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SUMMARY

An improved conservative algorithm for the solution
of multi-dimensional fluid flow problems is described,
based on the ideas of P.L. Roe of the Royal Aircraft
Establishment, Bedford. The main features are the
weighted allocafion of convected mass guantities to

nodes and a logical switch to eliminate oscillations.
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§1. Introduction

This report describes the continuation of work ! arising from developments
in solving the Euler equations for time dependent compressible fluid flows
at RAE_Bedford. Recently P.L. Roe of RAE Bedford proposed a novel
approach to the construction of numerical algorithms for the approximate
solution of these equations in one dimension and also devised a switching
rule for suppressing unwanted oscillations near discontinuities. Roe's
one dimensional algorithm has proved highly successful giving second order

accuracy and excellent shock representation in a variety of problems.

The method has been applied in more than one space dimension using operator
splitting techniques with mixed results. Here we generalise Roe's one

dimensional ideas directly into two or three dimensions.

The one dimensional method has been discussed fully elsewherel’2’3’4, How-~
evef, it is convenient to present here a derivation based on convection
approximations which is used later when generalising to a higher number of

dimensions.
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§2, Convection and Increments for the One Dimensional Method

Consider the simple scalar, but possibly nonlinear, equation

uy + fx =0 (1)

or, equivalently,

u, + f'(ulu 0. . (2)
X

t

Divide the x-axis into equal intervals of length Ax and consider three

adjacent nodes (fig. 1).

k-1 *k* *k+1

K -

k+1 k+2

fig. 1

We approximate the physical mechanisation involved in the derivation of

(1) or (2) by writing

k+1
mk+% = udx (3)

*k

and supposing that the "mass” m in the adjacent cell (x 5 xk) is

k-3 k-1

convected into the cell (xk, Xk+1] with speed (F'(U))k+%’ taken to be
i .. 1 . st
positive. The cell [xk, Xk+1) then draws in a mass (f (U))k+é ix Mkl

which replaces (f'(u])k+, Cy: (assuming that each term in brackets

=— M
3 Ax k+3

lies between 0 and 1). The net mass increment is

. Bt L (g At
Amk+1§ = (F'[u)]K+% Z;-mk_% (f (UJ)k+% i mk+%
= (s At B
= (F1 )y 2y~ M) (4)

We approximate (f'[u])k+l by
2

(5)



giving
T i
At k+1 k]
A = —|——————{(m -m 4] . 3]
M+ Ax[uK+1 - U k-1 k+3 (83
To approximate m return to equation (3). If we use a zero'th

1
k+3

order downwind approximation

uk+1Ax (7)
for m ,, then (B) becomes
kK+3z
£ - f
_ k+1 k _ - _
Amk+% - At[m](uk UK+1] At[-FK*"] 'Fk] . (B]

This mass increment is transferred to nodal values of u at the next time

step to complete the physical simulation and to ensure conservation. We
do this by using the same downwind approximation (7) for mk+1 at the
2
forward time step and increment uk+1 by an amount
.1 - - At _
8oy T Bx MMy T 7 BxUFker T T 2
. . . of e .

The expression (5), approximating 55’ was assumed to be positive in the
foregoing. If (5) is negative so that mass is drawn in from the right in

fig. 1, not only is the mass increment altered but so is the downwind

approximation (7) for (3). If (7) is replaced by

UKAX (10)
and the mass increment is drawn from the cell (XK+1’ xk+2], equation (4)
becomes
At At
= - ' e ———
b,y = (P )y meme,,, v (F) L T (11)

(since f'(u) < 0), and equation (9) becomes
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F - £
1 At| k+1 k
= — Am = —|——— (~u + )
B+t T Bx Tkl A><[uk+1 = Uk] k+1 Yk
At
= Z§{fk+1 fk] p (12)
as before. However, in line with (11), the increment will now be alloca-
ted to uK at the downwind end of the interval. Hence nodal values can
receive increments from intervals both to the left and to the right. It

is evident from the form of (8) that the total mass is conserved in the
sense that
ym = constant (13)

when summed over all the intervals of the grid.

