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Abstract

This thesis extends Burton’s work [1] on the re-iterated Galerkin (Porter & Stir-
ling [5]) and re-iterated Kantorovich methods by outlining both methods! for the
first time to coupled integral equations. A wave scattering example (Chamber-
lain (2, 3]) is transformed into a coupled system and the new re-iterated methods
are tested. Results show, as they did with Burton’s work on single integral equa-
tions, that the re-iterated Kantorovich method fare better against the re-iterated
Galerkin method, particularly for 1,2 or 3 dimensional subspaces. With a 1 di-
mensional subspace and after 8 and 5 iterations using the re-iterated Galerkin
and re-iterated Kantorovich methods respectively, solutions differ by no more
than 1.0 x 10~7. With a 6 dimensional subspace only 1 iteration for both the
re-iterated methods is needed under the same tolerance. Results are tablulated
as are estimates for the spectral radii of operators that govern convergence rates.

Other possiblities concerning choice of subspace and technique are explored.

!These re-iterated methods were built on Sloan’s iterated Galerkin method (6] and allows
one to ‘re-iterate’ and obtain solutions to within a specified tolerance.
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List of Symbols

f free term

k(z,t) kernel

H Hilbert space

K kernel operator

P, P;, P, orthogonal projection operators

E,En,, En, subspaces of H

L3(a,b) space of n-vectors of square integrable functions
{x1 ,X2 ,.--} basis functions spanning El;

f free term for coupled systems

Po = (p1,p2)T initial Galerkin approximations
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Chapter 1

Introduction

Throughout this entire thesis we will focus our attention to integral equations of

the second kind. These equations take the following form

#(z) = f(z) + A/: Kz, )d(t)dt  a<z<b (1.1)

where f is the free term, A a scalar, k(z,t) is the kernel and a, b € R. We seek ¢.

Often integral equations of the second kind are shortened to

6= f+\Ko, (1.2)

when they are regarded as equations in a Hilbert space H, ¢ and f being elements
of the space and K an operator on the space.

Integral equations, for example
1

$(z) =1 +/ 2 max(z,t)p(t)dt  0<z<1 (1.3)
0

and

#(z) = cos(koz) +

: /1 sin(ko | 2 — ¢ )p(t)dt 0<z <1 (14)

Ko JO
where kg is a real parameter, were dealt with in Burton’s thesis [1]. The first of
these equations has a simple analytic solution. The second of these came from

Chamberlain’s work [2, 3] on wave scattering. One may be wondering just where

ll



on earth did these equations come from, so to illustrate we will consider (1.3). On

its expansion we have

8(e) =1+ [ 2wd(t)d+ /: 24(2)dt. (1.5)

Following swiftly with a differentiation with respect to z

#(x) = [ 26(t)dt + 204(c) - 224(a) (1.6)

and on differentiating once more gives

¢"(z) = 2¢(z).

For boundary conditions, from (1.5) and (1.6) we find that

#(0) = 0
o) - (1) = L

Hence (1.3) actually comes from the boundary value problem as described whose

analytic solution is

cosh z+/2
cosh v/2 — /2 sinh v/2

Integral equations offer an alternative way to tackle boundary value problems.

¢(z) =

The well-established Galerkin method and the Kantorovich method, a well-known
adaptation of the Galerkin method, gave way to the iterated and re-iterated meth-
ods devised by Sloan (iterated Galerkin), Porter & Stirling (re-iterated Galerkin)
and Burton® (iterated and re-iterated Kantorovich). In his thesis Burton primar-
ily worked with the re-iterated methods comparing his results between methods.
Analysis has shown that convergence of solution using the various methods (ex-
cept the re-iterated Kantorovich method) would occur provided that the norm of

the operator S, where

S=(I—-KP)'(K — KP), (1.7)

Burton was supervised by Porter,




is less than 1. Here P denotes the orthogonal projection onto a given subspace
E of our solution space H and convergence is with respect to the norm. Initially,
the norm of S may not be less than one. In this case we would increase the size
of our subspace, the reason being that || K — K P ||— 0 as n — oo, where n is the
dimension of the subspace, and hope that this increase is sufficient to make || S ||
less than 1. With the re-iterated Kantorovich method a different condition has to

be satisfied namely that || SK ||< 1 where S is as above though, as we know that
SE IS I

this results once again in the need to expand our subspace?. The work by Bur-
ton confirmed much of the analysis on the re-iterated Galerkin and Kantorovich
methods for single integral equations. The prospect of larger systems of integral
equations and the corresponding analysis looms ahead. It may seem that this will
just be a case of writing a program for decoupled systems of integral equations. In
other words the program would simply be a extension to a program for indepen-
dent “layered” integral equations. Not quite so, as a system of integral equations

1s not always necessarily decoupled as will be seen in the next chapter.

4| K || is fixed from the beginning'.



Chapter 2

Coupled Integral Equations

Before describing the Galerkin methods for coupled integral equations we first
set the scene. Let L%(a,b) be our Hilbert space! and suppose we have a coupled
system

b -Kb=fF (2.1)

K K
B _— 7 B 11 4812
where ® = (¢1,¢2)", £ = (f1, fo)", K = < Ky Ka )

Expanding this gives

¢1 - K11¢1 . K12¢2 e f17

452 - K21¢1 . K22¢2 . f2-

Immediately we should spot that here our system is decoupled if Kyy and K
are zero operators for then we would have a pair of integral equations of the form
¢; — Kisd; = f; for ¢ = 1,2, Still, it might seem strange how a coupled system
could arise (i.e. where Ky, and K3; are not zero operators) so here is an example

on which every subsequent method in this thesis will be tested upon

(b(l‘) _ eiﬂof o é%; /OL eiﬁolz—tlg(t)QS(t)dt. (22)

'L72(a,b) is the space of n-vectors of square integrable functions.



This integral equation is taken from [2] (or [3]) where the upper limit has been
altered to a general value L, g is real and known and kg 1s a given real parameter
(see Chapter 7 for more details). This equation arises from a study by Cham-
berlain of the use of integral equations to solve the mild-slope equation (due to
Berkhoff) in 1 dimension. The mild-slope equation has its origins in water wave
theory. Coastal engineers have been interested in predicting the behaviour of wa-
ter waves. Advantages of the mild-slope equation are that it takes into account
variable still water depth and it treats refraction and diffraction as dependent
entities. Thus the mild slope equation is also known as the ‘combined refraction-
diffraction equation’. In his work Chamberlain converts the associated boundary
value problem of the mild-slope equation into an equation, of which (2.2) is a
special case, and then converts this into a pair of real-valued integral equations
together with a finite-rank problem. In our case we will take (2.2) and derive a

different coupled system as follows.

We let ®(z) = (¢1, ¢2)T where ¢1 = Re{¢(z)} and ¢, = Im{¢(z)}. With this in

mind
#(z) = coskor + ¢sin Ko
'. L )
—-2% fu (cos ko(z —t) +isinkg | & —t |)o(t)(d1(t) + 2¢2(t))dt
0
1 /L
= Cos Ko + 2—/%/0 sinko | T —t | o(t)d1(t)dt
1 /L
-{—% | cos ko(z — t)o(t)da(t)dt
L
+i{sin kox — % | cos ko(z — t)o(t) e (t)dl
0
1 L
+2—K0 | sin kg Lz —t]| o(t)da(t)dt}.

We can then write

[ cos kox 1 (L sinkg|a—t| coske(z—1) P
B(z) = ( ) +5— ( o(1)®(1)dt

2K —cosko(z —1) sinkg |2 —t|

S



COS Ko

i is our new free term
sin Ko

where we recognise that f = (

and k(z,t) = 24 sinty || =1 | o8 ko(e — ) is our new kernel?.
20 \ —cosko(z —1) sinkg |z —t|

Lo and behold a coupled system of integral equations.

