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Abstract

An approximate (linearised) Riemann solver for the solution of the
Euler Equations in two dimensions incorporating operator splitting
is applied to two test problems, an infinite spherically divergent

shock and a bursting membrane problem.
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1. Introduction

Prompted by the work of Roce and Pike [{4] and of Glaister [5],
we study the linearised approximate Riemannn solver of Roe [B] for

the solution of the one-dimensional Euler eguations of gas dynamics.

In this report the method is used to investigate the technique of
operator splitting in the sclution of the two-dimensional Euler equations
by considering two test problems, those of an infinite spherically

diverging shock and of a bursting cylindrical membrane.

In section 2 we state the Euler equations for an ideal gas and in
section 3 we consider the Jacobians, eigenvalues and eigenvectors of the
flux functions for these equations. In section 4 we briefly outline the
technique of operator splitting and in section 5 describe the linearised
approximate Riemann solver. The two test problems are introduced in
section 6 and the methods of section 5 are used to produce numerical

results which are shown in section 7.

Some discussion of the results is given in section 8 and a note on

programming is offered in an Appendix.



<. Statement of the Equations

In this section we state the equations that govern the two dimensional

motion of an inviscid compressible fluid and write them as a first order

system of hyperbolic conservation laws.

These three equations, written as conservation laws, are

(1) conservation of mass

(i1) conservation of momentum

-")—1[:"51 + VP + Y. (puu) = 0

~ -

(iii) conservation of energy
== + V . {ule + p)) =20

where the (conserved) variables are density, p , momentum, pu

(or m) and energy e

°
n

olx,t) ,

[
1l

ulx,t) = (ufix,t) , v[x,tJJT ,

~ ~ o~

1}
1!

D plx,t) , i

ilx,t) , e = elx,t) represent density,
velocity (in two co-ordinate directions), pressure, specific internal

gnergy and total energy respectively at a general position x = (x,y)

at time t. The three conservation laws, together with an eguation of
state
p = plp,i)

constitute the Euler equations of compressible flow.

(2.1)

(2.2)

(2.3)

(2.4)



For an ideal gas, the equation of state (2.4) is

p = (y-1)pi
where vy 1is the gas constant for the particular gas we are considering,
e.g. Y = 1.4 for air. Total energy is related to specific internal

energy by the relationship

We can write these equations as a single system by putting

T
u= (p, pu, pv, )

F(u) = (pu, p+pu?, puv, u(e+p)]T

G(u) (pv, puv, p+pv2. v(e+p]JT

A

Then the conservation laws (2.1), (2.2), (2.3) can be written in the

compact form

t

u, + F[u]x + G[u]y =0

We now have a first order system of hyperbolic conservation laws.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

Equation (2.11) together with the eguation of state for an ideal gas

(2.5) constitute the Euler eguations in two dimensions.

For development of a Riemann solver using a general equation of state,

see e.g. Glaister [5].

8)

7)

10)

11)



3. Jacobians, Eigenvalues and Eigenvectors

Taking the system of hyperbolic conservation laws

u, + F(u) + Glu) =0
T e 1K

N e

we can write this as

u, + A(u) u +Blu)u =20
<t ~ X @ gy

where A(u) and B(u) are the Jacobians of F(u)

-

i.e
aF
3G
B(EI) . m

each of which has real eigenvalues.

and G(u)

(3.1

(3.2)

respectively,

(3.3)

(3.4)

We consider the problem of finding the eigenvalues and right eigenvectors

of the two Jacobian matrices, A and B , since this will form the basis

of the Riemann saolver.

Writing the momentum pu

3
1

as (m.n]T

3
I

2

some simple algebra reveals the Jacobian A to be

A(B] - [51, 5>

(3.5)



where
AT ; [0 (y-1)n? ~ (3-y)Im? _nm _me m(y-1)(m?+n%) _ yem
~/I » , » » s )
20° 20° p o’ p? pz]
Ay - [1'M,E,E-(Y_”(3m2+nz)+ﬁ
: P p 0 2p2 0
AT [D,_[Y—ﬂln L mn(v—1]]
~3 2
P P p

AT = [D, (Y_1] El O » -‘I-rn. ]

with a similar form for B(u])

The calculation of the eigenvalues and eigenvectors is straightforward
and is indicated by Roe [6] and Glaister [5]. We consider A(u) now and

B(u) later. Calculation yields the eigenvalues of A to be

A1 = u-a (3.6a)
Ay = U (3.6b)
AB = u (3.6c)
M @ duF B (3.6d)

where a 1is the sound speed given by
a’ = (y-1) (H-1g*) (3.7)
H 1is the enthalpy defined by

H = 210 (3.8)




and g 1s the fluid speed given earlier. The corresponding right

eigenvectors are

1] [ 0]
u-a 0
AN I 2,
hH—uaJ Y J
1] [ 1 ]
s - | e = |
\ \%
.%qz_ | H+ua |

Analysis of the Jacobian B(u) reveals that it has eigenvalues

A1 = Vv - a
AZ =V
13 = v
A4 = v + a

[ 1] [ 1
5 u B u
< =5 %
v-a \Y
| H-va | ECR



0] 1]
i u
37|, A
| U | | H+va |

In section 5 it will be shown how these eigenvalues and eigenvectors form

the basis of the Riemannn solver.
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4. Operator Splitting

The technigue used to solve the two dimensional test problems

described later is that of operator splitting, which we now outline.

Consider the two dimensicnal linear advection equation

U+ au + bu =0 (4.1)
t X \

We study the splitting of (4.1) into two one dimensional advection

equations (see Yanenko (7], Strang [14])

NI
c
+
[a}}
[y
1
o

(4.2)

NI=
[

u, + bu =20 (4.3)
y

It L>< is a numerical solution operator of (4.2) and Ly is a numerical

solution operator of (4.3), there are several options on how we may

combine LX . Ly to solve (4.1) and retain the accuracy of the underlying

one-dimensional scheme.