For the simple advection equation

u, +tau =10 (14)

(9) or (12) reduces to

- At -
gk+% = aK§[”k Uk+1) s {15)

to be assigned to uk+1 if a >0 and to U if a < 0.

It is easy to verify that the scheme described here is exact for specimen
functions u =1, u = x, but not for u = x2. The method is therefore
of first order and it can be identified as a purely upwind scheme. The

upwindedness discourages oscillations whilst conservation and the built-in

directionality ensure good shock capturing capability“.

We wish now to construct a higher order scheme along these lines. For

second order accuracy we demand the scheme to be exact also for the

2

specimen function u = x“. We obtain the necessary flexibility by

assuming that the increment (15) may be assigned to both the left and right
ends of the interval [xk, Xk+1] with weights o and B respectively.

Then we can find values of «, B which ensure second order accuracy as



follows.
Writing
gk+% = v(uK = Uk+1] (18)
where
v = E%E | (17)

is the CFL number, and taking u = xZ with the origin at x = xk {see
fig. 1), we find that the total increment to U from the intervals

(X s Xpq) and [x .o x 3 1s

av{-(Ax:2} + Bv{(Ax)2} = (-a + BIv(AX)I? , (18)
whilst the exact value should be (aAt)2. Hence we require that

-a + B =v . (19)

It is easy to show that the corresponding condition for first order
accuracy is the same as that for conservation, namely, that the increment
is fully allocated, or
a+B=1. (20)

Solving (19) and (20) gives

a =301 -v), B =301 +v) , (21)
With these weights, second order accuracy is achieved in that the specimen
polynomials u =1, u = x} u = x2 are all exactly convected. The scﬁeme

can be identified with the standard Lax-Wendroff scheme®. The same weights

are obtained for both a >0 and a < 0.

If the approximation (10) is used instead of (7), a parallel calculation
gives the weights
a = 3(3 -v), B =1(-1+v), (22)

corresponding to the fully upwinded second order scheme®.

Going to second order inevitably results in the loss of monotonicity, as



pointed out by Godunov?’. However monotonicity can be regained by a

switching mechanism, as we shall now show.



§3. Monotonicity-preservation in one dimension

The loss of monotonicity in second order schemes often manifests itself
in unwanted oscillations near to rapidly varying data. If part of the
mass increment is assigned upstream (by one of the weights]) these oscilla-

tions can be understood in terms 0f an excess mass increment.

Suppose that the mass increment in the interval [xk, XK+1] is less than

or equal (in absolute value)} to the mass increment in the interval
[Xk—1’ xk]. Then the contribution sent to x,  from the interval

[xk, XK+1] will be less than or equal to the contribution that would be

sent to x  from the interval (xk_1, xk)

extrapolated into the interval (xk, xk+1]. For this extrapolation.of m

if its increment were wholly

overshoot can occur relative to a linear extrapolation of u, for which the

scheme is exact. Hence if the absolute value of the mass increment is
decreasing in the direction of the stream no such overshoot will occur.
If the absolute value of the mass increment is increasing, haowever, there

will in general be an overshoot relative to linear extrapolation.

For this reason we shall allocate to x X with second order weights

K* “k+1

only that gk+% or gk_% which has minimum absolute value, and look for
some other way to allocate the remainder (if any). It turns out that if
the remainder is allocated entirely to the downwind end of the interval
(with weight 1 as in the first order method), and that if this procedure
is repeated over several intervals in which such a remainder exists, the
fully upwinded scheme of (22) is regained. Therefore in smooth regions of
the flow this strategy will always produce a second order scheme. At an

inflection point, however, some accuracy will be lost although conservation

is preserved and, as we shall show, monotonicity is also preserved.

INe same result can also be achieved by switching an appropriate amount,



namely av(uk'- Uk+1)’ across the interval. This is Roe's switching

procedure3.

