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Abstract

In performing computations modelling inviscid fluid flow, such as
air flow around an aerofoil, the convergence rate of the cell-vertex
finite volume method to the steady state solution is determined by
the ratio of the maximum to minimum wave speeds. To improve the
convergence properties of the method multigrid methods are often
employed, making use of the full unsteady form of the equations of
motion. For complex geometries, domain decomposition by multiblock
techniques, which aid the structure of the computational grid, can
however lead to complex programming logic, especially when multigrid
methods are used. A proposed one-sided stencil is introduced which
simplifies coarse grid computations on such multiblocked geometries.
Initial results are presented which show no deterioration of the solution
of convergence rules.



1 Introduction

There are two schools of thought, for numerically modelling fluid flows around
complex geometric shapes, namely, unstructured or locally structured com-
putational grids. The so called unstructured approach [6] e.g. triangles is
a highly flexible discretisation method for complex flow domains, but the
technique leads to complex, highly structured cell connectivity relationships
which is computationally inefficient. The locally structured approach i.e.
quadrilateral grids, is also a very useful discretisation method for complex
flow domains. It has the advantage of simple (¢,7) cell connectivity rela-
tionships in specified subdomains, with more complex relationships between
subdomains. This latter approach is an example of domain decomposition,
known within the aircraft industry as multiblock [9].

We shall be seeking the solution of the fluid flow equations for the idealised
case of an invisicid perfect gas at steady state. The equations governing the
fluid motion are the Euler equations and we will make use of the full unsteady
form of this system of equations, to progress to the asymptotic steady state
solution.

In section 2 we will derive the cell-vertex finite volume method [1},[5],[8]
used to numerically solve the system and in section 3 we will describe a
multigrid technique due to Hall [5] used to accelerate the solution process.
Section 4 outlines some of the practical difficulties associated with using the
numerical method on a multiblocked domain and introduces a proposed one-
sided integration stencil to help overcome some of these problems.



2 The Cell-Vertex Finite Volume Method
applied to solving the 2-D Isentropic Eu-
ler Equations

In this section we derive the basic cell-vertex finite volume scheme [1,5,8]
for the Euler equations before applying multigrid acceleration [5] in later
sections, but first we review the equations we are solving.

The equations governing the motion of an inviscid compressible fluid are
the Euler equations. The flow equations may be written in conservative form,
as

pr+V.(pu) = 0
(pu); + V.(puu) = —Vp (2.1)
(pe)e + V.(puho) = 0

where p is the density; u = (u,v) the velocity vector, p pressure, ¢ internal
energy per unit volume, e = ¢ + %uz is the total energy per unit volume and
h, = e+ B is the total enthalpy. This set of equations becomes a determinate
set by the specification of an equation of state for the gas e.g.

p=p(p1) = (y—1)p (2.2)

for a calorically perfect gas where v = ¢,/c, 1s the ratio of specific heats of
the gas.

For steady flow h, is constant along a streamline and the energy equation
becomes redundant, simplifying the problem. This gives the equation of state

for the gas as

_ P _ Lo
p ="l = 1)(he = 5u%) (23)

In the application considered here the streamlines originate in the free stream
with the same value of total enthalpy. By performing the usual nondimen-
sionalisation the Euler equations remain in the same form and equation (2.3)

1s transformed to
pzﬁ{l—(ﬁ_—l)m}. (2.4)
A 2

The non-dimensionalised Euler equations for 2-D isentropic flow may be
written as the nonlinear hyperbolic system

W+ FW),+G(W), =0 (2.5)
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where

W = (p,pu,pv)’
F(W) = (pu,p+ pu?, puv)’
) = (pv,puv,p+ pv?)’
and ( 1
p="201 - T 4. (2.6)
07 2
To solve these equations numerically we consider an arbitrary fixed quadri-
lateral Cartesian grid in 2 dimensions, where the conserved variables are held
at the vertices of the quadrilaterals, see Figure 2.1. The hyperbolic system,

equations (2.5), is to be integrated over a control volume, (defined by the
points ABCDA’B’C’D’) in space-time, see Figure 2.2. This yields

tn+1
n/tv

where () is (the region defined by the points ABCD. Using the divergence

theorem and integrating the time derivative w.r.t. time gives

// (W, + Fy + G,|dedydt = 0 (2.7)

[ [t - weldady + / . $ [Fdy—Gda] dt =0

where 61 is the boundary of the region ).

