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1. Introduction

Only fairly recently have the problems of injectant driven
0il recovery attracted intense mathematical interest. For some references
see, for example, [11, [2], [3] and [4].

In this report we look‘at a mathematical model of the process and
consider approximate solutions obtained by a finite element method with
moving nodes. We begin by deriving some of the important equations governing
the multiphase flow of immiscible fluids in 0il reservoirs from the physical
conservation laws. We then present the Moving Finite Element Method and
introduce some new ideas which we have incorporated into the method.
Applications of our method to some simple one-dimensional oil recovery

problems are then presented, together with initial conclusions and speculations.



2.1 The Physical Problem

We are principslly concerned with the modelling of secondary recovery
of hydrocarbon from an underground reservoir. Primary recovery consists of
simply allowing the oil to gush out under thg pressure of the surrounding strata.
Secondary recovery involves injecting some f1luid (typically water) into the
reservoir at certain wells in order to drive the oil towards other production
wells. It is known that sharp fronts form between the injectant and hydro-
carbons in many such reservoir floods [5 3, [6 ] and it is the modelling

of these fronts which is one of our major concerns.

2.2 The Mathematical Problem

Consider the flow of n immiscible phases in an arbitrary region R
with boundary 9R within a reservoir. Conservation of mass of phase T«
implies the equation

a_zf“SdT:"pr'Qi*fq dt - (1)
T T ™
R oR R

where ¢ is porosity, oo is density, Sﬂ is saturation (fraction of total
pore space), U, is the flow (Darcy velocity), and q. 1s the mass rate injection
per unit volume. (ds 1s taken in the. direction of the outward normal to R.)

From the Divergence Theorem

f pu_ =+ ds = [ V. (pu ) dr,
-  — ™
aR R

so that (1) becomes

d : _
r [-5? [¢p“8“] + V.(pﬂiﬂ_) = qn] dt = 0.
R

In all the problems that we shall deal with here the wells (sources and
sinks) lie on the boundary and will be taken into account by the boundary
conditions, so we can put Qr = 0. Also we shall take the porosity as invariant

with time. Then, since R is arbitrary, we have
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¢at (pS) *+ V. (pu) =0, (2)

We now relate the flow to the pressure gradient using Darcy's Law, namely,

= KK <
u = r (VpTr pﬂng]. (3)
Mo

where Py is the pressure, g 1is gravity, d 1is depth, K 1s the absolute
permeability of the medium, krw is the relative permeability of the medium
to phase 7 in the presence of other phases, i.e. krn = kr“(S1, 82,...

in general, and Mo is the viscosity.

We expand the derivatives in (2) and divide through by Dﬂ to obtain

8p BSTT 1
¢Sﬂ °r 5t ¥ ¢_3E-+ E; EW.VQH * V.Eﬂ =G (4)
1 dpw
where c, = Er-Er—— is the phase compressibility.
m

We then use emplrlcal relations for the capillary pressures, which in

their most general form are

Py - Py = Piy [81, S, ....SnJ i # j; (note Prk = 03.
4 D
If we now define the average pressure P = —-Z pJ
n =1
1 n
then pp =P * E'z_ Pry (5)
j=1
so that (4) becomes
n 95
P 1 3 T 1 i
¢chn'8t ¥ ¢S“c“ n 3t [§= pﬂj] * ¢8t * E;-Eﬂ Vo * Vi =0 (6)
Now sum equations (6) over all phases T to give
n n n n
¢2% z w Cp ¥ %'z chn 53' X pnj) +.X L y +Vp_ +Veu =0, (7)
T=1 w=1 3=1 g=1 Py ™ T T
where we have used the fact that the total pore space is full, namely,
n
I s=1, (8)
m=1
n
and have written u . for the total flow Z u .

m=1



In general we then have to solve (7) along with n-1 of the equations (2)
or (4) for the pressure and n-1 of the saturations, the final saturation
being obtained from (8).

If we assume incompressibility of all phases then (7) simplifies to the form

Veu =0 (9)
—fr
2
and (Z) becomes BS“
¢ ¢t Vu. =0 . | (10)

For a horizontal reservoir with permeabilities independent of the vertical

direction we may substitute for u, from (3) in to (10) obtaining
9S
LA

¢ ot

Ve(-A_Vp ) = 0, (11)
v ™

where we have written A_  for the mobility Kk__ /u .
T o S
If the sources and sinks are also uniform in the vertical direction,
then we may integrate vertically to obtain a purely two-dimensional problem.

