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§1. INTRODUCTION

In many computational situations an irregular grid is desirable.
This is partly because resolution of local features of a solution can be
obtained more economically with such a grid and partly because a regular
grid for a complicated 3-D problem may be prohibitively expensive.

Many attempts at adapting the grid have been made. A favourite
device is to ensure that a measure of the solution is equidistributed in
each irregular interval. In particular, the second derivative of the
solution is often chosen as the measure, on the grounds that if the
approximation is piecewise linear, the local approximation error is a
function of the second derivative.

In this report we investigate a method of generating an
equidistributed second derivative by considering the Legendre
Transformation of the underlying approximated function, as explained in
§2 below. The benefit is that the corresponding equidistribution in the
dual space is relatively trivial. Thus, as in other applications of
this transformation, the problem is solved more easily in the dual space
and the only difficulty is in transforming back.

In 82 we describe the procedure in detail and extend it to a more
general equidistributing principle. In 83 the resulting approximations
are compared with each other and with the results from equispaced grids.
A number of different approximations arise from different ways of
treating the dual function. We consider chordal, tangential and least

squares approxXimations.



§2. EQUIDISTRIBUTION AND USE OF THE LEGENDRE TRANSFORMATTION

Given a function u of x , it is possible to approximate the
function by linear interpolation between a finite number of points of
its graph in the x,u plane. For example this can be done with the x
coordinates of the points equally spaced — an equispaced approximation.
We seek a better approximation to the function by equidistributing the
abscissae, in accordance with some rule, to give a new linear
interpolation between points on the graph of the function at these
abscissae.

It can be seen that an equispaced approximation tends to represent
a function more accurately in regions of the graph where the function
has smaller slope or smaller curvature. Concentrating abscissae in
regions where the function has higher slope or higher curvature may
create a better approximation to the function in terms of reducing some
error measurement.

There are several ways to equidistribute points. The first method
used here is, given a function, make the second derivative of the
function integrated between each pair of adjacent abscissae equal a

constant, i.e.

X,
J ; u"(x)dx = constant (i =1,2,...,n) (2.1)

Xi-1

where u(x) 1is the function to be approximated and the X4

(i =0,1,...,n) are to be the abscissae of the interpolation points.
This should cause a clustering of the X4 in regions where u”(x) is
large.

Solving for the X4 (i =0,1,...,n) 1is done using the Legendre



Transform. Consider the space with coordinates (m,v) - dual to the
space with coordinates (x,u) , defined as follows. Let wu(x) be the
function to be approximated in the (x,u) plane. In the dual space

this becomes v(m) where, if

m = ul(x) (2.2)

can be solved for x as a function of m ,

v(m) = m x(m) - u(x(m)) (2.3)

is a function of m in the m,v plane and is the dual of the function

u(x) . Using m = ul(x) equation (2.1) becomes
X, X,
o Lo
constant = J u (x)dx = J m (x)dx = m(xi) - m(xi_l) (i =1,2,...,n).
X, X,
i-1 i-1
(2.4)
So, to equidistribute the abscissae X, (i =0,1,...,n) as in equation

(2.1) it is simply necessary to equispace the m coordinate in the m,v
plane, then transform back to give the X,
The trial functions are all to be approximated on the interval
[0,1] and are strictly increasing functions of x so that
i

m, =m_ + =(m -m
n - n

= ) (i =0.1,...,n) (2.5)

o



where
m, = min ul(x) (2.6)
xe[0,1]
m, = max ul(x) . (2.7)
xe[0,1]
Note that the m, (i =0,1,...,n) in (2.5) is forced to be an

i

increasing sequence in i .

It is a property of the Legendre Transform that the tangent to a
point on a curve in one space transforms to a point on the transformed
curve in the dual space. The tangents to the graph of v(m) at the
n + 1 points given by (2.5), transform to n + 1 points in the x,u

plane as follows

X, = v'(mi) (2.8)

u, = xmg - v(mi) ; (2.9)

This yields a chordal type or interpolation approximation (see fig. 1).

The approximation to the function, u(x), in the interval

[xi—l’xi] (i =1,2,...,n) is given by
T e A N T (2.10)
i XXy 1 i i i-1 =7 =7 )

Using this method it is also possible to obtain another,

tangential, type approximation to u(x) where the approximation meets



the function at a tangent. To generate the n + 1 abscissae x, (i =

0,1,...,n) it is necessary to equispace the m coordinates:
i . _
m, =m_+ —= (mn— mo) (i =0,1,...,n"1) (2.11)
with m,.m ~as given in (2.6) and (2.7), and to form
v, =v(m) (i=0.1,....0°1). (2.12)

Then the approximation points (xi.ui) (i =1,2,...,n-1) may be found
by making a chordal approximation to the function v(m) at the points
(mi,vi) (i =0,1,...,n-1). In fact x, 1is the slope of the chord in
the interval [mi—l’mi] and uy is the negative of the intercept of

this chord with the line m =0 ,

Vim Vi1
X, = ———— (i =1,2,...,n"1) (2.13)
i " m,~ m,
i i-1
u; = xm - v, (i =1,2,...,n"1). (2.14)

To ensure that u(x) 1is approximated over the whole interval [O0,1] ,

the points (x ,u ), (x _,u ) are defined as follows:
o’ o n’ n

X, = 0, u = u(xo) (2.15)
X = 1, u, = u(xn) 5 (2.16)
Then, with these XUy (i =0,1,...,n), a tangential

approximation to u(x) may be created as in (2.10) (see fig. 2).