By assuming the change in the vector W, §W" = W"*!1 —W" is constant
over the control area {2 and performing a Taylor series expansion in time of
the boundary integral term produces

SWPAAq = —Af 7{ Frdy — G"dz
At j{ (Fidy — Grda] +0[(A8™Y]  (2.8)

where AAgq is the area of control area § and At" = ¢"+1 — ¢" is the time
step.

After Hall[5] we define the cell residual, R., for cell Q. (defined by the
points 1234, see Figure 2.1) as

-1
AA. Jsq.
where AA, 1s the area of cell ), .
From Figure 2.1 we can then obtain an approximation to the residual at
vertex 1, Ry, as the boundary integral around the union of cells meeting at
that vertex

R, =

F'dy — G"de = W} (2.9)

R, = {RAAAA + RpAAg + R AA, + RDAAD} (2.10)

AA1



where AA; = AAs + AAg + AA, + AAp i.e.

1
e AA; =A,...,D 2.11
- s {Fnes) a
which is a conservative approximation to
1
T F'dy — G"dz. 2.12
Wi § Py - Qe (2.12)

The second order term of equation (2.8) is then obtained by integrating
over the control area, ) and using the residuals at cell centres to obtain

OF 9G
WIAAg = — 7&, Frdy — Glde = — }in swRdy - sZRds  (213)

Substituting equations (2.11) and (2.13) into equation (2.8) then gives
the change in the vector W,6W™ in the terms of the cell residuals, i.e.

OF 0G

1
i AA;

(Atn)?

SWT = At T

STRAA; -

The conserved variables are then updated by adding the changes to give

Wit = WT + §WT. (2.15)

The boundary integrals are evaluated numerically by the trapezoidal rule,
which is equivalent to calculating the fluxes as cell side averages. i.e.

Re = g {(Fa—Fy)(ua =30 + (Pa— Fa)(ua — )
+(Gy — Ga)(zg — z4) + (G2 — Gy)(z3 — 21 } (2.16)

At the boundaries of the computational domain the integration stencils
are modified as in Hall [5]. For inflow and outflow boundaries this corresponds
to assuming the residuals for cells lying outside the domain are zero, and a
steady state solution exists there. Figure 2.3 corresponds to such a boundary,
with cells, ¢ and Qp lying within the computational domain. The residual
for the common vertex on the boundary is obtained by taking the residuals
for cells 4 and 2p to be zero and extrapolating the cell area i.e.

1
"~ 2AAc + AAp

The second order part of the update is obtained similarly.

R, {RoAAg + RpAAp) (2.17)
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Fourier mode analysis of the numerical scheme shows the presence of
a spurious checkerboard mode. This mode requires damping to prevent the
scheme becoming unstable. This is performed by the addition of a dissipative
term of the form

(6WT) = u(W73 + W5 + Wi + Wp, — 4WT) (2.18)

where the cell values are averages over vertices i.e.
1
Wi = Z(VV;L + W3 + W3 + W}) (2.19)
and the coefficient y is given by the formula
p=tot il Ba |+ Rot | 4] Bor |+ | Bon ] (220)

R4, referring to the first component of R4 i.e. the density residual.

In this formula g, provides light damping of the spurious mode whilst
the coefficient p; provides stronger damping at shades where the residuals
are non-zero (u, = 0.006 and p; = 0.02 as in Morton & Paisley[7]).

The time step is calculated as in Morton & Paisley [7] to give a stable
scheme. The local time step is calculated from the formulas

Atn =min{AtA,AtB,AtC,AtD} (221)
where the time step for cell )¢ is given by

AAc AAc (2.22)
| uAyt — vAzt | +aAL’ | uAy™ — vAz™ | +alAm '

Atc = min {

with a, the local sound speed, u = (u,v) the velocity vector and Az’, Ay’
AL, Az™ Ay™, Am defined by the cell geometry as

il 1
Az’ = §(m2+x3—m1 —x4) Az™ = 5(:1:24—:1:1 — T3 — T4)
V4 i m 1
Ay" = §(y2+y3—y1—y4) Ay™ = §(y2+y1—ys—y4)
Al=[I(Azt)? + Ay Am=/[(Azm)2+ (Aym)2]. (2.23)

Numerical boundary conditions are imposed at inflow and outflow bound-
aries of the domain. At inflow the two components of momentum are pre-
scribed from the free-stream Mach number, whilst at outflow the pressure is
defined as its free-stream value. Flow tangency is imposed at the channel
walls as in Hall [5].

