummyl];
end
for s = 1:N
dummy2(:,s) = dummy2(:,s).*(y’+P); %multiply each column element by the y vector elements
end

Vterm2 = Vterm2+dummy2/(N);
V = 0.5*sigma*(real(Vterml) + real(Vterm2));
[xtrack ytrack] = meshgrid(phixbo(x,P,t),phiybo(P,y,t));
V = V+(xtrack+ytrack)/2/sqrt(2);
YhhAAA%% now V is calculated, step forward the half step in time %AAAAALLAL
u = u.*exp(~Vxhdt);
t =t + hdt;
Tl T Tt Tt ATl oo Tl b et o b o oo ottt ot oo oo

%ht% full step (linear part) UAKAAUAAALALES Ltk Rk
amn = fft2(u);
aprimemn = linear_exp.*amn;
u = ifft2(aprimemn);
t =1t + dt;
T Tt e Tl Ao T T T ot T Tl b s Tl e o e o o e o et e o T o o

%%% half step (non-linear part) UALUAAAAALLAALARAAL AL S
bmn = fft2(abs(u)."2);
dummy1 =kyyuneven./kxxuneven.*bmn;
dummy1(:,1) = 0; %pad the m=0 column with zeroes
dummyl (:,M/2+1) = 0; %pad the m=0 column with zeroes
Vterml = real(ifft2(dummyl));

%subtract the j = 1 ie x(j) = -P column from every column in Vterml
dummyl = Vterm1(:,1);
for s = 1:M
Vtermi(:,s) = Vterml(:,s)-dummyl;

end
% m = O part....
dummyl = real(ifft(i*2*pixkyuneven’.*bmn(:,1)));
dummy2 = dummyl;
for s = 2:M

dummy2 = [dummy2 dummy1];
end
for s = 1:M

dummy2(s, :) = dummy2(s,:).*(x+P); %multiply each row element by the x vector elements
end

Vterml = Vterml+dummy2/M;
Wkt end of Veerml AAUALLARLAALARA AT hES GRS

Whhlhhhh now do Vterm2 AAAAAAAALLALLLIEAALhh kAR
dummyl =kxxuneven./kyyuneven.*bmn;

dummy1(1,:) = 0; %pad the n=0 row with zeroes
dummy1 (N/2+1,:) = 0; %pad the n=0 row with zeroes
Vterm2 = real(ifft2(dummyl));

%subtract the k = 1 ie y(k) = -P row from every row in Vterm2
dummyl = Vterm2(1,:);
for s = 1:N
Vterm2(s,:) = Vterm2(s,:)-dummyl;
end
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% n =0 part....
dummyl = real (ifft(i*2*pi*kxuneven.*bmn(1,:)});
dummy2 = dummyl;
for s = 2:N
dummy2 = [dummy2; dummyl];

end
for s = 1:N

dummy2(:,s) = dummy2(:,s).*(y’+P); ¥multiply each column element by the y vector elements
end

Vterm2 = Vterm2+dummy2/N;

V = 0.5*sigmax(real(Vterml) + real(Vterm2));

[xtrack ytrack] = meshgrid(phixbo(x,P,t),phiybo(P,y,t));

V = V+(xtrack+ytrack);

WAhhihA% now V is calculated, step forward the half step in time
u = u.*exp(-Vhdt);

t =t + hdt;

if mod(n,nplt) == 0 Ythen record the solution and the statistics
%draw frames

figure(figl);

mesh(xx,yy,abs(u))
end %if

end %for
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