2Note that the kernel is real and orthogonal.




Chapter 3
Galerkin Methods

3.1 Galerkin Method

Let L%(a,b) be the Hilbert space and Ey,, ¢ = 1,2 be subspaces of L}(a,b). We
need to approximate the solutions ¢; and ¢, and we do so by letting p; € En,
and p, € En, be our respective approximations. Then we look for solutions of the
form

N; )

g pi= anxt) (3.1)

n=1
where a,’s are coefficients to be determined and x{!)’s are our chosen basis func-
tions spanning Fy;.
By this construction we do not assume that the subspaces for p; and p, are the
same. They may contain different basis functions and be of different dimensions.

We now aim to satisfy the components lying in the subspaces such that

(p1 — Kyipr — K1aps — f1,X§1)> =0 forj=1,.,M

<P2 — Ko1p1 — Koops — fz,Xg)) = 0 for k=1,..., Na.

Substitution of p; and p, from (3.1) then gives rise to N; + N, equations with the

same number of unknowns, these being the coefficients we are after.



Inner products tend to hide what they really stand for with their (-,-) symbols.

Throughout the analysis the following inner product will be taken

b
(x,y) = / xTydt

where a,b € R and x,y are finite n-vectors of square integrable functions. This
means that x,y € L}(a,b). For the proof that this definition satisfies our usual
norm axioms see appendix. The space of all n-vectors of square integrable func-
tions L3 (a,b) guarantees that [2xTxdt < z where z < oco.

Acquisition of the coefficients mean of course that the Galerkin approximations
p1 and p; are in our hands. However, before taking these on through the iterated

Galerkin method we should sort out the business of orthogonal projections.

Orthogonal Projections

Let P; be the orthogonal projections of H onto Ey; for 2 = 1,2.

Then Galerkin’s equations may be written in the form

Pl(P1 - K11P1 . K12P2) = P1f1

Py(p2 — Koipr — Kaap2) = Pofa

and these can be rewritten:

(I - P1K11)P1 — PiKyaps = Pifi (3-2)
-—Pg[(glpl + (I = Pg[(gg)pz = szz. (33)
P 0 T
Now let P = and po = (p1,p2)’ . Then
0 P
., (P 0 Ku K\ _( PKn Pk
ik b ( 0 P ) ( Kn Ky ) = ( PKy PyKon ) (3:4)



and

(I — PK)py = 1 ) _ ( PiKyip1 + PiK12p; )

P Koipy + Py Koope

— (I = PiKu)p1 — PiKuzpe
— Py Ko1pr + (I — PyKy2)ps
p

Plfl )

Hence (I — PK)po = Pf and so po = (I — PK)™'Pf is the Galerkin solution of
the system provided (I — PK)~! is invertible. Though when exactly is (I — PK)™*
invertible?
In order to answer this suppose that (I — PK)™! does exist. What would it look
like? Consider (3.2) and (3.3). From (3.2)
P1 = (I bl P1.[{11)_1(P1f1 + P1K12P2) (35)
and from (3.3)
p2= (I — Pszz)_l(szz + Py Ko1p). (3.6)
Notice the necessity for (I — P;K11) and (I — P,K3;) to be invertible to bring on
the existence of p; and p,. Substitution of (3.6) into (3.2) gives
(I - P1K11)P1 - PlKlz(I - P2K22)—1(P2f2 + P2K21P1) = P1f1 (3-7)
and similarly substituting (3.5) into (3.3)
—PKo1(I — PLK1) 7 (Pofy + PiKopa) + (I — PyKag)pa = Pafa. (3.8)
These can be rewritten so that
P = [(I = Pl-[‘,ll) = Pll{lz(l = Pgl{gz)_1P2[{21]_l
[Prfi + Prua(1 — PyKs) ™ Pafo]
P2 = [([ . leﬁ,gz) _— Pg[{21(l . Pll(ll)_lpll(lg]—l

[Pofe + PaKon(I — PLKyy) Py fA)

9



Hence, we have that
Po = ( . O‘f ) Pf (3.9)

where

a = [(I - Pll(ll) - P1[{12(I — Pg.[{gz)_lp2l{21]_1,
B = PiKi(I— PyKy)™t,
N = Pgl{zl(l — Pllfll)_l,

6 = [(I - le{gz) - PZI{ZI(I = Pll{ll)_lpl_[{lg]_l.

The 2 x 2 matrix is precisely (I — PK)™! and exists when (I — PyKyy) and (I —

P, K3,) are invertible.

3.2 TIterated Galerkin Method

Let us define our iterated Galerkin approximations to be

p1 = fi+ Kups+ Kiap2

pe = fo+ Kaupi+ Kanp:

where py, p; are our previously found Galerkin approximations. Written in vector

form this is po = f + Kpo where po = (p1,p2)7. Now

f)o = f-l—[(po

— f4+K(I - PK)'Pf
and if we can show that (I — PK)™'P = P(I — KP)™' we can write

po = {(I—-KP)+KP}(I—KP)'f

= (I-KP)'t.

10



It will soon become apparent why the relation po = (I — K P)7'f is useful.
To show that
(I-PK)'P=P(I~KP)*!

consider that

N I — 1{11P1 I(I2P2
(I-KP)= ( Kn Py I— KnPh )

and so therefore

pu-xn)=(Fohn L b
Similarly,
-pe= (dphin bk
but again
(I - PK)P = ( Jljlfszl%mlpl 3, = gﬁgzg ) |

Therefore P(I — KP) = (I — PK)P. We have already shown that (I — PK)™*

exists via the assumption that (I — Py K;y) and (I — P,K>;) are invertible. Also

the existence of (I = PK)~! implies the existence of (I — KP)™! (a proof can be

found in [4] p87) and so (I — PK)™'P = P(I — KP) ..

The use of the relation found earlier now comes into play. We have to check to

see if the iterated Galerkin approximation Pg is better than the original Galerkin

approximation pg. Now
Ppo—® = (I-KP)'f—(I—-K)'f
= (I-KP)Y{(I-K)-(I-KP)}I—-K)'f
= —(I-KP)yY (K - KP)®

= (I- KP)"Y (K — KP)(po — ®)

11



since (K — K P)po = Kpo — K Ppo = Kpo — Kpo = 0. Therefore
Po— @ = S(po — @)
where § = (I — KP) (K — K P) and by taking norms
[Do—2 | = || S(po—®) |

< ISHlpo—2 i

< |lpo—2 |

provided || S ||< 1. However S is not just a single composition of operators. It is a

matrix of them. Written out explicitly we find that by symmetry (c.f. (/—PK)™!

in (3.9))
(I-KP)™*= ( A Ao )
p g

where

/\ = [(I == [{11P1) e I{lgpz(_[ - [{22P2)—11{21P1]—1,

g = I(-sz(I — I{22P2)—1,

n = .[{21P1(I b I{llpl)-l,

n = [(I — I{zzpz) = 1{21P1(I = Kupl)—lKlng]_l
and so

S = (I-KP)'(K — KP)

o A Ao ](11 e I(nPl 1{12 - I(lng
[/ Kopi — Kan 1 Ky — Koo P

o )\](11(.[ — Pl) -+ )\0’](21([ r Pl) /\1{12(1 — P2) + )\0’](22(1 — Pg)
o /,LT]I{u(I — Pl) + /1[(21([ — Pl) ,l“’][(lz(,[ = Pg) + ILL]{QQ(I = Pg) ’

12



3.3 Re-iterated Galerkin Method

Currently we have ® ~ pg = f + Kpo = (I — KP)~'f from the iterated scheme.