It is in this time-marching framework that the solution is advanced to
steady state. In the next section we will describe a process of accelerating
the solution to the asymptotic steady state.



3 Multigrid Acceleration

It is well established that the first implementation of multigrid techniques
was for accelerating the solution of boundary value problems, with the aim of
obtaining the solution in O(n) operations. This pioneering work by Brandt
[3] can be thought of as a process of smoothing Fourier components of the
residual in the discrete equation.

The application of a smoothing method effectively reduces the high Fre-
quency Fourier components of the residual, but the lower frequencies still
remain to polute the solution. By restricting the solution process to a coarser
grid, the remaining low frequencies are poorly resolved and appear as rela-
tively high frequencies on the coarse grid. Applying the smoothing method
again removes the relatively high frequencies on the coarser grid. This pro-
cess is repeated on coarser grids and finally the corrections are interpolated
back onto the fine grid.

For hyperbolic problems such as the Euler equations multigrid methods
can be viewed as a process of driving the residuals to zero, by moving waves
to the boundaries of the region. Ni [8] proposed use of multiple grids in his
paper introducing his cell-vertex finite volume method but did not elucidate
on how to implement the multigrid. Hall’s [5] later paper showed how the
multigrid may be used. Using such a restriction not only reduces the number
of equations to be solved on the coarser grids, it also allows larger time steps
to be taken for the larger cells, which will still satisfy the CFL conditions see
equation (2.22), thus aiding the movement of the waves to the boundary.

Following Hall we look at the next change §W™*! on the next coarser
grid x;, see Figure 3.1. §W"*! is given similarly by equation (2.14), but the
integration is now over the control area ¢ denoted by the points 23456789,
see Figure 2.1.

The second order approximation to §W7"*! is given by

6Wn+1 Atn+1 f Fn+1d G’n+1d
— — z
. AA, Js¢ g
(Atn+1)2 V?{ aFn+1 aGn+1
= — d .
20A, Jsg Ot dy ot B (3.1)

where

AA, = AA4,+ AAg + AAc + AAp. (3.2)

By performing a backward Taylor series expansion of the previous change
SW?T and substituting into equation (3.1) gives
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SWith =

n+1
L {At AAEWT

AA; | At

n+1
oG+t 6W"d
oW At

HE+L sWr
50 OW  An Y

(3.3)

where SWn
W?+1 = F + O(Atn) (3.4)

The first order contribution W7 is approximated by a weighted average
of the average cell changes AW,
1

SW?T = R Y AWPAA; i=A,B,C,D, (3.5)

i

where the average cell change for cell {2¢ is given by

1
AW, = 2(6W} + §W} + SW3 + 6W)) (3.6)

The second order contribution is obtained as in equation (2.13) using the
vertex changes W™ injected from the previous grid. Now if §W™ — 0 on
the finer grid x, then §W™t! — 0 on all coarser grids x4, @ > 1. Thus as
the method is consistent the multigrid restriction will also be convergent.

In equation (3.3) the presence of the terms ag{;landa?xl requires that
the flow variables must be updated at each step in order that these Jacobians
of the flux functions be calculated correctly.

Consequently when the updates on the coarser grid have been calculated
they must be prolonged (linearly interpolated) onto the finest grid, to keep
this finest grid solution correct. This can be represented diagramatically as
Figure 3.1. A saw-tooth multigrid strategy has been used here in conjunction
with full multigrid (FMG) see Brandt [3] to give a better initial solution on
the finest grid.

In the next section we will look at some of the difficulties associated with
applying multigrid on a complex flow domain.




4 Multiblock and treatment of block inter-
faces

As shown in section 2 the vertex update, for the cell-vertex finite volume
method, can be calculated from the cell residuals of the union of cells meeting
at that point. By no means is this process reserved for only 4 quadrilateral
cells meeting at a point. The cell-vertex scheme can be set up for so called
unstructured grids consisting of triangles. In fact such grids are highly flexible
discretisation methods for complex flow domains. The problem lies in the
need for complex data structures to define cells meeting at points. Then it is
not obvious how to apply multigrid methods to a domain discretised in such
a way, see Mavriplis [6].