A further possibility is to generate a best least squares linear

approximation
h
v (m) = Xgm - u, (2.17)

to the transformed function v(m) in each equispaced interval

(mi—l'mi) by minimising
h
[v(m) = v (m) [, (2.18)

where X;,u, are constants (eventually the required points in the x,u

plane). To obtain X; and u; minimise the element error
| |v(m) - xXgm + u 1y (2.19)

over X, and u; giving the normal equations

my A
(v(m) - X; m+ ui)dm =0
M1 [ (2.20)
My
(v(m) - X, m+ ui)mdm =0
m

i-1 ¢



Thus X0y satisfy

r - r - ~ ,mi -
l, 3 3 _ 2 _ 2
3(mi mi—l) 2(mi mi—l) X, ‘ mv{m)dm

= i-1
) m, (2.21)
§(mf - mi_l) - (mi - m _1) u, v{m)dm
b o ] o - m . o

i-1

The line vh(m) derived in this manner is a better local fit to v(m)
than either the chordal approximation in the same interval or a
tangential approximation based on that interval and therefore is
expected to give a better X, than either of these (see fig. 3).

However, this last approximation is discontinuous and does not
preserve the equispaced m values. The intersections of the
approximating lines give new m values, even though they are close to
the old ones.

A best least squares approximation which preserves the m values

is a continuous piecewise linear approximation, of the form

h h
V(m) = ) V0 ¢, (m) (2.22)
where
. - m
1+1 m, {m < m,
mi+1 - mi i i+l
¢, (m) = 1 (2.23)
R
m <{m¢<m
m, — m, i-1 i
i i-1

and V? are coefficients determined by minimising

[lv(m) = vPemy |1, (2.24)



over the v? . This gives the normal equations

Z[ }¢i(m) ¢j(m) dm]v? = J@i(m) v(m) dm v, . (2.25)
J

The boundary conditions are vl(mo) =x_, vl(mn) =% - When these

o}

equations have been solved for v? the x-coordinates are given by

Vh . Vh
Xi = ml+1"—_mi . (2.26)
i+l i

The above procedures give four possible equidistributions of a
finite number of abscissae derived from the belief that if equation
(2.1) is true for all Xy (i =0.1,...,n) then this will yield a more
accurate approximation to a function than merely equispacing the
abscissae Qi and interpolating.

Carey and Dinh [1] showed that the criterion for equidistributing

abscissae to minimise the L2 error between a function and its linear

interpolation is, asymptotically,

X,
i
J [u"]* dx = constant (i = 1,2,....n). (2.27)
*i-1
This yields a different set of abscissae x, (i =0,1,...,n) but we

can construct them as follows.

Again, put ;o = 0 . The X, (i =1,2,...,n) are found by
altering the length of each interval [xi—l’ Xi] (i =1,2,...,n) where

the X, are one of the sets calculated above. This is done by taking
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A and scaling it by a factor «a so that X = 1,

(x.

i Xi—l)

§. = a(xi - xi—l)% + ;._ (i =1,2,...,n) . (2.28)

i i-1
So there are four more possible equidistributions of abscissae to
use in the search for a good linear approximation to a function using a

given, finite number of nodes.

§3. RESULTS AND DISCUSSION

Sets of points (xi.ui) (i =0,1,...,n) corresponding to linear
approximations of several trial functions are calculated as in §2. In
particular those points giving both chordal and tangential
approximations in the following categories of abscissae distribution are
calculated: i) equispaced, ii) equidistributed as in equation (2.1) and
iii) equidistributed as in equation (2.27). In addition, sets of points
equidistributed using continuous and discontinuous best fit
approximations in the dual space are also found. These give linear
approximations in the form of equation (2.10).

The accuracy of these approximations may be measured using the L2

error norm. If wu(x) is the function to approximated and uh(x) is

the linear approximation the L_, error is given by:

2

4 %
[ oo - denad

1 x

error = {Jl(u(x) = uh(x))2 dx}% - {

(o}

N N B

= e

(3.1)

This may be calculated for various numbers of abscissae n + 1
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To provide a comparison of the overall accuracy of the
approximations one further approximation is considered. This is the
best least squares fit using piecewise linear continuous functions and
is given by equation (2.25) with v,m and u,x interchanged, the x
abscissae being equally spaced. By its derivation this approximation
will have the minimum L2 error measurement of any continuous linear
approximation on the equally spaced grid. Comparison with the L2
error measurements of the other approximations will give an indication
of any improvement made by equidistributing the abscissae.