Introducing a current error ®; we can write
® =po+ P.
Substitution of this into our original system ® = f + K® gives
Po+ P, =f+ Kpo+ K8,
which when rearranged becomes

& = f—(I-K)po+K®,

= f‘o -|- I(@l

where of course ¥ = f — (I — K)po.
We have retrieved an equation of the same form as our original system the differ-
ence being that the free term has now become the residual ry. Next we

(I) obtain the new Galerkin approximation p; € (En,, En,)T where
®, ~ p, = (I — PK)Pio,
(IT) and then the corresponding iterated approximation
p1=to+ Kpi = (I~ KP) '

so that we end up with ® ~ pg + p;.
Similar analysis shows that we do indeed have a better approximation to ®.
Consider

Po+DP1—P = Ppo+([—KP) 't — @

13
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= Po—®+(I—KP)(f—(I—-K)po)
- p0—¢I>+(I—KP) 1((I Ix)((IJ po))
Y(I - K)(po — @)

= (I-KP)™{(I-KP)—(I—-K)}Do—®)

= po—®—(I—KP)

= (I - KP)}(K — KP)(po— ®)
Therefore
o+ P1 — P = S(Po— @) = 5*(po — B)
since Ppg — ® = S(po — ®).
This implies
I Do+ D1 — @ [<[[ Po — @ |
provided once again || S ||< 1 which we assume would already have been satisfied.

More generally if we keep repeating the process,
®=po+p1+..+Pm+Prp
where ®,,,,1 is the new correction term then

Po+P1+..+DPm+Pmy1 —® = S(f)0+f)1+---+f)m—@)

= S*Po--p1+...+Pm 1 — @)

= S™(po — @)
= S™'%(py— ).
Taking norms we find that
| Po+P1+ 4 Pm + Pt — @[ < [ SI™] (po— @) |

< |l (po—@) |l

provided || S ||< 1. Obviously the smaller || S || is, the faster the rate of conver-

gence.

14



Chapter 4

Choosing a Galerkin Subspace

4.1 The Neumann series and Subspaces

The Neumann series is a geometric series for operators. Formally our solution,

under certain conditions, can be written
® = (I-K)'f

= YK
n=0

= f+Kf+K*¥+..

which is a geometric series with the operator K. The form of the solution naturally
suggests we take {f, Kf, K*f,...} as our subspace where K is a matrix of operators
and f is a finite vector'. Porter & Stirling [4] showed that for single integral
equations with the subspace {f, K f, K*f,...} that || P.¢ — ¢ ||%—> 0 as n — oo.
(Notation: in their book Porter & Stirling used P, as the orthogonal projection
and not P). We would expect a similar result for coupled systems but will not

prove it in this thesis.?.
Question: So why not use the Neumann series to compute solutions numerically?

Well, those of you who recall the analogous series (1 — z)™! = 3%, 2™ where z €

YA vector with a finite number of entries.
2The proof is likely to be the same but in the context of vectors.

15



C will probably also remember that series of this form converge when | z |[< 1. Tt
is also a common fact that (I — L)', where L is a bounded linear operator from
a Banach space X to itself, is invertible if || L ||< 1. The two ideas combined
make up the geometric series for operators. Usually the operator K is given at
the start and so there is no guarantee that || X [|< 1. The size of its norm cannot
be manipulated as it is fixed from the beginning. The solution therefore cannot
be in the form of a Neumann series if || K ||> 1.

It turns out that the question of whether the norm of K is less than 1 does not
hinder the re-iterated Galerkin and Kantorovich methods as they do not require
this condition to be satisfied. They only need || S ||< 1 to achieve convergence
of solutions. To illustrate the importance of this requirement consider once again

our original system

(I-K)&=f

and suppose || K ||> 1 so that (I — K) is not invertible. Now apply (I — KP)™

to both sides® so that
(I — KP)_l(I - K)® =(I - KP)_lf.
Consider the left hand side. We have

(I-KPYYI-K) = (I-KP){(I-KP)~- (K- KP)}
= I-(I-KP)y"Y(K - KP)

= I-5

So in fact

(I-S)®=(I—KP)™'f

3remember that this is possible as long as (I — PyK1;) and (I — P2K33) are invertible. It
would not be interesting if they were not since the Galerkin method would immediately fail.

16



and assuming that our subspace is big enough so that || S ||< 1 we can invert
(I — S) and write
&=(1-8)Y(I-KP).

Hence we have stumbled upon a preconditioner that acts on (I — K), namely
(I — KP)~'. Moreover, it has given us a glimpse of the existence of a solution?
when || K ||> 1. It would be quite a task to write down this inverse operator in
an analytical manner but it can be seen to work numerically. In other words, it
can be approximated at, for example, Gauss points on the computer.

The Neumann subspace {f, Kf,...} for Chamberlain’s example (2.2) is a reason-
able one to take since, for this wave scattering example, the norm of K is less
than one (estimates are given later and solutions from using the Neumann series
are given in the appendix). However for problems where this is not the case we
could opt for {f, Kf,...} or use any other reasonable subspace - perhaps orthog-
onal types such as a sine or cosine series, Legendre polynomials etc. A subspace
that has some affinity to the problem at hand is usually a successful one. What
would be imperative would be the size of the subspace: the need for || S ||< 1

would still linger.

4.2 An Extended Subspace

Despite the freedom of choice we shall still take {f, Kf, K*f,...} as our subspace.
Suppose we take {f, Kf} as our 2-dimensional trial subspace. Then our Galerkin

approximations would take the following form

P ~ po = a1f + o, Kf (4.1)

“one has not proved the uniqueness of it!

17



where ® = (61, ¢2)7, po = (p1,p2)7, £ = (A1, f2)T, Kf = (K1 fi 4+ Ko fo, Karfr +
Kzgfg)T and ay,aq are coeflicients to be found.

Splitting (4.1) open we have

br~p = arfi + ax(Kufi + Kiaf2)

o ps = arfs + ax(Kafi + Kanfo).
However, there is one thing to notice here. We can instead write

pr~pr = aifi +aKufi +asKiafe (4.2)

g2 pr = bifa+ bl fi+ b3Kaaf (4.3)

by introducing four new coefficients as, by, bz, bs. We can rewrite (4.2) and (4.3)

in matrix form

S Kufi Kiafs
Pxp=A A A
B ( £ ) TN Kah T4\ Kanfy
ag 0

0 b
Notice we also have two trial subspaces spanned by three elements not two as we

where A; = ( ) for i =1,2,3.

would have initially suspected would be possible. It is easy to see that this splitting
can be done more generally though we must remember that as A; are matrices
and not simple scalars the use of this extended subspace does not constitute to
a Galerkin method. Nevertheless, intuitively we would imagine that these extra
degrees of freedom would improve our initial approximations. Are these alterations

any good numerically though?

18



Chapter 5

Kantorovich Methods

This chapter on Kantorovich methods will be fairly brief given that Burton has
already written out the bulk of the theory in [1] and the theory for coupled sys-
tems is very similar to it, the differences being that f is now f and ¢ is now ®.

Other differences follow in similar fashion.

Notation: p;, p; and f; should be distinguished between the Galerkin and Kan-

torovich methods but it was decided against to clutter the notation in this thesis.