In that case we can treat (3) as

Ei = -Aivpi [i = 1;---,“]
1 n
= AP B-Aivtg=1 Pi)?

from (5). Similarly summing (3) over each phase gives

) ) SRR
U= - AVp, = - A, VP - — A, V( P, ).
B U j=1 "y 3 e 3K
Thus eliminating VP we have n s
1
A A, =2 AV P, -P..)
U =y e M 503 Ry dKTIK (12)
—i noy —-T
n
X J Z AL
j=1 G "

We note in passing that the capillary pressure terms of this expression are of

the form

f[S1.....Sn] szm (s

1;n-oisn]

L
='F(S1,..-.S] z plm VS,
n i
i=1 3



and that when (12) 1s used in (10) only the divergence of such terms appear;
thus capillary pressure acts as a non-linear diffusion in such problems.

We shall here be interested in modelling the pure convection aspect of such
problems and the consequent discontinucus solutions. We thus take the above
equations in the limit of zero capillary preésure. Substituting (12) in (10)

and using (9), we obtain

BSﬂ A
¢ 3¢ * UV - = 0 (13)

for m=1,...,n, together with (9) and (8) to solve for the unknowns S“ (m =1,
«+.n) and the common pressure P,

In the simplest case of one-dimensional flow (9) becomes ) ur = 0

ax
which gives u, = hit), i.e. u. is purely time dependent.
Hence for a positive total flow (13) becomes
39S A
¢ m ) T \_
ACEY Bt T [ m o, | ° (14
I
3=1
1 t
Now let T = E-f h(r)dr and write
An[S1,...,Sn)
= 'F [S jlll,S ]
n A ™ 1 n
) \[CHPRS
j=1
Then (14) becomes
aSﬂ ] s
_§T+W-F1T[S1'...‘Sn) =q (15)

In the particular case of two-phase flow we need only seek a solution to one
of the equations (15),

So taking S = S (so that S, =1 -5S) and ¥, (S, 1 - S) = f(S),

1’ 2 1

we obtain the well-known Buckley-Leverett Equation [ 7], namely,

g% . 5% £(S) = 0 (16)




If we assume that thers 1s no change in reservoir structure
(1.e. K = constant) nor in fluid viscosity, then f has the form

r1[S]
f(g) = = )
kpq (8+ M1k ()

Ha

(18}

The relative permeabilities are determined empirically [5] and it is
found that krTr is an increasing function of STr in such a way that + 1is

in general an S-shaped curve as shown in Figure 2.1.

1Cll

Figure 2.1

Ny

2.3 Numerical Methods

We would like to require of any numerical method that it accurately
modelled any sharp front moving through a reservoir.-In perticular for the
problem of 2-phase immiscible incompressible flow in the zero capillary pressure
limit described above, a major consideration for any numerical scheme is that
it should reproduce the strength and speed of the shock accurately. We are
particularly interested in the amount of hydrocarbon displaced before 'breakthrough’,
i.e. the instant when the bank of injected fluid behind the shock reaches the
production well {5 J. If this can be accurately estimated for different injection

strategies then the reservoir engineer is in a position to more confidently

choose an optimal strategy.



Most numerical reservoir simulators use standard finite difference methods
on fixed rectangular grids (see for example [8], [9]).

Though this facilitates the inclusion of many complicated features and the use
of the most géneral equations describing the flows, the modelling of sharp
fronts 1s a major difficulty except on very fine grids.

Also the non-convexity of the fractional flow function f in the Buckley-
Leverett equation (16) can cause problems for standard methods [101, this
equation lying outside the well studied class of hyperbolic conéervation laws
with convex fluxes (see e.g. [11], [12]):

In[1] COACus & Proskurowski solve the Riemann problem for the S-shaped
flux and present a successful solution of immiscible 2-phase flow equations using
the Random Choice Method of Glimm and Chorin.

In this report we describe a new approach based on Moving Finite Elements
which is a modification of the work of Keith Miller [13,14], and show the results of
applying it to some simple one-dimensional test problems, in particular to the
Buckley-Leverett equation.

In section 3.1 we outline the basic method and describe briefly the
methods of Miller and of Herbst et al.[15]. In Section 3.2 we analyse the basic methoc
in some detail and prove some results concerning various important features of

the method. 1In 3.3 we deal with the fundamental problem of parallelism in the

MFE method. In 3.4 we present our algorithm for the treatment of shocks.

In section 4 we show solutions that have been obtained to a number of
problems - principally those of section 2. Finally, in section 5 we state
some conclusions based on our initial experience with moving finite elements

and their application, and plans for further work.
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3.1 The Moving Finite Element Method

Using essentially the notation of [16] we seek a semi-discrete approximate

solution of the form

N
vix,t) = 7 a,(t)a, (x,s(t)) (19)
3=1 J J T
to the evolutionary eguation
u - L(U] = 0; [20)

t
where L 1is a general non-linear spacial differential opsrator. Here
s = (81.82,..-.SN) is a vector of (time dependent) nodal positions, o

J

is any standard finite element basis function on the grid represented by s

-~

and aj is the usual finite element time dependent nodal amplitude. For
a fixed mesh finite element method the nodal positions would not move, but

in the present method we allow each of the sy to vary with time.