Results are shown in tables 1 and 2 for the trial functions

u(x) = e—5x , u(x) = e_8x with up to 40 points.



f)

g)

h)
1)
J)

- 12 -

Comparison of L2 errors for various approximations

KEY to Tables 1 and 2
‘equispaced’ tangent approximation

equidistributed tangent approximation :

1
J u'dx = constant (i =1,2,...,n)
*1-1

equispaced chordal approximation

equidistributed chordal approximation :

i
J u'dx = constant (i =1,2,...,n)
*i-1

equispaced local best fit approximation

equidistributed chordal approximation :

iy %
J (u )"dx = constant (i =1,2,...,n)
X,
i-1
equidistributed tangent approximation :
"1 n.%
J (u)"dx = constant (i = 1,2,...,n)
X
i-1

transform of local best fit approximation
transform of global best fit approximation

equispaced global best fit approximation.
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L, errors for u(x) =e

2

-8x

b c e
.58 x 10 2[2.68 x 1072|2.73 x 1072[4.40 x 1072[1.11 x 1072
.26 x 10°°]9.81 x 10°]7.11 x 10°>|1.68 x 1072[2.90 x 10>
.09 x 1073[3.24 x 10°]1.80 x 1073|5.99 x 103[7.34 x 107*
75 x 10 %1.17 x 10°]4.51 x 1074|1.05 x 10°3]1.84 x 1072

3 h J
.31 x 1072]1.34 x 1072]1.43 x 10 2|1.50 x 1072|1.18 x 1072
.37 x 10 °[2.61 x 10™]4.82 x 107°[5.33 x 10>(2.97 x 10>
57 x 10 4[5.01 x 107%]1.74 x 1073[1.90 x 1073[7.39 x 107*
16 x 10 4[1.41 x 107%]6.38 x 107%[6.78 x 107%*|1.84 x 107*

Table 1

L2 errors for u(x) = SO

b c e
.24 x 10°2]2.70 x 1072|5.12 x 1072[6.90 x 1072|2.07 x 1072
.88 x 107 2]1.17 x 1072|1.41 x 1072[3.09 x 1072|5.74 x 107>
.94 x 10°5.34 x 107>[3.62 x 10™>|1.35 x 1072[1.48 x 107>
.47 x 10°2.44 x 10™39.11 x 107%5.77 x 1073|3.72 x 107*

2 h J
.91 x 10°2]1.51 x 1072|2.45 x 1072[2.60 x 1072|2.29 x 1072
.27 x 10°|3.45 x 10™>[9.28 x 10™3|1.02 x 1072 6.02 x 107>
.39 x 10°/8.80 x 107%|3.69 x 107>[4.08 x 107>[1.50 x 10>
58 x 10 *[2.22 x 107%|1.47 x 1073[1.63 x 1073[3.74 x 107*

Table 2
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The chordal and tangential approximations with abscissae
equidistributed as in equation (2.1) have larger L2 errors than the
corresponding approximations with equispaced abscissae. Thus, for these
functions at least, equidistribution according to equation (2.1) does
not improve the approximation to the function as measured by this error
norm. Indeed, there is some evidence that this equidistribution
"overdoes' the distortion since taking an average between these
equidistributed points and the equispaced points does quite well.

However, the approximations using equation (2.27) to equidistribute
the abscissae have smaller L2 errors than the equispaced
approximations. For the two functions considered these errors are close
to those of the continuous best fit approximation, and indeed the
tangential approximation has smaller errors in both cases. This may, in
some way, be as a result of the trial functions used. For the most
extreme function, u(x) = e—8x . the chordal approximation
equidistributed in this way also has smaller errors than the continuous
best fit approximation.

Equidistribution by performing Legendre Transformations on the
continuous and discontinuous linear best fits in the dual space also
leads to approximations with L2 errors larger than those of the
approximations with abscissae equidistributed as in equation (2.27).

Thus, for the functions considered here, the tangential
approximation with abscissae equidistributed using equation (2.27) gives
the smallest L2 error of all the approximations calculated. It may be
that one of the other approximations gives a better representation of a

function by reducing the error as measured using a different norm.

We have also calculated the convergence rates of the
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approximations. The convergence rate for equidistributed points based
on the Legendre Transformation is only about 2% , whereas the rate for
equispaced points and equidistributed points using the "% rule" is

nearer to 4, as expected.

§4 (OONCLUSIONS

It is possible to find a linear approximation to a function with a
smaller L2 error than that of a simple chordal or tangential
approximation between points on the graph of the function at equally
spaced abscissae. This may be done by equidistributing the abscissae -
using the Legendre Transformation and equation (2.27) — then forming a
linear approximation. It appears that, contrary to widely held belief,
an equidistribution using equation (2.1) does not reduce the error of

the linear approximation as measured by the L2 norm.
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