5.1 KXKantorovich Method

Here is yet another adaptation of the Kantorovich method this time for coupled
systems. There are many different methods one could try besides the ones al-
ready written about. If we are lucky we will see another one later. For now we
shall continue with the Kantorovich methods which are analogous to the ones in

Burton’s thesis [1]. We begin with
=1+ K®
and apply the operator K to both sides so that

V=Kf+KW¥

19



where ¥ = K®. The solution ® can be recovered from & = f + ¥.
This application of K is called the Kantorovich ‘regularization’. Glancing back
at this new system we see that we can tackle it as we did with the original one.

That is we look for the Galerkin approximation to W given by

N
TRqo= D) Xy,
n=1

where x,, = (¥, x@)T (so we note the use of the same subspaces En, and Ep,

but keep in mind that the coefficients are likely to be different). Then we can let
Prpo=f+q

where it has to be stressed that pg is unlikely to be the same Galerkin approxima-
tion that would have been found from the original system since qo was obtained

through the Kantorovich regularization.
Why might this new approzimation to ® be better?

Our starting point with the straight Galerkin approach is @ = f + K® but now
consider what happens when we substitute ® = f + ¥ into ® = f + K® which
is permissible from the Kantorovich approach. We find that ® = f + Kf + KV
where we note that f and Kf are the first two terms of the Neumann series which
make up part of the formal solution of ® when || K ||< 1. Appealing to the fact
that two terms of the Neumann series occur and not one as with the Galerkin
approach we suspect that the Kantorovich method possesses a faster convergence
rate particularly if || K ||< 1. However if | K ||> 1 (or possibly || K ||> 1)
then the Neumann series will diverge and we cannot expect a great improvement.
Yet the Kantorovich method still has one more chance to get the upper hand.
Burton [1] makes a remark that the Kantorovich regularization removes f from
the calculations and replaces it with Kf - an advantage if f is not particularly

smoooth.
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5.2 Iterated Kantorovich Method

The next step of course is to apply the process of iteration to the previously found

Galerkin approximation qg to ®. So far we have
P ~po=1f+qo
Applying the iteration process to qqg gives
qo = Kf+ Kqp

so that now
®xpo=f+qo

and through similar error analysis (see Burton [1])
I Po— @ [[<][ S [l po— 2 |l

where S is precisely the operator found before whose norm has to be less than 1

to guarantee the superiority of the iterate pg to po.

5.3 Re-iterated Kantorovich Method

We now start with ® ~ po. Introducing a correction term as we did for the
re-iterated Galerkin method

® =po+ P

leads us to

where tqg = f — (I — K)Pg after substitution into the original system.

Reverting to a second Kantorovich regularization by letting ¥; = K®, we have

@ =1+ P,
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and so by substitution into (5.1)
U, = Kig+ K¥,.

As with the re-iterated Galerkin method we now

(I) obtain the Galerkin approximation q; to ¥, where q; € (En,, En,)T,

(II) and then obtain the iterated Galerkin approximation q = Kto+ Kq; to ¥y.

Thus we will then have
®, P =Fo+ &
and hence possess an even better approximation given by
@ ~ Po + P1.
This time however,

I (Bo+p1) -2 < [[SK|lllPo—@ |

= [ SKISHlpo—2|

which is an improvement if || SK ||< 1 given that || S || is already less than 1.

If this condition is satisfied we can continue the process and set
® =po+p1+ P

where ®, is our new correction term.

More generally,

| Bo + 1 + v+ Bt — @ [<I SK ™| S (Il po— @ ||
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Comparing methods so far

The re-iterated Galerkin and Kantorovich methods were compared with one an-
other analytically in Burton’s thesis [1]. He found that after n iterations the
re-iterated Galerkin solution contained the first n 4+ 1 terms of the Neumann se-
ries but that the re-iterated Kantorovich solution contained 2n + 2 terms thereby
suggesting that the re-iterated Kantorovich method would have a much faster rate
of convergence especially if | K ||< 1. It is obvious from Burton’s work [1] that

the same holds for coupled systems.
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Chapter 6

Construction

As always, one has to know what to tell the computer to do before passing com-
mands to it and as yet we have described how the Galerkin and Kantorovich
methods work in theory but have omitted the computational details.

This chapter addresses some of the missing aspects starting with the calculation
of Galerkin approximations. First one has to say that, for the results that fol-
low, ¢ and ¢, are approximated using subspaces of the same size. Furthermore,
consecutive terms of the Neumann series beginning with f are used for the sub-
spaces. This is a reasonable choice given that it seems || K ||< 1 for our chosen
example (2.2) and so f, being the first term of the Neumann series, would make

the greatest contribution to the solutions.

6.1 Constructing Approximations

Galerkin approximations

Recall the aim to satisfy the components of the solution lying in the same sub-

spaces
(1 — Kuupr — Kiap2 — quE'l)) =0 for y=1,..., N (6.1)

and

(]72 o [\,21[)1 — [{22])2 - /2,X£2)> =0 for k = 1, Ty Ny (62)
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where x(9) are our chosen basis functions and Ny, N, are the dimensions of the
subspaces for our Galerkin approximations, p; and p,, respectively.

Suppose we use a 1D subspace, {f}, so that

Q

¢1 P11 = alf1

P2 & py=aife.
Then substitution into (6.1) and (6.2) gives
ar{(f1, fr) — (K fi, A1)} — ai(Kiafo, 1) = (f1, f1)
ar{(fz, fa) — (Kazf2, f2)} — ar(Kaf1, f2) = {fa, J2)

and so

(((I = K1) f1, fr) — (K2 fo, f1)
—(Ka1 fr, fa) + (I = Ka2) f2, f2))a1 = ({f1, 1) + (f2, f2))-

Now suppose we take a 2D subspace e.g. {f, K} so that this time

¢1 & pr = arfi + ax(Ku1 f1 + K12 f2)

P2 & py = arfo + aa( Ko fi + Koz fa).

In matrix form, say Ax =y,

(I = En)f1, f1) = (K12 fas 1) (I ~ Ku)KS, fi) — (Ki2KY, f1)
—(Ka1f1, f2) + (I — Ka2) fa, f2) ~(En K¢, fo) + {(I — K22)KY, f2)

(I = K1) fi, K&) = (Kq2fa, K9) (I — K1))E& K®) — (K1, KP | K9
(K1 f1, K2Y + (I = K33) fa, KP) —(En K¢, KP4+ (I - Ky KP, KP)

where Kf is split into two components: K¢ = Ky, f; + K12 f; and Kf = Ky fi+

K35 fy. In this case

_<> _( (fu, Fi) + (fa, o) )
“Nae ) TR (B KD) )
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In general, for a (N + 1) dimensional subspace {f, Kf,..., K"f}, the matrix A

would look like this:

((I = Ku)f, fi) — (k12 fa2, 1) (I - KnwWK§, fi) — <-K121{1p\/;f1)
—(Ka1f1, fa) + {(I — K22) fa, fa) —(Ka1 Kg, f2) +{(I — K22)K%, f2)
(I — K1) f1, Kg) i (K12fa, K&) (I = K11)Kg, K,‘i‘,‘) — (K12 KB KE)
—(Korfr, KB+ (I - Ka2)fo, KB) 7" —(KaKg, KB + (I — K32) K5, K5)
and
Z: <flaf1)+<f23f2>
L = y Yy = .

- (fi KR+ (f2, KR)

Clearly, once the matrix system is set up, computing the coefficients is an easy

task with a good mathematics package. Substituting the coeflicients back into

o= afi+ak]+. . +avnaKy
P2 = alfz =+ 012[{1ﬁ + ...+ GN+1I{1€,

K¢

where K'f = ( K:ﬂ

), returns the Galerkin approximations.