Consider the system of eguations

u + Au_ + Bu =20 (4.4)
-t X y

which we again split into two one dimensional eguations

(VB
=

+ Au_ =0 (4.5)
X

NiI=
cC
+
U]
c
i
o

Uy iy (4.8)

Again, let L and Ly be solution operators of (4.5) and (4.68),

respectively, both of order p say. Sod (8] bhas shown that the order

of the split scheme is affected by the order in which we apply

solution operators Lx and Ly . For example, 1if
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A and B commute then applying the solution operators in a straightforward

manner i.e. un+1 = LxLy (W) will produce a solution which is also of

order p (p =1, 2, ...), but if A and B do not commute then the
above solution will be at most first order accurate! However, second order

accuracy can be achieved in two ways, firstly by computing un+1 using

T I ST SR AT (4.7)
Xy y X

which is an averaging process, or secondly by advancing the solution

from nAt to (n+1)At in four quarter steps

(4.8)

where the superscript denotes the fraction of At wused in that solution

operator. It is shown in Sod [81] that

X ni=
1
-

N
—
<<
—
X ni=

(4.8)

X ni=
< NI
« ni-

Thus, a consistent numerical algorithm may be constructed as follows:-
1. Apply the solution operator LX with timestep At/2 along each

line y = constant for all such lines, thus solving (4.2) on the
whole numerical grid. Update the solution. (This constitutes one

X-sweep).
2. Apply the solution operator Ly with time step At along each line

x = constant for all such lines, thus solving (4.3]) on the whole

numerical grid. Update the solution. (This constitutes a Y-sweep].

3. Repeat step 1.

After the final update, we have completed one time step.
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In effect we are not solving the two dimensional problem in a
genuinely two dimensional manner, rather, we are solving the problem 1in
a one-dimensional manner seguentially in the x and y co-ordinate

directions.
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5. An Approximate Riemann Solver

Following in the footsteps of Roe [4],

[B] and Glaister [5]1, we

describe the essential points of Roe's approximate linearised Riemann

solver in two dimensions for the Euler eugations incorporating the

technique of operator splitting.

We first consider solving

u, + F(u)_ =20 (5.1)
T s mn X

along a data line y = constant. Equation (5.1) can be written as
Uy + A(E] u, = 0 (5.2)

We construct an approximation to the solution of the eguation (5.1) with

piecewise constant data by solving a set of Riemann problems. To do this

in the manner proposed by Roe we assume that

L7 IR N

A can be linearised in

u (the values of u at the left and right hand ends of the

computational cell) such that A 1is constant within the computational cell

(x, , xRJ

Since our data is only provided pointwise, we have values of

the variables only at the left and right hand ends of each cell. Thus,

we need to consider an approximation to

some average of values of A at the ends of

must satisfy the following properties

A = A(EL'ER) s.t.

R

1)

2) oy rus g, Alyugl > ALY

constitutes a linear mapping from

denoted by A say, that is

~

the cell. Roe shows that A

(5.3)



3) For any EL' ER
Al s gd x Ly = upd = F -
since Au = F = F = Au
3 2 X X

- 14 -

4) Eigenvectors of A must be linearly independent.

(5.4)

These four conditions are necessary and sufficient for the algorithm

to recognise a shockwave and also for the algorithm toc be conservative.

We note a result due also to Roe.

Rankine-Hugoniot jump

FL = Fp =8y

for some scalar S , the shock speed, then

and a projection of (

solely on to eigenvectors which correspond to

We now calculate

be projected onto the

average state u , we

4
Au = Z a, e,
) i i

~

A routine calculation

Q
n

2 R -
2a’

Q
I
k)
>
<

relationship

It

(u

YR

satisfy the

-~

(5.6)

is an eigenvalue of A

U, u J on to the eigenvectors of A will be

-R

coefficients

eigenvectors

can write

yields

apAu)

Q.
1

e

~

¥

of

such that Au

A

For

i

1

5. Roe [15].

close to same

(5.7)

(5.8a)

{5.8b)

(5.8c)
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&, = —— (Ap + ap Au) (5.8d)
4 2
Z2a

to 0(A?%) where A(e*) = (+) = (+)

It can be easily checked that

4

LE=Z A, o, e, . (5.9)
, * 11

As in Roe and Pike [4], we consider the problem of finding average states
of the variables such that equations (5.7) and (5.9) hold for the eigenvectors

and eigenvalues of the approximate Jacobian A where gL » Up are not

necessarily close.

From

~

4 .
Au = Z o, e, (5.10)
1 1 .1

~ ~

where e, are the eigenvectors of the approximate Jacobian A , we

~

find that
- e
a, = —— (Ap - aplu) {5.11a)
2a?
&, = pAv (5.11b)
& = o éE (5.11c)
3 2
a
N 1 ~n
a, = (Ap + apAu) (5.11d)
23?2
ta 0(A%) . Note that the tilda above certain variables indicates that

they are averaged variables.

We have not yet specified how we are to average the variables. To

calculate the averages, we stipulate that eguation (5.9) must hold for the
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average states

i.e.
4 . L .
AF = Z A . (5.12)
S i7ivi
1 =K
Manipulation of these conditions leads to the averages
;
2
- PR Ug * Pl U (5.13a)
- 1 1
3 2
N 3 3 (
= 5.13b
p OL DR )
3 3
v
-~ PRRTPLVL (5.13c)
YT Y L
DR + pL
5 3
- Ppfig e A (5.13d)
and a = (¥-1) (H-ig?) (5.13e)
22?2 (5.13F)
and
Ai - Ai(g) {(5.13g)
e, = e,(u) (5.13h)
i s R

-~

In this way it is possible to construct a decomposition of A such that
properties 1) - 4) above hold.

Similar results hold for the Jacobian B(u) , by symmetry.

We can now apply a two-dimensional approximate Riemann solver for the

Euler equations using the technique of operator splitting. Using the above
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results for the decomposition, together with the one-dimensional scalar
algorithm given in [4], we perform a sequence of one-dimensional calculations
along computational grid lines in the x and vy directions in turn. The
algorithm along the line y = constant is fully described as follows:-

Suppose at time level n we have given states at the right and left bhand

ends of a computational cell, given by uR s U Then for each J we

update u to time level n+1 in an upwind manner as follows:-

~

nl Ug
2L Xe
n+1 _ n _ AE_ moMLouw B
Up T UR T ax M5 %5 8 Ay 2 O
n+1 n At T -
u = U ==
= LT Eax M %58y by O
i =1,2,3.4

where Ax

"
x

TX L and At 1is the time step.

~ ~ ~

For the solution operator Lx , ki h and e, are given by

Aq =u-a
R, =
13=L
1 =+ @



= —1—2— (Ap-apAu)

1 2a
oy =P Av
57 te -
32
- ’ ..
a, = —— (Ap+apAu)
2a?
e, = {1, u-a, v, H—ua]T
e -, T
g = [0, 0, 1, vl
- - "o T
e, = 11, U v, 1q%)
e = {1, u+a, v, H+ual

and for the solution operator

are given by

A1 = -

Az =

Xa = v

Ay = v+ 2

- 1 ~—

= —— (Ap-apAv)
1 2
2a

L - _Ap
a2 = Ap ~

_/]8_.
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Og = 5Au
~ .
O = —— (Ap+apAv)
2a?