Partial differentiation yields

N
. v s .y OV
£ §=1 {aj(t) S5 + SJ.(L] BS].’

Vv =
J
N
= §=1 {8 (t)o  x,508)) + 5,8,0x,a(t), s(t))} (21)

where . denotes total time differentiation.

The function Bj may be regarded as a second type of basis
function. It is in general discontinuous even when the corresponding aj

is continuous,but it has the same support as aj.

Equations to determine the 2N parameters ays S5 i=1,...,N may be

derived by minimising the square of the L2 norm of the residual,

- 2
v, - £t ||L (22)
2
with respect to the time derivatives of the parameters 854 S5 i=1,...,N.

That is, setting R =V - L(v) we seek

min ||R||f (22a)

éi,si,i=1....N 2



This gives the set of 2N equations

<v, - Llv), a1> =0 = <v

t
for 1=1,...,N.

Here <, > denotes the L2 inner product. Evaluating the inner products
and writing y as a vector of the ay and sy (i=1,...,N), in some arrangement,
we can express these equations as a non-linear ordinary differential equation

system of the form

Aly) ¥ = gly) . ' (24)

This non—linear'system of ordinary differential equations is then
solved by some time-stepping scheme.

For the specific case of piecewise linear finite elements in one-
dimension, v has the form shown in Fig. 3.1, the basis function @, being

the 'hat' function (shown in Fig. 3.2).

-

X = Si—1
s for 841 S xS S
i
S, - X
% = z;1 for s, £ x < 8441 (25)
141 i i
0 otherwise

where Api =Pp; - P

1-1

Figure 3.1

i-1 i 1+1

Figure 3.2




The basis function B, has the form (Figure 3.3)

i
P
-mi ai for 51_1 <X < si
N | (28)
m ai for Si < x < 81+1

B - 1+

0 otherwise

Figure 3.3

i+1

m
2]
X-

where m, = Aai/Asi is the gradient of v on the 1" interval.
In the case of a system of equations for u = (u(1],u(2],...,u[MJ],

() _ LK)

g

(W) =0 (k=1,...,M) (27

we follow Miller in using only one moving grid for all the components, although
(as Miller has suggested in [16]) extension could be made to one grid per
component, in which case however some interpolation between meshes would be
required.

Then, in a gsimilar manner to the ‘above we seek solutions of the form

N
Vi, = T VIR ) o xastE)) (k..M. (28)
Partial differentiation yields
N
v 00t =T 0N e sosen ¢ a8 ooy ™ a6} (29)
J=1 J . J = j j - -
where, for piecewise linears, we now have
(k) _ _ (k)
By " - my%y S3-1 5 X < 84
. [K) 0
Mi41%4 81 5 XS Sy @0)
0 otherwise
o ;

K ¢ g
with mi ) = Avik]/Asi and ai is the 'hat' function as before for the scalar

probiem.

.-10..



We now depart from Miller's approach. Writilng R = (th),...,R(M]) as the

vector of residuals

AR (31)
we propose to minimise
1
I (RTwR)? |2 (32)
LAJLALAS 5 .
with respect to each Oik) {(i=1,...,N), (k=1,...,M) and éi (i=1,...,N)

where W is some positive definite weighting matrix. For example, for

M=2 with W=|" Y3} this 1eads to
w3 W2
(1_ (1) (2)_ . (2) _
w1 <Nt L (x}.ai> + W3 <Vt L7 (v), ai> 0 (33)
wy <o 1w vw, @B 2P0, a> = 0 (34)
(1)_ (1) 1) 1) _ (1 (2)
and w1 <Vt L (!).Bi >+ w3 <Vt. L7 (v), B; >
(2) _ ,(2) (1 (2) _ ,(2) (2)y . :
+ w3 <vt L (!).Bi >+ w2 <Vt L (x}.Bi >=0 (35)
which we can again write in the form
Alyly = gly) (36)

and solve by some time-stepping scheme.
Miller [13,14] chooses to add 'regularisation’ terms to the minimisation
problems (22) and (32) (where he uses a diagonal weighting matrix W). For the

scalar case he solves the following problem:

N N :
minimise
G {lv,-zwv)2 + 7 (e,88, - SN (37) .
ai..Si(l-'],---.N] t L2 J=2 J \j j
Examples of the regularisation functions eJ and Sj that are used (see [16])
are .
K K
74 4
€y = ——— + K_ , S, = — (38)
As - =
J S K, 3 J Asj Ky

where Ki are (small) constants. The S functlons are termed "inter-nodal

J
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spring functions” and are designed to.prevent ‘node overtaking'. The eJ
functions are called "inter-nodal viscous forces” and their purpose is to
override the problem of parallelism dealt with 1n section 3.3 of this report.
Herbst, Mitchell and .Schoombie [15], concerned about Miller’'s treatment
of innmer products of second derivatives with'the discontinuous basis functions

Bj’ have used instead a moving Petrov-Galerkin method. They solved

<vt - L(v), wi> =0 = <vt - L(v), w£> (i=1,...,N)

where v and v, are as in (19) and (21) and the wi and w, are Hermite
cubic test function on a moving mesh. Further, using a truncation error

analysis, they noted that their method gives the exact scluticn to the equation

u, + fx(u] =0

for quadratic flux functions +, so long as the classical solution exists.
Our analysis in the next section reproduces this result for the standard method,

but from a different point of view.

3.2 Analysis of the Method

Following Miller & Miller [13] we may regard the approximate MFE
solution v as a point in a non-linear manifold M parameterised by the 2N

parameters {ai, s;» i=1,...,N}. Then the time derivative of v
v, = & + §
g7 L agey v &8,
lies in the tangent space TV to M at v. TV is a linear space with basis

{ai.Bi. i=1,...,N}-

Note that, since in (x, ,,x,),v =-m,(o gt a, .+a.o,)

3210237 VT (g tey) and vy sy lay gy g va g,
) )
we have v = a,a! = - B
X J=1 J j J=1 j
(where ' denotes the spacial derivative), and
) )
w_ = (ive) = a,o a o' = - ? a,B
X X Juq 33 k=1 k.k =1 33

Both lie in the tangent space T,» and therefore so does bvvx * v where

b, ¢ are constants. An equivalent statement 1s that, for the initial value

..12-
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problem

u, + fx(u) = 0

t

with
f(u) = bu?2 + cu + d

and piecewise limear initial data u(0,x) = uD[x]. the standard MFE

equations (23) are uniquely satisfied by the exact solution

éi = 0, Si = 2bai + C i=1,...,N

so long as this classical solution exists.
This result does not extend beyond quadratic flux functions +: one

can easily show for example that for a cubic flux function

v2vx { T, -
In fact consideration of higher order piecewise polynomial approximate
solutions v to conservation equations of the type (41) is of no help in
extending the above result to more general flux %unctions f because of the
following argument.
Let PN[x] be the piecewise polynomials of degree N in x. Take

u = g(x) as initial data for the equation

u, + FR(UJ =0

t

i.e. u

- a(u)ux =0

where a(u) = f"(u). Then the classical solution after unit time is given by

(x,u) —> (x',u"),

where u' = g(x) "and x' = x + a(u)

x + alg(x))

x + [aog](x)

[1 + aegl(x) .

So if the inverse exists

x =[1+ aogJ-1[x')

g([1+aog]_1(x'J).

which implies that u'

..13..
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Hence u = glx) cPN[x] implies that u'% PN[x']

<= [1 + aog]—1 1s piecewlse
<=> 1 + aog is plecewise

<=> @og is piecewise

But ¢ ePN[x] implies that aeg 1is piecewise linear if
a is linear.

Thus u ePN[x] is transformed to u' ePN[x'] un

only when N = 1 and for a linear wavespeed alu).
Now note that the noh-linear problem of least sq
of a function h{(x) by some v of the form
N
v =) aj,(x,8) €M
3=
is to minimise N t. a
||h(x) . z a.aj[x.gﬂ L We Totw &g
=1 2

which leads to the canonical equations

<h—v,a,> =0 = <h—v.B.>
1 1

Moreover, the problem of Lz-fitting in TV is to

Ve
linear Vg
linear Vg

linear Vg .

and only if g cP1[x] and

der the equation (44)

L

uares
2

- fitting

s.,(1=1,...,N)
i

[i=1‘---)NJ'

R N
minimise ||h(x) _ 2 {ca. +dp J"
Ci;din(l=1)---:N] j=1 J J J J L2
and leads to
N N
<h - c,o, +d ,a> =0=<h - co, +dB, ,8.2> (i=1,...,N)
L, oy By e o §=1 I M
where @, and Bi are given by the parameferisation of v.:
Thus the MFE equations

<
Vi

v, - L(v) , a> 0
t i

- L(v), B£>

give Vi the best L2 fit in TV to L(v).

(i=1,.