Iterated Galerkin approximations

Here we will simply give an indication of the form of the iterated Galerkin ap-
proximations. With an (N + 1) dimensional subspace the first iterated Galerkin

approximation would be like this

f)o = f —|— I{po
_ h 1 K Ko ayfr + a K3+ - +anvi1 K§
fa Ky Ky ay fa + agKf + e+ aNHK,ﬁV
fi+ Kiu(a K§ 4 aKg 4+ - + an1 KR)
+K1p(a K2 + aaKP + - + N + 1K)

fot Ko(ar K& 4+ a2 Ky + -+ + a1 K§)
+[{22((L1[(g + (Lg[(lﬁ + o4 (LN+1[{I/\5])
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K2
K?

form. Different suffixes would be in place but the construct of the approximations

again where K''f = < ) . The re-iterated Galerkin approximation has a similar

would be the same.

Kantorovich approximations

One of the most defining features of the Kantorovich scheme is that the free term is
no longer f but Kf. The coefficient matrix takes a very similar form and once the
current Galerkin approximations ¢, ¢; have been found we simply let p; = fi + ¢,

and py = fy + ¢ be the current approximations for ¢; and ¢,.

Iterated Kantorovich approximations

The iteration process is applied to qo giving qo = Kf + Kqp and so we set
P ~ po = f + qo. The same type of construct as with the iterated Galerkin

approximation.

Re-iterated Kantorovich approximations

The other defining feature of the Kantorovich approach is the regularization step.
Once we have ® =~ Py = f + g we then introduce the correction term ®;. This we
know leads us to an equation in ®;. We perform a second Kantorovich regulariza-
tion, turn out an equation in ¥; and start again with the Kantorovich and iterated
Kantorovich method. The important thing to note is that the regularization is

repeated for each iteration.

6.2 Smoothing

The 10 point Gauss-Legendre quadrature was used to evaluate integrals on the

computer. By choice the interval was always broken up into 20 subintervals and
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so this meant approximating ® at Gauss points. Throughout the analysis, we
took (x,y) = f(f xTydt where x,y € L3(a,b). Computationally x,y will be 1-
vectors. In other words we only ever compute one integral at a time. However,
there was one particular integral which arose when approximating Kf, Kf, ..., or

more precisely Ky f1 and Ky, fo for the example (2.2), and that was

/OL sin(ko |  —t |)o(t) fi(t)dt A= ln2 (6.3)

where the slope discontinuity, when z = t, meant that Gaussian quadrature was
unsuitable. Gaussian quadrature rules work well for smooth functions especially
polynomials. In fact, N point quadrature rules are exact for polynomials of degree
2N — 1 but due to the slope discontinuity, approximations to (6.3) would be poor.
So how was this resolved?

A trick in Chamberlain’s work [2, 3] solved this little nightmare. We simply

rewrite (6.3) as

/OL sin(ko | ¢ —t[)o(t) fi(t)dt =
/OL sin(ro | z — ¢ [)(e(t) fi(t) — e(z) fi(2))dt + o(z) fi(z) /OL sin(ko | z — t |)dt.

where ¢ = 1,2. Why is this better? Well Gaussian quadrature works for the first
integral on the right hand side because it has a continuous derivative. The second
integral on the right can be evaluated analytically (without the need for Gaussian
quadrature).

The trick can be written more generally

h b

K, /(1) — f@)dt + f(2) [ Bz, 0dt (6.4)

a

/a“ k(z, ) f(t)dt = /

a

where k is some function of @ and ¢ with a discontinuity at z = ¢t and «,b € R.
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Chapter 7

Results

Before we see the results it might be beneficial to take a look at what Chamber-
lain’s wave scattering equation is actually describing. For the results that follow

for the wave scattering equation (2.2) the depth profile was given by

2rx

h(z) = ho + h1 — (hy — hg) cos (T)

for 0 < ¢ < L where hg is the depth for z < 0 and z > L and h; is the minimum
depth. Parameters chosen were L =3, v = 1, hg = 0.6 and h; = 0.45 and so our

particular depth profile was

h(z) = 21—0 {21 — 3 cos (?)}

Diagrammatically we had the following situation

|

\'“-._\_‘_

Depth profile
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The curve is the profile of the sea bed, hg is the depth and hy is the minimum

depth. Here is the equation again to save one having to flick back

(}5(’1,) — einor .

[ eb=tot)g ey (7.1)

2/~£0
where z € [0, L] and p is real and known. The real parameter o is the positive
real root of

v = ko tanh(&oho)

where v is the deep water wavenumber and hq is the depth in ¢ < 0 and =z > L.
Chamberlain’s wave scattering equation arises out of consideriﬁg situations of this
type. In his work Chamberlain considered many other depth profiles (see [2, 3]).
Although this thesis is primarily concerned with coupled systems it was possible
to treat Chamberlain’s example as a single equation (and let Matlab deal with
complex numbers which it did so with great effect). Hence there are four sets
of results to present: those from the coupled re-iterated Galerkin method, those
from the coupled re-iterated Kantorovich method and those from treating the wave
scattering equation as a single equation using both the Galerkin and Kantorovich
re-iteration methods. There will in fact be more data sets shown later concerning
approximations using the Neumann series (more as a reference than anything else
and so these are simply held in the appendix), concerning the use of the extended
subspace that was mentioned in Chapter 4 and the ‘residual technique’ which will
be described later.

Re-iteration continued until figures converged to within a tolerance of 1.0 x 1077.
The top row of some of the tables have z ~ ¢ for ¢ = 0,1,2,3. What is meant by
this is that z 1s the closest Gauss point to ¢ for ¢ = 0,1, 2, 3.

As mentioned previously a 10 point Gauss-Legendre quadrature was used and 20
subintervals was chosen throughout. Hence there were 200 Gauss points in total

spread over (0, 3], our interval for x.
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For reference a table for the Gauss points closest to 7 = 0,1,2, and 3 is given here.

Closest Gauss point

z a0 |1.9570103612121196e-03
z =1 | 1.0075046545596935e+00
z 2 |1.9924953454403060e+00
T~ 3 |2.9980429896387877e+00

7.1 Underestimates of p(S) and p(SK) and || K ||

The spectral radius, denoted p(T"), is defined to be the limit of || T' || as n — oo

where T' is a bounded linear operator. From this we can see that

p(T) < lLim(||T|")=

- n—oo

= 171

Underestimates of p(S) (or p(SK) for the re-iterated Kantorovich results) are
given following the first main set of tables. These were found using the observation

in [1] that

| £n || . { p(S),  for the re-iterated Galerkin method

Fno1 || p(SK), for the re-iterated Kantorovich method (7.2)

as n — o0o. We will not prove this but simply observe that the residual t, (or

‘residual error’ as it is sometimes known) is given by

A

Bn = f—(=K)(Po+ P+ +Pn)
= (I-=K)(®—Pot+pPi+-+Pn)
and we expect sucessive residuals to decrease in magnitude for convergence for if

I, = 0asn — ocothen po+pP1+--+pp— ® asn — oo.

In particular, for convergence we should find that

|

| Fn |

<1
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for each fixed n = 0,1,2,..., where from now on r_; is defined as f.

Simply recalling that
[ Do+ D1+ 4 Pmsr — RSN S Po+ P14+ P — 2|

reveals that sucessive approximations should improve in the norm by as much as
a factor of || S ||
We have to stop here. The convergence property of (7.2) should be shown but
this would prove difficult. For instance, how can we ezplicitly define the spectral
radius of a matrix of operators such as S or SK?7 Does it even exist?
We will not begin another thesis on such matters at this moment in time but will
simply observe the figures given to us by the computer.
Next, underestimates for || K || are given a little later using another observation
in [1] that

el oy ey, n=01,2...,

[ .
where r, = £,y — (I — K)pp, the non-iterated residual which comes from &, =
o1+ KP,.