;1 = [1, u, v-a, H—va]T
e, = [1, u, v, %qZJT
D ~.T

ey = (o, 1, 0, ul

4 = (1, u, v+;, H+;a]T

The above algorithm has been used on the test problems described in

section 6 and the results are shown in section 7.
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B. Two Test Problems

In this section we describe two standard two-dimensional test
problems. The first is an infinite spherically divergent shock for which
the exact solution is known, and the second is an extension intoc two
dimensions of the standard shocktube problem of Sod [9] and represents a

bursting spherical membrane.

The Infinite Spherically Divergent Shock

This test problem has been considered by Noh [1] and by Glaister
(2], Both authors have considered the problem in one space dimension
using cylindrical geometry. Noh treated the problem by introducing
artificial viscosity and artificial heat flux and compared his method
with the standard non-Neumann-Richtmeyer artificial viscosity method [101],
Schulz's tensor @ formulation [11] and Woodward and Collela's P.P.M.
[(12]. Glaister treated the problem using a spherically symmetric extension
of the standard linearised approximate Riemann solver. Both authors have
shown that, although this test problem has a very simple solution (see [1]
and [31), difficulties arise in calculating good numerical results due to
an instantaneous infinite pressure jump at the origin. However, the methods
employed by both authors have proved to be efficient at following the shock

in the solution.

The problem begins with flow of a gas radially and into the origin
such that the speed of the gas at any point is Mach 1.0. 1Initially density
and pressure are everywhere uniform and constant and the pressure is zero.

The gas is reflected at the origin and expands outwards.
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We introduce reflective boundaries along x = 0 and y = 0 (to
simulate the radial symmetry of the problem) and maintain the exact solution

on the outflow boundaries.

The equations of motion governing the flow are the two dimensional

Euler equations, namely

Et + F(u]x + G(u]y =0 (6.1)

~ o~ ~ o~

where F , G and u have been defined in section 2 and the gas constant,

~ ~ ~

Yy , 1is taken to be 5/3. The initial conditions are

plx,y,0] = 1.0 (6.2a)

uix,y,0) = -x/R (6.2b)

vix,y,0) = -y/R (6.2c)

elx,y,0) = 0.5 (6.2d)
where R is the radius from the origin, R = VX +y’

As can be seen from (6.2d), (2.5) and (2.6), the initial pressure is zero.

To implement the boundary conditions we consider flow to be reflected
conservatively, i.e. flow tangential to the boundary is unaltered whilst

flow normal to the boundary is reflected using a method of images, (see

figure 1J.
y
image — ; | grid point inside
. X . .
point i / z/{/ftﬂ computational domain
/]
- /|
u, = -u, u, = u
-1 il G -1 i
/
M / Vi
/]
e. / =
—_— / I
/
boundary

Figure 1
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This guarantees that there is no flow out of the region along Ox
or 0Oy and that on the boundary the normal component of flow is zero.

The exact solution for this problem 1s ane involving an infinite

divergent shock radiating from the origin with uniform velocity s = 1/

3
Post-shock values are
+
p = 16.0 (6.3a)
+
u = 0.0 (6.3b)
viooo= 0.0 (6.3c)
e = 8.0 (6.3d)
0 i
P = 5m33 (6.3e)
and pre-shock values:
0 = 1.0 + T/R (6.4a)
u = _x/R (6.4b)
v = —y/R (6.4c)
e = 0.5 (6.4d)
P = 0.0 (B.4e)

where T 1s the time. See figure 2.

y/’\

o p, U, VvV, B

X‘\r'

figure 2
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As can be seen, the jump in pressurse, p+/p— , 1s infinite and

instantaneous. It is dues to this that many difficulties have been

encountered in obtaining good numerical solutiaons.

The Bursting Membrane

This test problem has been considered by Glaister [2] using a
one dimensional cylindrically symmetric extension of Roe's scheme. In
many respects, this problem is much simpler to obtain good numerical
results for, since the shock is present in the initial data and there are

no infinite jumps in any of the variables.

Here we are dealing with a two-dimensiocnal gas lying, initially, at
rest in a region. Initially the region is divided by a circular membrane
of radius R . There are finite jumps across the membrane in both density

and pressure.

At time t = 0 , the membrane is removed (or burst). Shockwaves

form and move towards the origin.

Again we implement reflection boundary conditions along 0Ox and QY

At some later time a rapidly moving shockwave, which has reflected
from the origin, interacts with a slower moving one that has not already

reached the origin.

The equations of motion governing the flow are the two-dimensional
Euler equations (6.1). The gas constant, vy , is taken to be 1.4. The

initial conditions are
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Di = 1.0 4
u, = 0.0
i
Vi - UO}’ r <R
Py = 0.4
- 3
Py 4.0
uO = 0.0
¥ r >R
v = .0
0
Ps = 1.6

2.2
where r = /& +y

We assume transparent boundary conditions on the outflow boundaries, that
is, on these boundaries the variables are kept at their initial states of

Pur Ugr Vgr Pye and the solution is not allowed to run to a time such that

the shockwaves would reach these boundaries. The initial conditions are
shown in figure 3.

A

sU LV
p O: O:DD

U,V .
pl, l, l;pl

\
\g——— membrane

0 X

figure 3
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7. Results of Numerical Tests

The algorithm described in earlier sections using operator splitting
and Roe decomposition was used to solve both the aforementioned test
problems. Although the algorithm is only first order accurate, surprisingly

good results have been obtained for both problems.

The computational domain was taken to be [0,1] x [0,1] and for all

solutions presented here Ax = Ay

Results for the infinite spherically diverging shock

During the computation of the wave speeds oy in the approximate

Riemann solver we rely on the fact that the sound speed, a , 1is non-zero.

However, when we consider the case when the pressure is zero then we have

that
p=20
= p=(y-1Jpi = 0
= 1=20 (since y # 1 and p #0)
. 12
and e = pl + 3pQg
= 1pg?
thus
+
H = epp = 1q°

and hence

a® = (y-1) (H-ig?)

= 0

This is equivalent to saying that the sonic waves in the decomposition,

-~ ~ ~ ~

e and e, , do not travel. Thus we can set o, , o

2 2 1 egual to zero

4
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when the pressure p 1is egual to zero and also set

pAv

Q
I

Ap

Contour projections are given for density with various values of
Ax , Ay and At . Every second figure is a plot of the variable against
distance taken along the line x =y from the origin.