.»N)

In view of this result and the work of Cullen'& Morton [17] and Johnson,

t

Lewls & Morgan [18] on the ”

for hyperbolic problems, we have investigated the hypothesis that the MFE

_14_
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similarly carries approximately the best L2 fit to the solution.

In a numerical experiment consisting of initial plecewlse linear data
(with compact support), we computed the exact solution at some later time t
to equation (41) with a non-quadratic flux and then obtained the best L2 fit
to this (classical) solution. We then compared this best fit to the MFE

solution at the same time t. We present a sample of the results in Tables

3.1 and 3.2.

A simple '0' time-stepping method is used to solve the ordimary
differential equation system (24) using Newton iteration to solve the resulting
implicit algebraic system. The time truncation error is therefore .O(AtzJ
for Crank-Nicolson (6 = {) and O0(At) for all other ©.

The initial data was chosen purely because the Newton iteration converged
fairly rapidly in the L2>fitting stage with such data. In each pair of columns in
Tables 3.1 & 3.2 the first column are the amplitudes and the second the nodal positior
that is ai's and si's respectively.when considered in the form of (45). The 'exact
nodes’ column gives the amplitudes (which remain constant) and the positions to
which the nodes in the initial data move exactly. The other two columns are
self-explanatory, and it can be seen how much closer they are to each other than
to the 'exact nodes’, particularly for small t when the time discretization
effects are smaller.

For the quadratic flux function (42 ) note that thé exact solution (43) of
the semi-discreté MFE equations (23) is linear in the dependent variables. Thus
any first order approximation to the time derivative will give the exact solution.for
any At so long as the classical solution exists. In particular the simple fully
explicit Euler time-stepping (which needs no non-linear solver) produces the
exact solution for such problems up to the formation of a shock.

On the basis of this property it was initially thought that any flux function
could be approximated by a quadratic spline, and thus we could exactly solve an
approximate problem if we put MFE nodes at the knots of the spline. We are still

looking into this idea, particularly as a guide to the error analysis. It is
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Results for the equation Uy + ufu - 0
Initial . o ) MFE with Crank-Nicolson
data Exact nodas L2 fit to exact solution time-stepping Time
0 0 0 0 3.7E-12 -.0270 -4.2E-10 -.0274
2 .362 8112 .3386 .9136 .3413
.2 .6 .2 .608 «1921 . 5857 . 1885 .5959 .2
o7 .7 .7398 .6873 .7844 .65881 .7846

0 1 0 1 5.2E-12 .9830 6.1E-10 .8840
0 0 3.5E-8 -.0135 -8.3E-10 -.0136
.9 .281 .9059 .2689 .90868 .2698
.2 .604 .1959 .5984 .1845 .5984 -1
7 .749 .6837 .7428 .6938 . 7428
0 1 -7.8E-10 .9917 6.0E-10 .9919
0 0 1.9E-10 -.002699 4,.8E-10 -.002703
.9 .2162 .801312 .213788 . 901346 .213831
2 .6008 .199000 .588745 .198852 .589744 .02
7 .7098 .698725 .708677 .698735 .708685
0 1 -5.5E-12 .998365| 1.2E-10 .998370
0 0 1.0E-11 -.001346 | 2.4E-10 -.001351
9 .2081 .900654 .206832 .900672 .206908
.2 .6004 .188500 .599878 .199479 .599876 .01
.7 .7049 .698365 . 704347 .699366 .704349
0 1 -3.4E-13 .989183 | 6.7E-11 .999185

TABLE 3.1
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Results for the equation u

t

PR)
ax

I?i:izl Exact nodes L2 fit to exact solution MFEuYz:ht§§;Eth;Eii;it Time
0 | 0 0 -2.9E-12 .029539 9.9E-13 .025923
o 2 1.9 .202710 |.883227 .214567 .884263 .214858
.2 6 |.2 .624691 |.206554 .644133 .205280 .641872 .02
. 7|7 .714674 | .7190786 « 727352 .719830 «727024
0 1 0 1 1.2E-11 1.017533 -9.5E-12 1.016790
0 1] -5.9E-10 .013973 4.1E-13 .013030
.9 .201355 | .891787 .207223 . 892076 .207295
2 .612346 | .203072 .621594 .202821 .520843 .01
.7 »707337 | .709638 .713738 + 708549 +713822
0 1 2.2E-9 1.008481 -6.1E-12 1.008200

TABLE 3.2
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found in practice, however, for a Buckley-Leverett type fractional flow function

f las in Fig. 2.1) that large time steps can be taken with a fully explicit scheme
even when shocks are present. This can be explained heuristically by arguing that
the nodes approximately follow the characteristics -and thus we are not limited

to the same extent as with a conventional method (or difference method) - but see

recent work of Leveque [20] - in how far we can stably propagate information in

a single time step.