We turn now to a proof of the preservation of monotonicity using the above

algorithm. The idea for this proof was suggested by P. Swebysihut the

form given here is navel. Denote by uk the value of Uy at the
forward time step. Then Roe's version of Lax-Wendroff gives
YL NPT og + Bg , (23)
k k+3 k-2

where B vl is given by (18) and o, B are given by (21). Then, with a
2

1

similar definition of gk %, we have from (18) that

k+i _ _ o

g " By va[gk+% gk+§ h & vB(gK_% - gk+%] : (24)

To show monotonicity-preservation we observe from (18) that monotonic data

is equivalent to g having the same sign throughout. Provided that the
k+3

coefficients in the formula for g °* are non-negative, therefore, monoton-

icity-preservation follows.

This is evidently not the case in (24). But when we adopt the strategy,

described earlier, of allocating only hk+1' where hk+1 has the same
2 2
sign as Byl and
2
Ihk+%| = mln{lgk_,_%l' |gk_%|} ’ (25]

with second order weights, and the remainder with first order weight, then
(24) is replaced by

k+i _
g = Byt v[ahk+§_+ Bhk+%] + v(ahk+% + Bhk_,l

2

"Vl T ) tvlge t ) (26)

Rearranging (26), we obtain



g = Bay " va(gk+% - {gk+% - hk+§}] + v(1 - B)hk+é + vahk+%

+ \)Bhk_% - ng+_12_ + \)[gk_% . hk‘%)

(1 - va - v)gk+% + va(gk+% - hk+§] +v(1 - B + a)hk+%
2

+ vchk“% + v[gk_% - th%J

v
(1 - 91 - =dg .y valg,, ~ hs) « 2ah ., + vBg

2

+ vu(gh_% - hk—%)

it

(1 -1 - %v]gk+l + V(1 - V]hk+% + iv(1 o+ v]gk_%
2

+ 3v(1 - v][gk+% - h_,3) + %y[1 — v][gk_% -h _,)  (27)

K+3 k-3
2

Provided that 0 £ v £ 1, all the coefficients in the formula (27) for
1
gk+2 are non-negative. Hence if the data is monotonic such that all the

g's are, say, positive (so that all the h's are also positive) then, using

(25), all the terms on the right hand side of (27) are positive. A similar

e . i i, e A . i Sl B i

result holds if they are all negative. Hence monotonicity is preserved.

The use of this strategy admits an even stronger result. If

|gk+%| 2 ng_%l, hyy = 81 from (25), and (27) becomes

g

=

(1- 901 - gy + 1+ adg , +valg,, - h,s)
2
+ va(gk_% - hk-%]

v
Bk -1 + (1 -v)(1 - §J[gk+% - gk_%) + va(gk+% N hk+§]

2
+ \)(I[gk__;_ n hk‘%] . [28]
It then follows, by arguments similar to the above, that
k+3
le" 21 = [g . - (29)
2

Similarly, if lgk+%| < ng_%l, h = g, and (27) becomes
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k+i o _
g = (1 -wv va)gk+%b+ ngk_% + va[gk+% hk+§] + va[gk_% - hk-%]
= Byt vB(gk_% = hk—é] + \)a(gk+15 - hk+§] + va[gk_% = hk—%] )
(30)
s0 fhat
165"%] = lg,,, | - (31)
k+3
From (29) and (31) it follows that
Kedy o
|g I P mln{lgk+_12_‘J |gk_%|} » (32]
i.e. from (25), that
k+3
le™ 2] = Ihy .l (33)

Recalling (16) we have the result that the slope of the linear interpolant
in an interval at the forward time step cannot fall below (in absolute value)
the slope in the interval or its upwind neighbour at the previous time

step.

A local monotonicity result follows. If then

u % uk+/l (a > 0). If a <0 the latter inequality is replaced by

U % uk_1. We can also deduce a regional monotonicity result. If the

2
“k-1 S YR e

data is moﬁotonic in a region R then so is the solution at the next time
step, with the possible exception of most upwind interval of R. It can
then be deduced that piecewise monotonic data leads to a piecewise monotonic
solution with at most a one step displacement of the separating nodes in

the direction of propagation.

Monotonicity-preservation can be achieved with other definitions of h than
(25) but this definition leads to the most compact algorithm (see

Appendix AJ).