Figures 1 and 2 show the output for density at time 0.6 with

Ax

Ay = 0.02

At 0.005

and has a maximum CFL number of 0.15147.

Figures 3 and 4 show the output for density at time 0.8 and

Ax

Ay = 0.01

At 0.0025

and has a maximum CFL number of 0.15191.

Figures 5 through to 12 show the output for density every 0.15 seconds with

Ax = Ay = 0.005

At

0.00125

and has a final output time of 0.6. Here the maximum CFL number is 0.20259.

Figures 13 to 32 show output for all the conserved variables at output times
0.6 and 1.2 with

Ax

I

Ay = 0.01

At

0.003.

An attempt to make the problem less severe by starting at a non-zero

time resulted in figures 33 to 36. The problem was started at time t = 0.18
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and was run to the time t = 0.6.

Results for the Bursting Membrane problem

Figures 1 to 10 show the output for density at every 0.11 seconds

until a final time of t = 0.55.

Ax = Ay = 0.02

At 0.005

and the maximum CFL number is 0.26659.

Figures 11 to 34 show output for density at output times t = 0.1375,

0.275, 0.35, 0.4125, 0.45, 0.55.

Figures 11 to 22 are for

AX

Ay = 0.01

At

0.00125

and have a maximum CFL number of 0.14161.

Figures 22 to 34 are for

"

Ax Ay = 0.005

At 0.00125

and have a maximum CFL number of 0.33002Z.

Discussion of Results

As can be seen from the first set of results, the severity of the
problem was reflected by poor numerical results, especially at the origin.
The density suffered more severely than any of the other variables,
supporting its claim to be the most sensitive variable. However, the
algorithm managed to track the shock at the correct speed, despite the

post shock density being about 25% in error at the origin (Noh records
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where errors were i excess of 100% at the origin).

The usual features of the underlying first order algorithm are
present, namely smoothing of data at the shock interface. Two other
interesting features are noted, firstly, spurious contours near the
boundaries - which are thought to be due to the sharp velocity gradients
along the boundaries, and, secondly, along the pre-shock curve in density,
we notice that the numerical solution dips below the exact solution in the
region of R € [0.8, 1.2]1, this is particularly noticeable in figures 12,
and is attributed to the splitting technigue employed and may be related
to the squaring of curved contours recently encountered by the author in
dealing with scalar problems, or reflection of waves from the outflow

boundary.

The results for the bursting membrane are comparable to those produced
by Glaister and are significantly better than those of the previous test
problem. The only noticeable feature is that the solution sags a little more
than it ought to. This is noticeable when comparing figure 34 with the
results of Glaister, and again it is thought to be due to the operator

splitting.
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8. Conclusion

We have shown that the standard technigue of using a two dimensional
Riemann solver incorporating operator splitting applied to the Euler
equations can give satisfactory results for the bursting membrane problem
and also that results can be achieved via this method for the infinite
spherically divergent shock, and that these results are comparable to

results attained via other methods.

Future Aims

It has been suggested that the algorithm used be adapted to incorporate
limiters (see Sweby [13]1) to see if better results could be obtained by
using an essentially second order method. However, it is felt by the author
that the use of limiters would detract from the accuracy of the solution as
it would introduce even more one dimensional effects into the algorithm

and this would result in sguaring of the contours.

The author is currently researching into genuinely two dimensional

algorithms for scalar conservation laws.
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. UPVIND DIFFERENCING.

. OUTPUT FOR ,-

. OEMS]TY

r

S T .

T1%€ 4 0.2200

AL TI¥E STEPS

o 0T » 0.00500

Dx - 0.02000

Rt Y- Dt = 0.02000

MAX CFL o 0. 25848

MAX HEIGHT . . 00000

us e 0.4 0.6 c.a 1.0 1.2 1.4

HIN HEICHT . C. 00600

< ?J“Cﬂ_t

+ m"[aﬁ,



o

C.¢

0.8

e 8 %% 00 0646000000608 0

SOLUTION I NS ewewitr

USING 12} CPERs'LL

SPLITIING AND € [us! nueR

UPVIND OITFR Nt ur e,

wutPut FOR &

DENSITY

TIME « 0. 83500

48 TIME STEPS

0T . 0.00500

0X = 0.02000

Or = 0. 02000

MAX CFL o 0. 26659

MAX HEIGHT « &.27¢80

MIN HEIGHT « 0. 00000

SOLUTION OF SODS PROBLEM

USING [2) OPERATOR

SPLITTING AND FIRST OROER

UPVIND DIFFERENCING.

OUTPUT FOR o-

DENS)TY

TIME . Q3300

68 TIME STEPS

0t = 0.00500

0x - 0.02000

Or = 0.02000

MAX CFL o 0. 26459

MAX HEJGHT & &, 27480

MIN MEIGHT » 0. 00G0O

Py 1)n£|.l:



SOLUTION OF 530S iwum g~

USING (2] OPEMATOR

SPLITTING AND FIRST QROER

UPVIND DIFFERENC ING.

CUTPUT FOR -

BENS! 1y

TIME 0. 640C

88 T1rE STEps

DT 5 0.0050C

DX « 0. 02000

DY = 002000

MAX CFL . 0. 26459

MAX HEIGHT o &, 00000

HIN HEIGHT « Q. 00000

PO ¢

SOLUTION OF SODS PROBLEN
USING 23 OPERATOR
- SPLITTING AND FIRST ORcER

i 4060000400
.

+1 UPVIND OIFFERENCING,

[y
.
O

.

3 . OUTPUT FOR ,.

i
.

DENSITY

“olae TIE « 0.4000

88 TIME STEPS

o . 0.00500
OX « 0.02000
b | 0T = 002000
MAX CFL o 0, 24450
MAX HEIGHT |, 4. 00000

MIN HEIGHT , 0, 00000

1 senbg

8 )J“{;-'ﬁ,



SOLITION U0 "0, taam g

USING 12) DPERATUN

SPLITTING AND FIRST URr v

HVIND DIFFEN N N0E,

ot Foe ,

DENS) ¢

L SR TR

110 YIME StFe

ot = 0. 00500

DX « 0, 020¢0

DY = 0.C2000

MAX CFL +  C. 26659

MAX HEIGHT 4 & 74504

MIN HEIGHT 4 0. 00000

SELUTION OF SIS PWCELEN

s - SUTIIE ND FIRST cocen
Lsi
. . VI DR,
lol ¢ e
.0 - ')
; . .c‘..‘
. .® OUTRUT PO o~
LY . ‘ o’
i 5 ‘e, .° omarTy
. .
LQdsee*”® LR WP B
8.
me . asoe
20l 10 10 sTe
'.s
0T » & 00580
'.0—'[- o 4000
0T « Q&0
[N N
X O o & 20000
— L e R S RS ; } WX I . A Tame
02 04 06 oe 1.4 1.2 .4 MM WEIN . o soose
4,5 .L
ol

v a'“g”i.