This should be easier to prove. We begin with the following expressions,
t,=f—(I—K)Po+..+Pn)
and
rn g f'n_l —_— (I - I{)pn
where n =0,1,2,....

Working on the first of these

r, = f—(I—K)(DPo+..+DPn)

= oot — (I = K)pn
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= fuo1+ KPn —pn

= Fnot + K(Faot + Kpp) = (Fro1 + Kpy)
= K(tn-1 + Kpn — pn)

= K(tp-1 — (I — K)pn)

= Kr,, n=20,1,2,....

Taking norms and rearranging gives

[ £ |

Frs |

<[ K I, n =05142 s

7.2 Coupled Integral Results

We begin with the results for the re-iterated Galerkin and re-iterated Kantorovich
methods using the coupled and single equation approaches.

First there are tables for the solutions at Gauss points. Next there are estimates
for the spectral radii and the norm of | K ||. Then there are bar charts chronicling

the number of iterations each method takes against the size of the subspace.

Notes: (1) The figures in the following tables have been truncated and not
rounded. (2a) The first entry for the tables of the spectral radii is “lﬁ—"uu and for

|| K| is H:—EH, each corresponding to either the re-iterated Galerkin or re-iterated
Kantorovich method. (2b) The norm that was used for these underestimates was
( E xTidt) 1/2, which was easy to do on the computer since solutions were al-
ready evaluated at Gauss points covering the interval [0, 3]. (3) Bar charts were

obtained using re-iterated methods and so where the title states ‘Galerkin’ or

‘Kantorovich’, it is the corresponding re-iterated method that is meant.
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Re-iterated Galerkin/Coupled Approach/p(5)

No. of dimensions

1

2

3

No. of iterations

8

6

5

0.01972453672757
0.13467133337891
0.13959812482407
0.13236529411318
0.15235695256579
0.13488220387719
0.12474648704686
0.12413789064624
0.12953947792903

0.00231160298728
0.12639801749762
0.12247850816997
0.14060357233738
0.11382022540380
0.09726715523733
0.08087100912276

0.00022707736917
0.10958055308234
0.14274823497170
0.12322316490550
0.12997518689376
0.12872143854321

No. of dimensions

4

5

6

No. of iterations

4

2

1

0.00002022896025
0.12527162296129
0.08777114215125
0.11025866728479
0.09808653333133

0.00000167492878
0.01410065248910
0.03587043465389

0.00000001944983
0.03210416478565

[ Re-iterated Galerkin/Single Equation Approach/p(5) |

No. of dimensions

1

2

No. of iterations

11

8

0.03033312808798
0.21734388238320
0.29288226641174
0.26267682490394
0.27496514602763
0.27012376033304
0.27200496551546
0.27127720196393
0.27155648194311
0.27144981533752
0.27149033356792
0.27147501192256

0.00432373230730
0.16942671935119
0.16929004455630
0.16920674411420
0.16918460965480
0.16917941710301
0.16917824994819
0.16917799276970
0.16917793696830

No. of dimensions

3

4

No. of iterations

3

1

0.00001272612168
0.03227006047818
0.03401462680316
0.03456444105728

0.00000006358617
0.01839193519326
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[

Re-iterated Kantorovich/Coupled Approach/p(SK)

No. of dimensions

1

2

3

No. of iterations

5

4

3

0.01806225878335
0.02105127418584
0.02133824253584
0.01672271610614
0.02047842505371
0.01843812971885

0.00202747925896
0.01740708491188
0.01660464662182
0.01036570138630
0.00767859344530

0.00018090282418
0.01611315469522
0.01136497212850
0.01291630350035

No. of dimensions

4

5

6

No. of iterations

3

2

1

0.00002186550165
0.01183470408028
0.01235973116278
0.01270350232230

0.00000142283716
0.00509745659218
0.00485680835716

0.00000001582483
0.00120035195828

Re-iterated Kantorovich/Single Equation Approach/p(SK)

No. of dimensions

1

2

3

No. of iterations

6

4

2

0.02672778050730
0.06145675494207
0.07132332552170
0.07145134906443
0.07121546067534
0.07118838480550
0.07119123100288

0.00358338577976
0.00332760545439
0.00623598635800
0.00439722670313
0.00528974194214

0.00000857598713
0.00110327996124
0.00119574181234

No. of dimensions

4

5

No. of iterations

2

1

0.0000002203499216
0.0047728165320711
0.0048821330239489

0.0020242317303558

70.0000000010553718 |
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Re-iterated Galerkin/Coupled Approach/| K ||

No. of dimensions

1

2

3

No. of iterations

8

6

5

0.13073900774380
0.16417287435047
0.13993307391025
0.13538259909492
0.15291485850602
0.15620714607805
0.15893930449102
0.16044729548167
0.16051756773681

0.16068213013215
0.13317028876590
0.12866106042748
0.14667666589915
0.14474590851132
0.13620528751002
0.12539169804454

0.11832640333830
0.11667004286585
0.16272084785285
0.15289289632315
0.15351412978721
0.15546282583155

No. of dimensions

4

5

6

No. of iterations

4

2

1

0.10243149519602
0.16023830226581
0.13429630132786
0.15131978055025
0.14367885313021

0.14320310811857
0.07998905303200
0.08377470200756

0.06791021272024
0.07634898517525

| Re-iterated Galerkin/Single Equation Approach/| K || |

No. of dimensions

1

2

No. of iterations

11

8

0.22698780997811
0.19539861054483
0.20775428599464
0.20290626796297
0.20558455985329
0.20652651755075
0.20920193816145
0.21233301211711
0.21638573629596
0.22117510839114
0.22673050728455
0.23297033211150

0.24299813541794
0.24222219858622
0.24210335462227
0.24213773808814
0.24220562535297
0.24228024039011
0.24235562215890
0.24243044354433
0.24250440611048

No. of dimensions

3

4

No. of iterations

3

1

0.10440747920543
0.10576465734599
0.10639751193703
0.10681147283319

0.06405115689104
0.06381244094100
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|

Re-iterated Kantorovich/Coupled Approach/|| K ||

No. of dimensions

1

2

3

No. of iterations

5

4

3

0.00276608285187
0.00302631793098
0.00308359179560
0.00230673213538
0.00302320798950
0.00259097062154

0.00030698990223
0.00235152965436
0.00248207352072
0.00153641431236
0.00115272451016

0.00002739390424
0.00201187150587
0.00170823894974
0.00197655840818

No. of dimensions

4

5

6

No. of iterations

3

2

1

0.00000331107307
0.00191087395178
0.00190112261115
0.00193078894997

0.00000215458944
0.00628433362492
0.00598645633766

0.00000002396340
0.00152202037627

Re-iterated Kantorovich/Single Equation Approach/| X ||

No. of dimensions

1

2

3

No. of iterations

6

4

2

0.00419054874920
0.01011547071352
0.01139060416764
0.01116891312391
0.01112108490083
0.01112138919881
0.01112258385629

0.00538756427813
0.00411274987120
0.00819645494870
0.00555041057216
0.00682143197632

0.00001298615893
0.00119051610216
0.00118917423974

No. of dimensions

4

5

No. of iterations

2

1

0.00000003336738
0.00026435127797
0.00027532474554

0.00000000015981
0.00013764741738
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Galerkin/Single Equation Approach