Roe's scheme, of which the above is an account, has been widely tested on a



variety of problems in one dimension with impressive results. We now

show how the scheme may be generalised directly to two or three dimensions.
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§4. The two-dimensional method

Consider the two dimensional scalar equation

ut+.Fx+gy=D 5 ! (34]

or u, + -F'[u)ux + g'[u]uy =0 . (35)

Subdivide the plane into regular rectangles with cells of side Ax, Ay

and consider a block of four rectangles (see fig. 2).

D C
W 0
A B
SW S
fig. 2

Approximate the physical mechanism involved in the derivation of (34) by

defining the "mass” m in the cell as

m = u dxdy , (36)

cell
and supposing that the masses in cells W, SW and S are convected into
the cell 0 with velocity (f'[u), g'(u])o, both components assumed to be

positive. Then the cell 0 draws in masses

(Frew)y Bt - (2" W)y 4om, " (37a)
At
(£ ) (g (W), 7o &y M (37b)
and {1 - () ——Jg (u) Ay Mg s (37c)

from the cells W, SW and S, respectively (see fig. 3).
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RV

fig. 3

We have assumed that both

v, = (f'(U])o'%E ; v, = (g'[u]]U Vs (38)

lie in the interval [0, 11]. These masses displace part of the mass

mD and hence the mass increment is

Am0 = v1(1 --vZJ[mw . mo) + v1v2(msw - mD] + v2(1 - v1J[mS N mo]

(39)

To approximate m0 use the zero'th order downwind approximation

uCAxAy (40)

(see ?ig. 2) with similar approximations for the other masses. Then (39)
becomes

Am, = AxAy[vq(1 - vz)(uD - UC] + v

0 v2[u

1 A

(41)
The mass increment is to be divided by the area AxAy and allocated
to nodal values of u at the next time step. Using the same downwind
approximation (40) at the forward time step we end up by incrementing u

D

by an amount

N uC] + v2[1 - v1)[uB = uC}] .



dict

cC_ 1 - _
Y0 = TRy AmO v1(1 v2](u

c - uD) - v vz[uc - uA]

1

-v2(1 - v11(uc & uB] . (423

Note that (42) reduces to (16) when v, = v, v, = 0.

We have assumed above that vq, v, 2 0. When v

2 1 2
replaced by
Un Axdy (43)
and (42) becomes
D— - — - — -
Y = v1(1 v2][uD uC] + v1v2(uD uB) (1 + v1Jv2(uD uA] .
(44)
Similarly, if vy > 0, v, < 0, we have
Y2 = ey 1+ vodlug = uy) + vouolun - U * vt - v, (U, = u.)
0 1 2 B A 1°2° B D 2 1 B c’’
(45)
and, if v1, v2 < 0,
YA = v, {1+ v )u, —uy) - v,v,(u - u) +v(1+ v Ilu, - u.)
0 1 2 A B 172 7A C 2 1 A D
(48)
When V=V, v, S 0, (44), (45) and (48) also reduce to (1B6).

Now there are four possible increments instead of one, as in ths one-
dimensional case. To indicate the essential difference we return to the
one-dimensional case and note that gk+1 as given by (9) is the exact

2

value of the integral

k+1
- £ dx (47)
X

Xk

which also measures the mass increment (apart from a proportionality con-
stant). In two dimensions, however, YD is only a first order approxima-

tion to the corresponding integral
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(F, * g fdxdy (48)
cell O

= -0 (f, g).dS . (49)
boundary

of O
Indeed each of the equations (42), (44), (45) and (46) contains a differ-
ent first order approximation to (48) and they are equivalent to the same

order of accuracy.

In each of the four cases allocation to u at the next time level is
governed by the appropriate downwind approximation to (38). For example,
in the case of (42) we use (40) and allocate to u at the corner C
(fig. 2}. It is straightforward to show that, in the case of the linear

wave equation

Uy + au + buy =0, (50)
oa At
for which v, = a5y - v, = bzy (51)

are CFL numbers, this scheme is exact for specimen functions u =1, u = X,

u=y-and is therefore of first order.