In order to move away from the speciality of probléms of the type (41),
where the characteristics are stfaight lines, we have considered also the
equivalent Buckley-Leverett problem with cylindrical symetry (in which case the
characteristics are parabolas) to see whether explicit time discretization was still
acceptable. The solutions obtained are shown in Section 4.

3.3 The Preoblem of Parellelism

It is well known ([13],- [15], [16]) that the MFE matrix A of equation
(24) becomes singular if and only if the gradients of v on adjacent cells
become the same. This fundamental problem we term 'parallelism’.

If mj =m then we see from (25) and (26) that

J+
BJ = - mJaj for all «x
and thus the two equations <Nt - L(v), aj> = 0
and <Nt - L(v), Bj> =0

of (23) become linearly dependent; hence A is singular.

Proving the converse is more technical. When we explicitly evaluate the

inner products in (23) and order the vector y of (24) as (a1.s1;a2,52;...;aN,ij
we obtain the (2i—1]th equation of (24) as
s, Tha s+ las +as. 13 -Leaa e, 25, + das. & - laa &
6 7i7i-1 6 i°i-1 3 i i+1°71i 3 i i+1°71 67 i+17i+1 67 1+1 1+
= <L(v],ai> (51)

and the 2ith equation as

1 Ters o 1 RV .
"M% Peeg T gla ey )8y ¢ gnyha iy hay )8 ghay 08y gty 0ay 8,

i-1
- <L(v].B£> (52)
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Thus with this ordering of y the matrix A

diagonal and 1s symmetric. So we may write

is block 2 x 2

triple

element

A1 By
= A 81\52\52\
6 Bi;iﬂigi
L
NN
| N-1 Ay
Then
. ) Asi - Aai . 2(Asi+ Asi+1)-2(Aai+Aai+1] e -
1-1 % Td T i
Aai miAai 2(Aai+Aai+1] 2[miAai+mi+1Aai+1] Lﬁai+1
Assume for the present that
so<s1<,_<si< <SN+1
so that Asi > 0 for all i. Then we consider the following cases:
Case 1 for 2 < i < N-1, consider the [2i—1)th row. Since the (1,1)
of Bi-1 and of B; are strictly positive, the (2i—1]th row of A must

be linearly independent of all other rows, except possibl
of the structure of A.

only if for some caonstant p all the following hold:

y the 2ith

(a) pAsi E Aai (b) pAai = miAai
N d =
(B) plhs;+ds; 4] = Aa;+ba;,,  (d) plaa +8a,,,) myda +m,
(e) pAsi+1 = Aai+1 (f) pAai = mi+1Aai+1
(a) => p = m, and (e) =>p = m.,q @and it is seen that p = m, =

satisfies all the other equations (b), (c), (d) and (Ff).

Case 2 for 2 <1< N-1, consider the Zith row.
Aai = 0 = Aai+1 that is if and only if. m, = 0 = M4

So assuming that

m,

Further, these two rows become linearly dependent

Bay 4

This is zero if and only if

(53)

(55)

, because

Aai # 0, this row can only depend on rows 2i-2 and 2i-3, and this can only

happen if Aa 0 and (i) Aa

i+1 i-1

Consider these situations separately.

0 for i > 2 or
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(1) this dependence occurs only if there is a constant p such that

(a) pAai = 2/.\ai (b) pmiAa = 2miAa

i

(c) ZpAai = Aai (d) 2pmiAai = myday

i

which 1s clearly not the case.
(11) this dependence occurs only if there are constants p and g such that

(a) 2p[As1+A52) - 2q(Aa1+Aa2) = ~Aa2' (b) -2p[Aa1+Aa2] + 2q(m1Aa1+m2Aa2)=m2Aa;

5 " gha, = -2Aa, and . (d) -pla

(c) pds 5 2

5 * qm2Aa2 f 2m2Aa2 s

>p = (q-2)m2 which satisfies (d). Substituting this

]

Equation (c)

respectively in (&) and (b) gives (e) -2q[m1-m2)As1‘- 2m2A51 = - Aa2

and () 2q(T1—m23Aa1 + 4rp2Aa1 = m2Aa2.

Now if m1 =0 then (f)} => m2Aa2 = 0 which contradicts our initial

assumption. So for m, # O

Il
m, X (e) gives f2q(m1-m2JAa1 - 4m2Aa1 = —quaz
which when added to (f) implies m, = m, since we have assumed that
Aaz 7 0.