Galerkin/Coupled Equation Approach
- —————————— 12

12

10|

lterations
lterations

2 3 4 5 6 7 8 1 2 3 4 5 6 7

Dimensions Dimensions

Kantorovich/Coupled Equation Approach Kantorovich/Single Equation Approach

12 12
10 10
8} 8
(2] [72}
[ c
S S
g 6 5
e £
4.
) ll.l-l

1 2 383 4 5 6 7 8 1 2 3 4 5 6 7
Dimensions Dimensions

It seems that the most notable advantage of the coupled approach is that less
iterations are needed when a 1D subspace is opted. Also we can see that in
general less iterations are required using the re-iterated Kantorovich method than
using the re-iterated Galerkin method for 1,2 or 3 dimensional subspaces. In
terms of cost the re-iterated Kantorovich is slightly more exp.ensive to run due
to the regularization step. However, this is a comparatively small sacrifice noting
the lesser number of iterations that the re-iterated Kantorovich require. It was
found that increasing the size of the subspace (to 7 or 8 dimensions) causes the
coefficient matrix A (see previous chapter) to become near singular. There was
the possibility of performing some normalisation (to keep the magnitude of the

numbers within a range that the computer can cope with) before constructing

42



the matrix but this was deemed unecessary, as only one iteration was needed for
5 or 6 dimensional subspaces and good results were obtained with even smaller
subspaces with a reasonable number of iterations. Therefore normalisation was
never carried out. Underestimates for p(5), p(SK) and || K | should not be
taken too literally. It is unclear as to how close these are to the true values! and,
because the consecutive residuals decrease in size, iterating more times only allow

rounding errors to seep in.

7.3 Extended Subspace Results

Here we present the results by using an extended subspace as outlined previously
in Chapter 4. The idea was tried with the re-iterated Galerkin and re-iterated

Kantorovich methods.

Note: The number of dimensions running down the first column may be a little
misleading. This is because, for example, the 3D subspace refers to the two sets

of subspaces (as shown in (4.2) and (4.3)) so where

p1,¢1 € span{fi, Kiif1, Ki2f2}
P2,92 € Span{fz,K21f1,K22f2}a

the results for which are expected to be more or less equivalent to the previous

set of results for the 2D subspace where

p1,q1 € span{fi, K1u1fi + Ki2f2}

P2,q2 € span{fa, Ko1f1 + Koz fa}.

Intuitively we would think that the extended subspace approach is slightly better
due primarily to the extra degree of freedom endowed upon the Galerkin coefhi-

cilents.

Yalthough in Burton’s thesis ([1] p32-p33) there was mention that the closer ry, is to a multiple

of the eigenvector corresponding Lo the largest positive eigenvalue of I, the closer the ratio H:—:H
isto|| K]
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Before making observations on this set of data we will look at the matrix system

Ax =y itself for the 2D case using the extended subspace. Here is the coeflicient

matrix A:
(I = Ky1)fi, h) —(K12f2, f1) ((I = K11)Ky1f1, f1) —(K12Ka1 f1, f1)
—(Ka1f1, fa) ((I — K22)f2, f2) —(Ka1 K11 f1, f2) ((I = K22)Ka1 f1, f2)
((I—-Ku)fi, Kufi) —{((Kiz2fa, K11f1) (I = K11)K11f1, K fi)  —(K12Ko1fi, Kifi)
—(Ka1 f1, Ka1f1) (I = K92)fo, Korf1) —(KaKi1f1, Ko fi) (I = Ka2)Ka1 f1, Ka1f1)
and
ax <.f1:.f'i>
— bl = <f23 f&)
R az |’ ¥ (fl.a Kllf])
by (fa, K21 f1)

This is a 4 x 4 matrix and not a 2 x 2 matrix (c.f. Chapter 6) as we had before
with the straightforward coupled system but notice that elements are the same in
both but that they have been split up for the subspace extension.

Looking at the data the subspace extension worked quite well to begin with. Com-
parison of the ‘Galerkin/Coupled Equation Approach’ and ‘Galerkin/Extended
Subspace Approach’ shows that for a 1D subspace the latter takes 7 iterations
whilst the former takes 8 iterations. Remembering that the 3D subspace of the
latter is approximately equivalent to the 2D subspace of the former we also see

that the latter performs better with only 4 iterations against 6. We can make
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similar observations with the re-iterated Kantorovich. These improvements do
not last though. The coeflicient matrix A becomes singular as we increase the
size of the subspace due to the splitting of the subspace elements. The entries to
the bottom right hand side of the coefficient matrix get smaller and smaller; the
splitting of the subspace only serves to worsen the situation. This is illustrated
with the observation that the number of iterations increase quite dramatically
when a 4D subspace 1s chosen.

Estimates for spectral radii and norms of K have been purposely omitted. Recall

that with this extended subspace we do not strictly use a Galerkin method.

7.4 Residual Technique

New ideas are often stumbled upon. The ‘residual technique’ is one such example.
This section contains results for when the free term is replaced by the new residual

after each iteration. Here are the results.
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Residual Technique/Coupled Equation Approach Residual Technique/Single Equation Approach
g—————————— e

Iterations
lterations
N

1 2 3 4 5 6 7 8 1 2 83 4 5 6 7 8
Dimensions Dimensions

Residual Technique/Extended Subspace

lterations

1 2 3 4 5 6
Dimensions

Again estimates for the spectral radii of S and SK and the norm of K have been
omitted. This time because the subspace is altered with each iteration (recall that
the free term is replaced with the new residual after each iteration).

By looking at the results it appears as though the technique works just as well as
the re-iterated Kantorovich method. How can this be?

Let as try and ascertain what is happening when we run the program. Taking a

2D subspace our first Galerkin approximation is given by
po = aif + a, Kf
where a;, ay are our Galerkin coefficients. Our iterated approximation is then
po =f + Kpo
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and by introducing a current error term ¢; we obtain
@1 = f‘o + I(@l

where 1o = f — (I — K)po.

Now instead of finding a Galerkin approximation p; to ®; by taking
P1 = a3f -+ a4Kf
we replace the free term by the residual T so that
p1 = asto + as K.
The iterated approximation will then be
P1 = fo + Kp1
which leads us to
@2 = f‘l + I{@z
where £y = f — (I — K)(po + p1).
So what consequences does replacing the free term by successive residuals have?
Let us consider the residual t9. On expansion
= f— (- K)(f+ Kpo)
= f—f— Kpo+ Kf + K’po
= Kf—(I—-K)Kpo
= Kf—(I—K)K(aif + a:Kf)
= Kf—a Kf — a, K* + a1 K*f + a, K°f
= (1 — al)Kf + (CL1 . (Lg)](zf + a2K3f
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where the absence of f is apparent. Instead of p; being spanned by {f, Kf},

it is now spanned by {fo, KTo} which is made up of a linear combination of
{Kf, K*, K3, Kf}.

Let us take a look at the next residual r; for which p; = asty + ag/{ty. Now

ty = f—(I—K)po+p1)
= {f—(I-K)po} - (I - K)p1
= fo— (I — K)(fo+ Kp1)
= fo—1to— Kpi + Kt + K*py
= Kio— (I — K)Kp,
= Kto— (I — K)K(asto + asKio)
= Kto— azKto — ags Kt + asK*Fo + as Kt

e (1 e (Is)l{f‘o + ((13 — a4)K2f'0 + (14.[{3f'0.

So p; is spanned by {f;, Kt;} which is made up of a linear combination of
{K*,K®f,..., K¥}, a total of 7 elements!

