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Introduction

In the previous report in this series, Priestley (1989), the
Lagrange-Galerkin method was described for use with spectral methods.

Priestley (1986) and Morton, Priestley, Siili (1988) showed that,
with the more conventional finite elements, the Lagrange-Galerkin method
lost its unconditional stability when quadrature was applied to the
integrations involved. Numerical integration is needed in all but the
most trivial case.

Siili & Ware (1988) showed that if the global basis functions of the
Fourier spectral method were used then not only is the exactly
integrated scheme stable but so is the approximately integrated version,
provided that the quadrature points are the Gaussian points for the
polynomials - equally spaced points in this case - and that the number
of quadrature points is greater than the number of modes in the spectral
representation.

Siili (1989) has proved stability, with exact integration, for
Chebyshev and Legendre polynomials. These proofs were for convection -
diffusion problems but it is worth emphasising here that the diffusion
was not required for its stabilizing properties but so that the
characteristic could be assumed not to leave the domain. In similar
circumstances here we will assume not that a = O at the boundaries but
that a . n = 0 which of course in one dimension comes to the same

thing but means that we can concern ourselves with pure advection.

2. Preliminaries

Let p(x) be any non-negative (not identically zero) function on



the interval [-1-1] .

We define orthonormal polynomials Yq(x) such that

1

j p(x) Y () Y, (x) dx =

{ 0 p#q
=1 1 p=q

The quadrature associated with these polynomials is then
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where the Ak are the weights and the abscissae Xy, are the zeroes
of YL(x) . The quadrature is exact for polynomial £(x) of order
21-1 or less.

Following the notation of Suli & Ware (1988) we write the spectral
Lagrange-Galerkin method as
~n+1
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where

1
A(p.q) = le(x) Y (X(x.08:0)) . ¥ () .

Here X(x,At;0) 1is the usual notation for a trajectory that at time
t =0 was at x and at time t = At is at X .

The approximately integrated version of (2) can then be written as
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where
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3. Stability of the Spectral Lagrange Galerkin Method

with Non—-Exact Integration

The proof of stability is split into two bits. It is first given
for a constant velocity a . For this part of the proof we assume that
the domain, [-1,1] . and the orthonormal polynomials are periodic in
order that the characteristics do not leave the domain.

For the variable velocity case no restriction needs to be placed
upon the polynomials but we must assume that the velocity field is such
that no trajectory may leave the domain and that any approximation to a
trajectory also remains in the domain. In this case we only manage to
prove the weaker time-stability.

In both cases it is required that the exactly integrated version of
the scheme is stable and that the number of quadrature points, L ,
exceeds the number of modes N .

From equation (3) we can write
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Since the exactly integrated scheme is to be stable implies
T, <UL (]

and hence to prove stability we need to show that

1
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is a quantity of order At .

Case 1 Periodic and constant velocity.
This is quite trivial because the Yq’s are still clearly
polynomials on our domain and since p + q { 2N < 2L - 1 the quadrature

will perform the integrations exactly i.e.,

1A

= A(p.q)|| =0

and hence stability is proved for this case.

Case 2 Non-periodic and variable velocity.
Theorem
The Spectral Lagrange—Galerkin method is time-stable under the

conditions given above provided that the velocity field is continuously



differentiable and that Ilallw and ||a||1 « are bounded.
Proof
Consider
1
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We replace X(x,At,0) by x + a(x)At + O(At®) but ignore the
At? terms on the understanding that x + a(x)At 1is still a valid

approximation to the trajectory. Equation (5) then becomes
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where 7 e (x.x+a(x)At) , Ek e (xk,xk+a(xk)At) .



Now
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and hence time-stability is proved for this case.

4. Conclusion

We have shown, under mild restrictions upon the velocity field,
that if any orthonormal polynomial basis leads to a stable scheme in the -
exactly integrated case then provided that we use the associated
quadrature with more points than modes then the approximately integrated
scheme will also be stable. For the variable velocity case we had to
assume that our spacial descretization is fixed, because the ’'constants’
depend on N , but for all practical purposes this time-stability result

should be adequate.
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