<X} )Jﬂc)i_Eq



1w @sesscsesccccsas?

0.4

SLUIION UF wat pvalt:

USING (2] OrCRATUR

SHLITTING AND K851 URUEW

UPYIND DIFFEWENG DG,

ouIPUt FUR

Ugnst Y

TiHE « 01875

110 TIME STLes

01 = 0.00025

DX « 0.01000

DY » 0.01000

MAX CFL » 0.12361

HAX HEIGHT , 4, 00000

HIN HEIGHT + 0. 00000

SOLUTION OF SaDS PROBLEM

USING 12) OPERATOR

SPLITTING AND FIRST ORDER

UPVIND DIFFERENCING.

OUTPUT FOR ,-

DENSITY

TIE ¢ 0.1375

110 T)ME 3TEPS

0T =« 0.00125

0x « 0.01000

D « 0.01000

HMAX CFL 4 0,1238)

MAX HEIGHT « &, 00000

HIN HEIGHT o 0. 00002

LY Ql\ﬁ(\\.r‘%

= ks



SOLUTION O S0US Swiin e~

USING [2) UPERAtOH

SPLITTING AND FIQST QRULE

UPYIND DIFFERENCIN.

OUTPUT FOR -

DENS]TY

TIHE » 0.27C

220 TIHE STEPS

DT « 0.00125

OX » 0,01000

DT « 0.01000

HAX CFL « D.16189

MAX HEIGHY & 4, 00000

MIN HEIGT o 0. 00000

BN o
SOLUT)ON OF SOOS PROBLEM
w5 -
USING 121 OPERATOR
- SPLITTING AND FIRST OROER
. G - e ~ -
o’..
o UPVIND DIFFERENCING.
.‘
[#
L K
L]
L]
N QUTRUT FOR o-
LY .o‘
ava . DENSITY
o ‘ i TR
%
25 = ot .
. .o. .
fe, .
4..‘.."0
] TIE + 0.2150
220 T)KE S1EPS
R 07 ¢ 0.00125
]
OX « 0.01000
Gt O7 « 0.01000
MAX CFL + 0. 08139
+ | } I | } e —
" PAX HEIGHT o 4. 00000
0.7 0.4 6 0.8 1.0 1.2 1.4
.- HIN HEIGHT « Q.00000

snn(t. -



.04

e ———— e

280 1IrE SiEPS

280 TIME STEPS

SOLUTION OF SOOS PHOBLEM

USING [2) OPERATOR

SPLITTIMNG AND FIAST OROER

UPVIND DIFFERENCING.

ouTAUT FoR -

DENSITY

1K + 0.3500

Sy 2.}\'& \‘ﬁ

07 « 0.00128

0X = 0.01000

DY « 0.01000

MAX CFL o 0.98161
MAX HEIGHT + . 08306

NIN MEJGHT » 0. 00000

SOLUTION OF SODS PROBLEN
USING (21 OPERATOR
SPLITTING AND FIRST ORCER

UPVIND DIFFERENCING

OUTAUT FOR -

DENS)ITY

TIHE » Q. 3500

a1 mnGyﬁ'

01 « 0.00125

0X =« 0.01000

DY » 0,01000

MAX CFL o 0. 14061

MAX HEIGHT o &, 08304

HIN HEIBHT + 0. 00000



2.5

2.0 -

-0.5 ¢

ol

SOLUTION OF SUUS PROBLEM

USING (2] OPERATOR

SPLITTING AND FIRS! ORDER

UPVIND DIFFERENC ING.

QUTPUT FOR -

DENSITY

e, 04125

530 11re steps

DT = 0.00125

DX « 0.01000

01 = 0.01000

MAX CFL o 0. 1a140

MAX HEIGHT o+ 4. 00000

NIN HEIGHT o 0. 00000

SOLISTION OF SODS PROBLEN

USING [2) OPERATOR

- SPLITTING AMD FIRST ORDER

o UPVIND DIFFERENCING.

oUTPUT FOR -

DENSITY

e, 0aIZS

530 TiME SIEPS

07 = 0.00125

Ox « 0.01000

OY = 0.01000

MAX CFL & 0. (al61
HAX HEIGHT &, 00000

Lo 1.2 lo4
NIN HEIGHT . 0, 00000

- \r\(‘“ DN

1Y

2) N*\L!{‘



SOLUTION OF SODS IMNOBLEN

USING 121 OPERATOR

SPLITTING AND FIRST ORCER

UPVIMD DIFFERENCING.

OUTPUT FOR -
DENS)TY [f‘
2
e >
<
-
rn
11 ¢ 0.4500
340 TIHE STEPS ~
01 « 0.00125
DX » 0.01000
0 « 0.01000
HAX CFL « O, 1a16)
HAX HEIGHTY & & 00000
HIN MEIGHY » 0. 00000
i
i
]I_ - [
SALUTION OF SDS PROBLEN
4.5 4 i
4 USING 123 OPERATOR :
SPLITTING AND FIDST ORDER
40 - .‘.,.ucuuummm
-
o UPVIND DIFFERENCING.
*
L)
s.< o *, 5=
., o
A . o
o* - ¢
Joo® ‘ay " OUTRUT FOR -
Prad ‘-.' ..'
5.6 - LT
DENSITY
2.5 -
2.0 - TIME « Q.4500
s
1
360 TIME stePs n
5 .
~
6.0 01 « 0.00128
ax » 0.01000
e.5 ¢+ OY = 0.01000
i MAX CFL +» 0.00000
=~ 4 | - [ - - ! b .
MAX GHT 4,0
0.2 0. & 0.6 0.8 .0 .2 1.4 e -