In general therefore,

~

ry, = (1 . a2n+1)1{f‘n—1 + (a2n+1 - a2n+2)I(2fn—1 + aZn+ZI{3f‘n—1

forn=0,1,2,..., where f_; is defined to be f. As with the Kantorovich methods
f is taken out of the iterative proceedure. Unfortunately, there is a price to pay.
The program takes longer to run because the matrix of coefficients, A, has to be
computed again for every iteration. There is no need for this with the re-iterated

Galerkin or re-iterated Kantorovich methods.
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7.5 Galerkin Variant

Returning to Section 4.2, it may have been obvious that two leaps were made when
one would have been more appropriate for comparison. What would happen if
instead of both (1) allowing some leeway for the Galerkin coefficients, and (2)
extending the subspace, we only permit (1) to occur? How would this compare

to our usual coupled system approach?

Galerkin/Coupled/Coefficients Residual Technique/Coupled/Coefficients

8 8
6} 6l
[7] (2]
c [
he S
@4 [
2 2
2t ol
0 0 | 1 | B
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

Dimensions Dimensions

Kantorovich/Coupled/Coefficients

lterations
E-N

Dimensions

Again looking at the corresponding system before analysing the data we have, for

a 2D subspace (that refers to the two sets of basis functions { fi, K11 f1 + K12f2}

and{ f2, o1 f1 + Ka2f2}), our matrix A as
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(I =Ku)f, fiy  —(Ki2fa, fr) ((I = K1)K{, ) —(K12K?, f1)

—(Ko1f1, f2) (I = Ka)fa, f2)  —(KaK§, f2) (I — Ka2)KY, f)
<(I = -Kll)fI; I{f’) —((I\’lzfz, I{f() ((I — I(ll)fi’f‘, I\"f) —([{121(1’6, [{f)
—(Ka1 f1, K?) (I — Ka2)f2, KP)  —(Kq K2, KP) (I — Kp)K? KP)
and
(i (fn f])
N B (fas fa)
% = (15} ! y B <j| ¥ [1;})
hﬂl (.f‘h h;q)

Notice that the matrix A has more splitting than for the usual coupled system
approach but less than for the extended subspace approach. Still if there was one
expected but unwanted consequence it was that the coeflicient matrix, A, would
become close to singular just as it did when the extended subspace was in use.
This simply did not become a problem. The non-singularity of the matrix A held
out for as long as was necessary.

Comparing these bar graphs with their corresponding coupled system counter-
parts shows a marked improvement. In general one less iteration is needed when
the sets of Galerkin coefficients are allowed to differ.

Obviously, due to the extra coeflicients there were more calculations for the com-

puter to perform but the difference in run time was negligible.

99



Chapter 8

Conclusions

Overall, for the wave scattering equation (2.2), the re-iterated Kantorovich method
required fewer iterations at a slightly greater cost than for the re-iterated Galerkin
method (the estimates for p(SK) were generally smaller than the estimates for
p(S)). In terms of the number of iterations required, the coupled approach appears
to have worked better for smaller dimensional subspaces and the single equation
approach appears to have worked better for bigger dimensional subspaces. Be-
tween the coupled and single equation approach neither is much better than the
other because with a smaller subspace there is the need for more iterations and
for a larger subspace, there is the need for more preliminary calculations due to

the extra subspace elements.

There are good possibilities concerning the structure of the coefficient matrix A.
Allowing the sets of coefficients to differ and not extending the subspace worked
well. Another possibility is to use {Kf, K*f,...} and not {f, Kf,...} as the sub-
space for the re-iterated Kantorovich method. This was hinted in Burton’s thesis
as possibly being the more appropriate given how f vanishes after a Kantorovich

regularization.

The obvious way forward is to extend the idea of coupled systems to bigger sys-

tems. Before embarking on this, one should ask if using coupled systems is actually
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better than treating integral equations in a singular manner. Judging by the re-
sults in this thesis there was no outright winner. Analysis may yet hold the key

and turn over a few untouched stones.
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Appendix

Inner products

We require an inner product (or scalar product) where our arguments are finite

vectors. Let our Hilbert space be L%(a,b) so that our inner product can be given
by
b
(,y) = [ Tyt

where x = (z1,...,2n5)T and y = (y1,...,yn)? and belong in L}(a,b).
It is simply a formality but we must check that this definition meets the require-

ments necessary for an inner product
1) xy) =%,

(i) (Ax,y) =Axy),

(iii) (x+y,2) = (x,2) + (v,2),
(iv) (x,x) >0 when x # 0

where x,y,z € H and ) € C.

Let the checking commence.

(i)

b
(x,y) = / S
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(if)

(iii)

(iv)

(x+v,2)

b y1
= / (z1,...,zN)| ¢ |dt

YN

b
= / (217, + 22Uy + - + TNTYy)dl

b
o= / (_.’flyl +sz2 —I— +TNyN)dt

€

b
= /(ylayZa'~'7yN) dt
a .
b_____
= /yTidt
= (y,x),
b 5! \
()‘Xay> = /)\(SL‘l,...,CL‘N) dt
’ YN
b ( 251
= X[ (z1,..,2zn)| ¢ |dt
’ YN
= AMx,),
b &
/($1+y1,-~,$N+yN) dt
a ”

[l w), 74 (3 + va)7a o+ (o + uEwld

(x,2) +{y,2),

T

(Ax,x) = /ab(:cl,...,:rN) Do |dt

N
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01f x #£0.

b
/ (flflf_L'_l,
a

b
/ |2y P 4.4 oy [P dt

,:L‘NEN)dt

Hence the conditions for an inner product are satisfied.

Results using the Neumann series

Results were obtained using consecutive terms of the Neumann series (beginning

with f). These are for reference only.

Approximations Using the Neumann Series

No. of

terms

za0

ra1

Re

| Im

Re

Im

T W

- =
o O

0.999996056

0.002808531

0.124586418

0.992208760

0.952724920

0.023345526

0.059365364

0.994045157

0.943558493

0.013117909

0.052746729

0.998575806

0.946685171

0.010950409

0.052117218

0.995643243

0.946873485

0.011618919

0.052634941

0.995848397

0.946785612

0.011600525

0.052571993

0.995881462

0.946785615

0.011600519

0.052571991

0.995881458

No. of

terms

T2

x

~
~

3

Re

| Im

Re

l

Im

(<2 S S ]

- =
o O

-0.960464031

0.278404100

-0.398473262

-0.917179949

-0.955594318

0.089721832

-0.166538297

-1.017944770

-0.936728444

0.104570951

-0.159556386

-0.984669154

-0.939120861

0.105124909

-0.162808342

-0.984903116

-0.939084571

0.105039350

-0.162830733

-0.985166683

-0.939093146

0.105014777

-0.162784083

-0.985186237

-0.939093146

0.105014777

-0.162784084

-0.985186235

It is interesting to note that figures are correct to 7 decimal places after 10 to 15

terms have been used.
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Miscellaneous

It is often useful to transform an interval (a,b) to (¢,d). Chamberlain’s exam-
ple (2.2) only required the interval (0, L) but perhaps it will be worth while to
consider a more general interval.

There are two situations that may arise: either we wish to stretch the interval or

contract it. In both cases one relation holds the key:

y—c T—a

d—c b—a

Any mathematician who has been through some basic Cartesian instruction should
recognise this as a formula for a straight line. On rearrangement (for transforming

from (a,b) to (¢, d))
(z —a)(d—c)

y= b—a

+c
or in terms of x (for transforming from (c, d) to (a,b))

_(y—c)(b—a)
B S md

The equation of the straight line, besides giving the equation of a straight line,

describes the governing ratio for stretching or contracting of an interval.
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