We could have assumed Aai+1 # 0 and similarly derived corresponding

results to the above.
The final case we have to consider is

Case 3 rows 1 and 2 (and equivalently rows N and N-1).
These two rows are dependent only if there exists a constant p such that
(a) p(As1+Asz) = Aa1+Aa2 (b) p(Aa1+Aa2) = m1Aa1 + mzAa

(c) pAs2 = Aa2 and (d) pAa2 = m2Aa

2

o

Equation (c) implies p = m, which satisfies (d). Substituting this into
(a) gives m, = m, which also satisfies (b).

Thus on the assumption (55) we have shown that each row of A is independent
of all other rows except when m, = My 41 for some 1. Thus A become

singular if and only if we have parallelism.
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We shall order the nodes in our method such that (55) always holds,
except at a shock where we shall require that just one difference Asi be zero -
see the next section. We note, however, that with our shock algorithm the matrix
A becomes decoupled into two submatrices of the same form,that is that for some
i the submatrix Bi is the zero matrix. (We also delete some rows but this
does not affect our argument here). Thus the result above applies to each
submatrix and hence holds for the whole matrix A even in the presence of shocks.
As we have mentioned beforé, Miller introduces the regularisation functions
eJ of (38) to 'carry nodes along’' when parallelism occurs. In our algorithm
we test for parallelism (in fact near-parallelism corresponding to computational
singularity) and remove the (21-1]th equation from the system when mi—mi+1
becomes less than some tolerance. However, we must now choose how to update
thé coefficient ai. Since we are solving conservation type equations we have in
the numerical examples of Section 4 chosen to set éi = 0. One could hawever
let the update of ay be some mean of 83 1 and 84 41

important point is that the node si is still left free to move, and experiment

for example. The

shows that for any reasonable choice of update for a; the node moves to take

account of this choice.

If the solution is actually 'flat’ at some node (Aai = 0 = Aa ] one

i+1
could correspondingly remove the Zith equation (which is 0 = 0), leaving
the (2i-1]th eguation to determine the value of ay at the next time level,
and set si "to be some mean of Si-1 and Si+1' For problems of the type

('41), however, a node in a flat part of the solution carries no information

and simply causes degeneracy of the parameterization. We therefore remove such

a node,

There are examples of the effect of this algorithm in Section 4.
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3.4 Treatment of Shocks

With no explicit treatment of shocks the standard MFE method results in
node-overtaking. Miller's method (see [16]) relies on the introduction of a
small viscosity term to prevent this occurring, and on choosing the parameters
K in (38) so as to resolve any expected sharp frént.

We have applied the Rankine-Hugoniot.shock condition directly. With a
moving mesh method this is much simpler and more natural to apply than on a fixed
mesh,

Our algorithm for equations of the type (41) is:

I. Detect the formation of a shock - that is s; P 8441 for some i -

IT. Set 8y = Si4q = Some mean of the old position, chosen to

approximately ensure conservation.
fla;) - fla,,)

ai—a

III. Impose éi = & (56)

i+l
i+1

to 'shocked’ nodes allowing ay and a5 41 to be distinct and to
vary in order to represent the strength of the shock.

Iv. Delete nodes that become intermediate within the shock front as

the solution progresses.

The important step III has the effect of a natural internal boundary condition
in that we impose the physical speed of a shock by using the Rankine-Hugoniot
conditions, but allow the strength of the shock to be found as part of the
solution. As we.remarked in Section 3.3., the effect of this procedure is to
separate the MFE matfix into two submatrices of the same form, and thus causes nd_
problems of matrix. singularity. Note also that a shock is defined by the minimum
possible number of nodes (i.e. two) and thus we have no wastage of nodes in
modelling a shock.

For our first attempts to treat shocks for systems of equations we have

used essentially the same algorithm, but have imposed the speed in III to be a

weilghted average of the speeds obtained for the separate components, the welghting



being determined by the change in that component.

of two equations

u£1] R f(1)(u(1],u(2)) -0
X
uéz] + fiZJ[u(1],u(ZJ] -0
(1), (1) (2) (1), (1)  (2)
III becomes &, = &, . =w | (M43 Yy )-F Tluggeug,g)
i i+1
u(1) ~ u[1)
i i+1
(2), (1)  (2) (2, (1)  (2)
o () T luy ey )Py euy )
) U(Z) _ u[2)
i i+
where w is chosen depending on the changes in ui1) = uilz and uiZJ
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4. Numerical Results

The first two figures of this section are included to display the exact
solution properties of the MFE method (43) when used with fully explicit Euler
time-stepping. Flgure 4.1 represents an initial sguare wave - the gradients are
in fact 109. (Oné would usually expect a graph piotter to plot the 1ine y = 0

along the axis!). Figure 4.2 is the MFE selution to the scalar wave equation

with this iritial data after a single explicit Euler time step of At = 80.0.
It is also the exact solution.
Figure 4.3 shows the formation and propagation of a shock using the algorithm

of Section 3.4. Here we are solving the inviscid Burger Equation

ut + uux =0

and thus again we have the exact solution properties of Section 3.2 with fully
explicit Euler time-stepping. Note in particular how we continue to achieve the
exact solution even when the shock has formed.