oh HIN HEIGHT » 0. 00000

-t n g



A ~ L bl
— s \
o ~
— ~ \ SOLUTION OF SUUS PHUBLEW
-“\.\H . ¥
e TR S USING 12) OPERATOR
‘\‘x._ \"\. \ h
“‘“\\ L . SPLITTING AMD FIRS! ORER
- ~
. !" UPVIND DIFFERENCING.
i
OUTRUT FOR -
DENSITY 1
o
: <
b
o
TIME + 0.5500 N
—
|
14 40 1% STEPS
DT « @ 00125
DX = 0.01000
DY = 0.01000
HAX CFL o 0. 14161
NAX HEIGHT ¢ &, 98700
MIN HEIGHT & Q. 00000
Li '3 ;
A
.
|
i SOLUTION OF SUDS PROBLEM
5.5 :
USING (2 OPERATOR
5.0~ .
% SPLITTING AND FIRST OROER
. - -
05 — . . UPVIND DIFFERENCING.
-
-
600 -
’ ’ ’ R i QUTPUT FOR .-
L4 .4 .0".
5.5 .. . %, _,.*’ DENSITY
< oo.. ot
o toay o .
anese® LT "
3.0 eset™’ e &
s
<
2.5~ T . 0.5500 2
r
440 11E STEPS
2.0 — »
H
el S DY » 0.00125
1o - 0X = 0.01000
07 « 001000
0.5 —
MAX CFL o 0. 14160
T I S P | {rmi— P = '____'___ MAX HEIGHT o 4. 98700
0.2 0. ¢ 0.6 0.8 1.0 1.2 4

MIN HEI1GHT -— 400000



SOLUTION OF SD0S PROBLEM

USING (2] OPERATOR

Al -
SPLITTING AND F 1RST 0S0EP
UPVIND DIFFERENC ING.
¥ DUTRUT FOR -
" \,
N DENSITY
8-, —-:.:h‘-_ —i -
H S :"‘--___H_::_‘-_._‘
e TR T
4% - P o --._‘__"—\,.,_‘\
T
- e . o137
.
110 Tire STEPS
=
o
“‘E‘h"‘:{\\.'\
\\Q\\i 0T » 0.00125
DX = 0,00500
=
M%\T:" DY « 0.00500
\\:“\:Q
N\ MAX CFL o 0.25142
\\
N d MAX HEIGHT & &, 00000
->—
! MIN HEIGHT & 0. 00000

SOLUTION OF SODS PROBLEN

USING {21 OPERATOR

SPLITTING AND FIRST ORCER

] UPVIND DIFFEREMCING.

OUTAUT FOR -

DENS) 1Y

TE . 01778

N 110 e steps

0T = 0.00125
DX o 0, 00500
01 = 0.00500

MAX CFL o 0. 25142

MAX HEIGHT » s, 00000

MIN HEIGHY o 0. 00000

I

Qo

Wwg 3)\’\5}&



2.5 1

2.0 4

£
‘..
.’\_/
L]
*
*
]
L]
..
—4- 4 } } 1 } +
0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

SOLUTION OF SODS FROWLEM

USING {2) OPERATOR

SPLITTING AMD FIRST ORLER

UPVIND DIFFERENCING.

OUTPUT FOR -

DENSITY

TIME » 0.2750

220 TIME STEPS

0T = 0.00125

DX = 0.00500

DY = 0.00500

MAX CFL + 0. 32105

HAX HEIGHT o 4, 00000

NIN HEIGHT « 0. 00000

BOLUTION OF SO0S PROBLEW

USING (2) OPERATOR

SPLITIING AND FIRST ORDER

UPVIND DIFFEREMCING.

OUTRUT FOR -

DENS)ITY

me. 010

20 VIME STEPS

01 « 0.00128

X = 0.00500

07 = ©.00500

MAX CFL o 0. 352108

MAX HEIGHT .+ 4. 00000

NIN HETGHT o 0. 00000

ST BJY‘-YJ‘_m

9 )Jl’)g!-ﬁ‘



N
- AN

- A\
SV

404 f .
»". = '
3.5 L 1
L]
[
5.0 ( s

2.5 4

O.SJ-

— 4 ¢ ot : : :
0.2 0.4 0.6 0.8 1.0 1.2 L&

e

SAUTION OF SO0 PROBLEN

USING (23 OPERATOR

FLITING MO FINST CROER

UVIND DIFFEREMCING.

OUTRUT FOR o~

DEMS)ITY

e, 031500

200 T1)ME STEPS

01« QOIS

0x « Q00500

D7 = 0. 00500

MAX CFL o 0. 33002

MAX HEIGHT o & 29097

USING {20 oPERATOR

SPLITTING ANOD F)AST ORDER

UPYIND DIFFEREMCIIG.

QUTPUT FOR »-

CENS]TY

me .« o300

280 11 srePs

0T« 0.00IS

ox « 0.00500

Or » 0.00500

MAX CFL » 0. 53002

MAX HEIOMT ¢ & 29097

NIN MEIGHT » @ 00000

e

)-Ms-n c

172



2.5 4

2.0 4

SOLUTION OF SIS PROBLEN

USING 2] OPERATOR

SPLITTING AND FIRST OROER

UPVIND DIFFERDICING.

OUTRUT FOR o~

DENS]ITY

TIE « 0015

530 TIME slEPS

OT « 0.00125

OX = 0. 00500

O7 « 0.00500

MAX CFL o 0.33002

MAX HEIGHT o &, 00000

NIN HEIGNT o 0. 00000

SOLUTION OF 9003 PROBLEM

USING 12 aPERATOR

SPLITTING AND PIRST ORDER

UPVIND DIFFERENCING.

QUTAUT FOR -

DENSITY

€, 0SS

530 THE TS

07T « 000125

X « 6. 00500

DY » @ 00500

HAX CFL « Q. 33002

MAX HEIGHT . &, 00000

HIN HEIGN . 0, 00000

) Y‘(‘)!fd

bt

-



SIUTION OF SUOS oL EN
USING (21 orematon
SALITHING AND FIRST ORLER

UPVIND DIFFERENC ING.

QUTPUT FOR -

TENSITY

Y

THE « 0 4500

I

340 TIYE Steps

07 = 0. 00125

0 - @ 00500

0Y » 8.00500

MAX CFL » 0. Y3002

MAX HETOHT o &, 17734

HIN HEIRMT 4 @, 00000

SOLLTIO: OF SIS Pracesr_ e

5] ISING (2 GPERATOR

- SLITHING MO FIeST ORDER

. WPV1HIO DIFFEREICHIG.