With a simple quadrilateral mesh we can easily store which cells lie next
to each other with (z,7) indexing, but we can encounter difficulties in con-
structing such a grid around complex geometries. It may even be impossible.
One way around this problem is to use a domain decomposition technique
known as multiblock [9].

With multiblock the flow domain is split into geometrically simple sub-
domains termed blocks. Then internal to each block it is a relatively simple
task to discretise the subdomain into a quadrilateral grid, whilst requiring a
degree of continuity of grid lines across the block interfaces. This allows the
use of flow solvers which can work block by block within the flow domain,
applying suitable interface conditions at the block interfaces.

Rather than dealing with an irregular highly structured grid with com-
plex connectivity relationships, it is then the complexity of the block topology
which hampers computational efficiency. Further it is seen that as the typical
number of blocks required to model flows around modern complex aircraft
configurations increases, the multiblock connectivity relationships on coarse
grids will approach the levels seen for completely unstructured grids. How-
ever the block structured approach and associated (z,7) indexing of implied
do-loops is very easily vectorised for solution on supercomputers such as
CRAY vector machines.

When applying the cell-vertex finite volume method on a multiblock do-
main various difficulties arise, namely the calculation of the updates on the
block interfaces. To calculate the update at a block interface requires in-
formation from adjacent blocks, in order that the calculation be performed
as if the point is an internal point of a block. When working on a block by
block basis, this additional information required by the current block may be
thought of as a halo of data needed to calculate the updates at every point
belonging to the current block.

The logical (7, j)-indexing of the quadrilateral grid for the current block
may be and in practice very often is orientated differently in adjacent blocks,

8



see Figure 4.1. Things are made worse when multigrid techniques are used.
A direct extension of multigrid on a single blocked domain requires the ex-
traction of data further from the block interface on each grid, to allow the
update at block interfaces to be calculated as if it was an internal point. Fur-
ther if the adjacent block is "thin” compared to the current block then halo
data may be required from blocks next to the adjacent block, again subject
to the block orientations.

Arthur [2] calculates the updates at block interfaces in this way on the
finest grid to assure conservation of the flow variables across block interfaces.
He then applies multigrid in a block by block manner. This means that on
the first coarse grid the updates can be calculated in the same way as for the
finest grid, but on coarser grids, because of the temporal difference between
blocks, only a 1st order contribution is extracted from the neighbouring block.

Applying multigrid on a multiblocked region in this way means the block
interface is invisible to the numerical implementation of the scheme on the
finest grid, but it does generate programming complexity.

What would be ideal is to be able to use the internal block structure of the
grid without the need to refer to neighbouring blocks for their additional cell
residual information. This would enable the solution process to be completely
local to the current block.

A one-sided integration stencil is proposed for use at block interfaces,
which as for inflow and outflow boundaries extrapolates cell areas and as-
sumes the residuals for cells lying outside the current block on zero. This
corresponds to a steady state solution existing there and the residuals being
zero, see Figure 2.3 ie.

|

R = olado + AAp

][RCAAC +RpAAp] (4.1)

with the 2nd order part of the update obtained similarly. Then the up-
date from the adjacent block is calculated in the same way to give 2 "half-
updates”.

An investigation into the effect of using such a one-sided integration sten-
cil has been carried out on the test case of 2-D transonic, inviscid flow through
a channel with a 10% circular hump, where arbitrary block interfaces have
been defined. The results of this numerical investigation are presented in the
following section.



5 Numerical Results

The cell-vertex finite volume method, with multigrid acceleration, has been
applied to modelling the flow of a perfect gas, with v+ = 1.4, in a channel
containing a 10% circular hump. This standard test case see Ni[8], Chima,
Turkel & Schaffer [4] was used to benchmark the code for the single block
case. All results were obtained on a 65 x 17 point grid for inflow Mach number
of 0.675 and finegrid + 3 coarse grid levels. The results for the single block
case were in good agreement with others published, see figures 5.1(a) & (b).

To test the effect of using the proposed one-sided integration stencil, at
block interfaces, pseudo block interfaces were introduced in the grid, Figure
5.1(a). Flow calculations were then done locally within these pseudo blocks,
applying the one-sided integration stencil at the block interfaces. Finally
when the changes within the block had been calculated the flow was updated
locally.