Figure 4.4 shows our solution to the Buckley-Leverett problem in the form

reated by Concus and Proskurowski in [1]. In (18) we take Kr1 = g2

and Kr2 = (1—832 with the ratio of viscosities u1/u2 = 1, The initial data
is ﬁ?ﬁ%} with the left hand boundary condition held -at S = 1 to represent
injection of the fluid with saturation S. Figure 4.5 shows the exact solution
to this problem.

In Figure 4.6 we show the solution to the same equation, but with more
realistic initial data designed to represent the situation after injection at
the left hand boundary has Just started. For boundary conditions modelling the
actual injection see for example [19].

Figure 4.7 represents our MFE soluticn of the cylindrically symmetric

Buckley-Leverett type problem. The derivation is similar to that of equation (15);

we include it here for two phases only.
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In (9) and (13) assume cylindrical symmetry S = S(r) 1in some annulus

D<e<rs<R. Then (9) becomes

1232 (ru ) =0
r dr T

which implies that ru_ = h(t) so (13) becomes

s 18/ M\,
h(t) 3t r or N X '
I 73
3=1

t
The substitution T = %- j h(pldp

(which now involves a time-stretching with respect to the radial distance r
from the well) then gives the equation

3s
3T

+

J -
5; fl(s) = 0

Bl

which has parabolic characteristics. We emphasise that it is necessary to
exclude the origin and thus this equation cannot represent the flow close to the
well. However it provides a good test problem. |

Our solution to this problem with the initial data of Figure 4.4 shows
several of the special features of our method. Note how the shock gradually
increases in strength - firstly by moving apart of the two amplitudes of the nodes
which initially represent the shock and.then, as these nodes are elimipated from
the solution, through other nodes which take over the upper and lower amplitudes
which define the strength. One can also see the effects of the parallelism
algorithm of Section 3.3. The nodes with amplitudes of about 0.7 and about 0.8
are at various time steps throughout this run detected to approximately lie on a
straight line. Their amplitudes are then held fixed, and one can see how the nodes
adjust.

Finally, Figure 4.8 represents our initial solution of a system of
equations of the type (15) which describe the flow of three incompressible

immiscible phases with zero capillary pressure. We have taken

A =82 for 7w =1,2,3
() m )
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and put S, = 1-5,-S, from (8). Thus we have solved the gystem

3 1 72
831 0 Sﬁ -
3T+'5~>? 2..2 > e
S{+Sé+(1-81—82]
and
3S SZ
2+.._a_—_-_ 2 :0'
X

T " x| c2.02. 0 o < 2
52+82+(1-5, 82]/

The saturation S1 is plotted as the full line and the sum of the saturations
81 + 82 as the broken line in Fig. 4.8. In this run we have weighted the speed

of the first (full line) shock entirely onto the change in S and its corresponding

1

flux, and similarly the second shock is weighted entirely on the change in 82
and its corresponding flux. We have also in this particular run used a diagonel
weighting matrix W so that N1 = w2 and WB = 0 in equations (33), (34) and

(35).

Conclusions

An accurate and extremely efficient algorithm based .on Moving Finite Elements
has been developed for the solution of scalar hyperbolic conservation laws in
one dimension together with an extension to systems of eqguations.

Exact solution properties of the semi-discrete method for some simple problems
are noted and the hypothesis that these ideas may be extended to more general
equations by considering the MFE method to approximately carry the best L2 fit
to the solution is examined. Numerical experimentation tends to confirm this.

It is further noted that the fully discrete method with explicit Euler time-stepping
hés exact solution properties for thése simple equations and may be used without

any severe stability restriction for more general problems. This gives the methad
an enormous increase in efficiency over implicit methods. In all of the examples

of Section 4 it took considerably longer to plet the graphs than to produce the

results.
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The problem of parallelism has been studied and a simple and effective
remedy proposed.

By directly applying the Rankine-Hugoniot conditions - which is accomplished
naturally and easily with this moving mesh method - excellent modelling of pure
shocks has been obtained.

Considerably more work needs to be done on application of the method to
systems of equations. 1Indeed it appears that there has been very little
mathematical analysis of the actual systems of equations describing three-phase
flow. A very useful 'test-bed' system (which arises in aerodynamics) is presented
by Roe in [12], and hopefully something equivalent arising in the pfoblems of
0il recovery will soon be proposed.

Finally extension of the method to two dimensional problems must be regarded

as the very important next step.
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