QUTRUT FOR .-

S.0 oEMsITY

2.5
TI"€ . Q4500

2.0

-

1

)

)

i

=2g Nh(nﬁ‘

850 1€ s1EPS

of » Q00IZS
o
. & oasac
I
0.5 . OT « 800S00
] MI N, QSom

) *+ T t i } t t t X I, o 17TRe

e 1T, Qo oooo




SOLUTION OF SO0S RO EN

USING t2) oPERATOR

SPLITHING AMD FIRST ORTERN

UPVIND DIFFERENC ING.

QUTPUT FOR -

DENSITY

Ce 9MC;\£

TIME + 0.S500

A0 TIKE STEPS

0T » 0.00128

0X « @ 00500

07 = 0.00500

MAX CFL ¢ @ 33002

MAX HEIGHT o % 94414

HIN HEIQHT » @, 00000

6.0 }
SOLUTION OF SUDS PROBLIN
5.5+ USING 170 OPERATOR
sol ./\. . SPLITIING AMD FIRST ORDER
L)
S . WD DIFFERDCING.
454 5
. L]
vo ] . UTRUT PR -
*
. E cENSI T
5.0 .
L
&
q’_.
%0 / (3]
<
-
36t UE . 0.5500 n
4o TIE srers O
20l £
.51 of = 0.00125
DX & 000500
Lot
OY = 0.00500
0.5 | MAX CFL 4 @, 33002
) T— } } } } } i MAX MEIGHT o S taals
0.2 0.4 0.6 0.0 La 1.2 l.& NIN HEIQMT , Q. 00000
-0.5 4




’2 N I ~‘
ARV
[EAR YRR T \in 1 &

14 o 0eoe 00-1

14 —
12
e
* L]
9 o * "
L3
. -
* a
L]
6 -
4 - &
L ]
.‘..
u..\
e
Q s
+ | |
Soh 0.4

4

SOLUTION (¥ MMS $HOMLEN
USING {21 DPERATOR
SPLITTING AND FIRST ORER

UPVIND DIFFEHENC ING.

OUTPUT FOR -

DEMS]TY

AYERAGE ERHGR o 0. 42404
MAX ERROR & 8. 97024
TI%E + 0. 6000

84 T)¥E STEPS

DT » Q. 00500

0x « 0.02000

OY = 0.02000

MAX CFL o 0, 18591
MAX HEIGHT o 14 00000

MIN HEIGHT « Q. 00000

SOLUTION OF NDHS PROBUEN
USING [2] OPERATOR
SPLITVING AND FIRST ORDER

UPVIND DIFFERENCING

OUTPUT FOR -

DENSITY

AVERAGE BRWOR o 0. 42604
MAX ERROR o+ O 97024

TI*E » @ 6000

84 TIME STEPS

DT = 0.00500

o » & 02000

DT » @ 02000

MAX CFL » Q. 1501

MAX HEIGHT , 14 00OOC

MIN HEIGMT o Q. 0000

ji 22 Y\Q)\ﬁ“

9€ 3JV\Q.\-€.‘



1e - 000 00y
t

0.2

MR S R R R R R L R o AP

[ | hommem
1.0 1.2 1.t

SOLUTION OF MODHS PROBLEN

USING (2) OPERATOR

SPLITVING AND FIRST ORDER

UPVIND DIFFERENC MG

OUTRUT FOR -

DENS)TY

AVERAGE ERROR « 0, 28002

MAX ERROR « 10. 00340

TI®E ,» 0. 6000

120 TIME STEPS

07 « 0.00500

0X s 0.02000

O = 0.02000

MAX CFL o 0.15147

HAX MEIGHT o 1871788

MIN HEIGHT o 0. 00000

SOLUTION OF NOHS PROBLEM

USING (2] OPERATOR

SPLITTING ANO FIRST ORDER

UPVIND DIFFERENCING.

OUTPUY FOR -

DENSITY

AVERAGE ERROR + 0. 28002

MAX ERROR . 10. 08361

TIME + 0.6000

120 TIME STEPS

07 = 0.00500

Dx = 0.02000

O « 0.02000

MAX CFL o 0.1S01a7

MAX HEIGHT . 18 7178%

NIN HEIGHT + 0. 00000

— .-\L\ .

7 )V\Q\Q



SOLUTION OF NOWS PROBLEM
USING 12) OPERATOR
SPALITIING ANO FIRST QROER

UPVIND DIFFERENCING.

3
\ QUTRYT FOR -
DEMSITY

AVERAGE EPROR . 0, 20782

- S

RAX ERROR , 12, 17207

ViIrE « 0. 6000

240 TIME STEPS

0f « 0.00250

X « 0.01000

0T o @.01000

MAR CFL « 0.1S19¢

MAX HEJGHT o 21, 10251

HIN HEIGHT o 0. 00000

o) )’“Q)\Q

bog,

i g £ - |
<L +
SOLUTION OF MOMS PROBLEM
20 — USING (2] OPERATOR
SPLITVING AND FIRST OROER
18 2
* UPVIND DIFFERENCING.
6 —m
. OUTPUT FOR -
o — DENSITY
" o004
-
. AVERAGE ERROR o 0.20762
12 -
MX ERROR o 12. 17207
117€ + 0. 6000
10 -
240 1€ STEPS
8 _
D1 - 0.00250
6 - DX « 0.01000
DF « 0.01000
& s
\:. MAX CFL o 0.15191
2 ;
2 M”"\__’“ WX HEIGHT o 20. 10250
-.‘""“-nuu.-....u..-..uu--. v ses MIN MEIGHT « 0. 00000
-4 | l ] I I | [J—

0.2 0.4 0.6 0.8 1.0 1.2 I &

H 3m



0,2 0.4

0.6

0.0

SOLUTION OF rONIS #00Rt kN

USIKG (2) OPeRATOR

SPLITVING AMC FINST ORIER

UPVIMO DIFFERENCING.

OUTPLT bW -

DEbs; iy

AVERAGE EPROA o 0, 02089

MAX ERROR o 10,0844

S s

1% » Q1500

120 1€ S1Ers

0T » 0,00125

0X « 0.00400

DY = 0. 00500

MAX CFL o 0. 1%51e7
MAX HEIGHY o 18, 7197

NIN 1B « 0. 00000

SOLUTION OF MOHS PrOBLEN,
USING (23 OPERATOR
SPLITTING M0 FinsT oRceR

UPYIND DIFFEREICIMG.