A test case was set up for 3 blocks with block interfaces specified at the
leading edge and trailing edge of the hump. Examination of contour plots
of the conserved variables, Mach number and pressure revealed no visual
difference between the 3 block case, (where all calculations were done locally
in each block) and the single block control case.

A more rigourous test is to investigate how the code copes with a block in-
terface running through the supersonic region of the flow. A 2-block topology
was defined with the block interface at the top of the hump. Two multiblock
interface strategies were tested for this region (i) fine grid calculation done
neglecting the interface, then multigrid applied in each block using the in-
terface condition (ii) fine grid & multigrid calculations done in each block
using the interface conditions.

Figure 5.2 shows the convergence history of log |6p| for the control case
and the 2 block test case using multiblock interface strategies (1) & (ii) above.
The plateauing of log|6p|max for interface strategy (ii) is purely due to the
procedure used for its evaluation. This procedure uses the most recent values
of 6p, which at the block interface consist of “I updates” from the interface
of the last block calculations. However the actual total update consists of the
sum of 2“% updates”, one from each block, which approximately negate each
other. This assertion is validated by plots of log |6p| obtained by calculating
the fine grid updates from the two “converged” solutions for one additional
timestep, neglecting the interface, see Figures 5.3 (a) & (b).

One way in which the effects of the interface strategy can be compared
directly is to look at the values of integrated pressures over the channel sides.
Figure 5.4 shows the convergence histories of the integrated pressure for the
control case and the two interface strategies.

It should be noted that the one-sided integration stencil is not conser-
vative at the block interface. To investigate the effects on convergence and
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converged solution the grid was distorted at the block interface and the three
test cases repeated with the new grid. Table 5.1 shows the converged values
of integrated pressure over the channel sides for all six cases, and Figure 5.5
shows details of the convergence histories of the integrated pressures for the
3 cases on the distorted grid. From Table 5. it can be seen from the values
of integrated pressures that the “converged” solution is only slightly affected
by using interface strategy (i). However the effect of using interface strategy
(i1) is noticable on the “converged” solution and is most dramatic where the
grid metric is discontinuous across the block interface.
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6 Conclusions

The proposed one-sided integration stencil allows simplification of the coarse
grid calculations without significantly harming the convergence rate of the
scheme or the “converged” solution. In its present form the one-sided inte-
gration stencil is non-conservative and its application on the fine grid does
affect the “converged” solution as seen in Table 5.1. The proposed block
interface condition can easily be made conservative by extracting the correct
cell areas from neighbouring blocks but the one-sided integration stencil then
losses the desirable feature of being applicable locally to the current block
calculations.

It is hoped that this proposed one-sided stencil in its present form may
enable simplification of block topology relatively on coarser grids which, for
a typical aircraft geometry with over 1000 blocks in 3 dimensions will be
appreciable.
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Figure 2.1. Node & cell indexing on quadrilateral mesh.

Figure 2.2 Integration stencil in space-time domain.

Figure 2.3. Modified cell geometry showing image cells at domain
boundary.
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Figure 3.1. Full multigrid strategy making use of solution obtained on
coarse grids.
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Figure 4.1. Typical multiblock geometry illustrating block (i.J)
orientations.
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log 10
Spdx Spdx

st vo | Prus | %Puax | %Pmus | Ofwax | SPVmws | %PVMax | LoWER | uPPER
Single block 1 -7.5037 | -6.4893 -7.6185 —-6.2958 -7.7831 -6.3586 2.10952 | 2.11061
2 block 3 —4.9748 -3.8423 -5.6571 -4.3470 ~5.1018 -3.9316 2.10961 2.11074
Block m.g
2 Block 2 -7.4837 | —6.4830 -7.6027 -6.2846 -7.7730 -6.3481 2.10952 | 2.11061
Fine.Block m.g
Single block 4 -7.3931 -6.3996 -7.5384 -65.2246 -7.7115 -6.2967 2,10875 | 2.10964
2 block 6 —4_5670 -3.1503 -4 .9567 -3.6052 —4.6320 -3.1977 2.11024 | 2.11161
Block m.g.
2 block 5 -7.3157 -6.3529 -7.5098 -6.2427 -7.6903 -6.2900 2.10875 2.10964
Fine.Block m.g

Table 5.1.