QUTRUT FOR -
oty
AVERAGE ERROR » 0. 02083

HAX BSXR o 10. 08414

9’ "5;&1(";3 L,

e . Q1500

120 1€ gTEPS

0T« QO0IS

X » 0.00500

DY = G 00500

MAX CFL o Q. 1S147

MAX HEICHT o 1871978

MIN MEIGHT o 0. 00000



SALUTION OF NOHS PROBLENM

S (21 oPERATOR

SPLITTING AND FIRST ORDER

VID QIFeRBCING.

UTRUT POR -
oENSITY

AVERAGE PRRCR . O 0SS1S o
MY BB . 12, 17277 '
e ¢ 0.3000

M0 T srEPS

0T e 000125

0 » 00300

OT » 00500

WX OL o @ 1SIPY
MY IS« 2,100
MIN 1180 « & 00000

<€t B

-
SOLTION OF N3 PRORLEY
201 .
: WG 21 PeATOR
_ . SPLITTING AND FiRST pROER
T4
i VI DIFFBECIIG.
16 iy
B OUTPUT FOR - c_:;-‘
n b
. peNs 1Y 0
L3
< b AYERAGE BROR o, C5S1S !,,0
121
X ERROR o 1217227
e, 23000
10 .
20 TIE srEPs
. -
0T QOOIZS
s |
Or = @ 00500
- o7 » @ 00500
A
MXOm ., aisie
2 MAX MEIOHT , 21, 10243
— MIN HE1GM o 000000
e SR ey ol } '
0.2 0.4 0.6 0.8 .0 1.2 14



SOLUTION OF MOIS PROBLEN

USING [2) OPERATUM

SALITTING AND F)OST ORDER

UPVIND DIFFERENCING.

OUTRUT FOR -

DEMS]TY

AVERAGE ERROR , Q. 09669

KAX ERROR

11. l8d70

The ,

Q 4500

e+

540 T steps

DT « 0.00125

DX = 0, 00500

OY « 0. 00500

MAX CFL o 0. 15838

MAR HEIOHT +  21,10834

HIN HEIGMT « 0. 00000

SOLUTION OF NOHS PROELEN

USING (2 OPERATOR

SPLITTING AND FIRST ORDER

UPVIND DIFFERENCING.

QUTRUT FOR -

DENSITY

AVERAGE ERRTR o 0, 09489

MAX ERRCR o 11, 188970

TIME «  0.4500

540 TIKE STEPS

0T = 0.00125

ox = Q. 00500

DY » Q. 00500

MAX CFL o 0. 15035

MAR MEIGHY o

MIN HEJGHT o

21, 10034

0. 060000

RN

o\ b-lv&\#-_



SOLUTION OF NOHS PROBLEN
USING (2] OPERATOR

SPLITTING AND FIRST ORUEK

UPVIND DIFFERENC ING.

i UTPUT FOR -
oENsITY

AVERAGE ERROR o 0. 14589

MAX ERRCR s 10, 47771

PR Y)\h

1€ « 0.6000

AR

- 480 TIME STEPS

DT » 0.00125

0x « 0,00500

OY » 0.00500

MAX CFL o 0. 20259

MAX HEIGHT o+ 21, 22532

MIN HEICHT » Q. 00000

SOLUTION OF NOMS PROBLEN

USING (27 OPERATOR

SPLITTING AMD FIRST ORDER

UPVIND DIFFERENCING.

oUTPUT FOR o=

DENSITY

AVERAGE ERROR o O 14500

MAX ERROR o 10. 67271

e , Q6000

480 1he sters

<\ 3::.“[;3 E‘

!‘ 07T » 0.00125
0 « 000500
DY « 000500
MAX CFL o 0. 20259

MAR MEIGHY o 20, 22532

r9

NIN HEIGHY + Q. 00000



SOLUTJON OF NOHS PROBLEM

USING (2] OPERATOR

SPLITYING AND FIRST ORCER

F UPVIND DIFFERENCING.

OUTPUT FOR -

DENS)TY

AYERAGE ERROR , D, 18853

MAX ERRQR , 11, 04036
" TIME 4 0.6000

13
== ; 100 TIME STEPS

DY » 0.00600

DX « 0,01000

DY « 0.01000

MAX CFL o 0. 39479
HAX HEIGHT « 19, 92585

HIN HEIGHT o 0. 00000

— X
20 —
” SOLUTION OF MOMS PROBLEN
: VNG ) CPERATIR
182
e = SPLITIING MO FIRST OPOER
1}
-
' UPVIND DIFPERENCING.
) m.““.?
-
P et OUTRUT PR -
.4
DEKsyte
' -
12 AYERAGE ERROR ¢ 0, 10053
MAX BRROR o 11, 0AOSs
)
10 — TIME + 0,600
100 TINE $1EPS
8 -
i
07T & 0, 00s00
6 -
OX « 0.01000
. 07 « 0.01000
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A Note on Programming

Usually, when applying splitting teo two-dimensicnal problems the
method is to perform X-sweeps on the entire mesh, followed by Y-sweeps
on the entire mesh. However, this tends to be inefficient, especially
on large meshes. The inefficiency is due to the method employed by a
computer to store arrays. A two-dimensional array is stored by & computer

as a single, larger, one-dimensional array (see figure 1).

10 11 12
|
7 8 9 1] 2 37?10 11 12
| _
4 5 B
1 2 3 A "two"-dimensional array as stored
|

by compter.

A "twao"-dimensional
array as 'seen' by

programmer.

figure 1



During the actual development of the program I decided tc ztore the &
conservative variables at each mesh point in one three-dimz-ziona: zrray.
S0 whilst the computer processed the mesh to update the ssiutier, most

of the array would be in virtual memory (ie on disc) and, =t can be seen
from figure 1, performing the Y-sweeps tended to be very irefficient
because most of the elements that were required to update the solution

were in virtual memory and thus a lot of time was wasted in waiting for the
swopper.

To overcome this the following routine was used:-

Let X-sweep (I) be the 'subroutine' to perform updates un+1 = Lx[un]

along the line whole vy = IAy and let Y-sweep (I,J) be the 'subroutine’
to perform a single update an the cell between y =1Iay and (I+1}Ay for
x = JAx . Then an efficient way of sweeping through the mesh is given

by the following pseudo-program fragment:-

Perform X-sweep (0)

For J = 1 to JMAX-1 (IMAX x Ay = 1.0)
1

Perform X-sweep (J) (L;)

For I =0 to IMAX-1 (IMAX x Ax = 1.0)

Perform Y-sweep (J,I) (Ly)

NEXT I
i

Perform X-sweep(J-1) (Li]

NEXT J

This can be suitably adjusted to encompasssecond order operator split

schemes.