To construct a second order scheme we suppose that the quantity Yg is allo-
cated to the four corners A, B, C, D (fig. 2) with weights a, B, v, &,
respectively. To calculate o, B, vy, § we impose the conditions that the
algorithm should be exact for the specimen second degree polynomials

U =x, U-=y%, U= Xy. Since u = (ay - bx)2 is an exact solution which
is invariant in the direction of the stream, exactness for u = x% and

u = y2 will automatically imply exactness for u = Xy.

—3 n o -
rurr u = x=, We uvbtain
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—(X+B+'Y"6=V}I: (52)
while for u = y2 we have

-0 - B +y + 8§ = v, - (53)

'~ The condition for first order accuracy is easily shown to be

0L+B+‘Y+5 =1, (54)
so that, if we add the equation

a-B+y-8=2x, (55)
we have the solution

o= 301+ X - v, =) i

B=1(1-Xx+v, - v,)

T2 b (56)

Second order accuracy is obtained by using the weights (56) with any choice
of A, Moreover the same weights are aobtained with all four representations

of Y namely, (42), (44), (45) and (46). This is because all four expres

U,

sions are identical to the required order.

When v, =V, v, = 0, the weights (56) reduce to (21}: note that a + 6,

B + v are the comparative weights here.

If we choose X = tv, v the weights (56) can be written in the particularly

172’

simple form

=1 . 1 N 3
o = (1 v1];[1 vz]
B =301 +v,)15(1 - v.)
! i L (57)
y = i1 - v1)%(1 + v2]
§ =301 + v )zl1 + vy, )
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which are simply products of the weights (21). These are clearly non-

negative when VsV, € o, 11.

Upwind weights are easily obtained. If the coordinates of the receiver

‘rectangle with respect to the donor rectangle are (nA%, mAyl), the equations

replaced by v, - 2n

for the weights are the same as (52)-(55) with v 1

1

and v, replaced by v, - 2m. The upwinded weights are therefore

o

a' = (1 + A" + 2n + 2m - By = vzl
B' = 1(1 - X -2n +2m + v, - v )
T2 o (58)
Y'=3(1 + X' - 2n - 2m + v, ¥ v2)
8' = (1 - X" +2n - 2m - v, * vZJ g

m=0 and to (22) when n =1, m= 0,

These reduce to (56) when n
v1 =V, v, = 0. Although we refer to (58) as upwind weights, more correctly
the weights and allocation are received downwind from the donor cell (which

is upwind relative to the receiver cell). The effect is an upwind scheme

in the usual terminology.



§5. Monotonicity-preservation in two dimensions

When the increment (42) is allocated with weights (56) there will be lass

of monotonicity in general, as expected. However, if we adopt the strategy,
_ described earlier in the one-dimensional case, of allocating with second
order weights only that Y with smallest absolute value from the four

cells shown in fig. 2, and allocating the remainder with first order weight
downwind, we can prove a form of monotonicity-preservation. In fact we
shall prove that, under certain conditions, if Y is posi£ive (or negative)
for all cells at a certain time level, then it is positive (or negative) at

the forward time level.

The value of Y at the forward time level in cell 0 (see fig. 4) is given

by
0 - _ ) _ _ - -
Y Y0 v1v2{a[YNE YD] + B(YN Yw] + Y(Y0 YSW] + G(YE YS]}
. v1(1 - vzl{a(YNE N YNJ + B[YN ~ YNWJ + y[YU = YW] + G(YE - YU]
= v2(1 - v1]{a[YNE = YE] + B(YN - YO] + Y[YD = YS] + G(YE = YSEJ
(59)
where
Usv1s1, os\)zs'l. (60)
\
NW N NE
D C
W 0 E
A B
SW S SE
fig. 4

Now define, along the same lines as in one-dimension, the relative quantity
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XO which has the same sign as YU and is such that

lxol = min{|Y0|’|Yw|'|stlJlel} » [81]

with similar definitions for XN etc.

EJ

Assign X with second order weights o, B, v, 8§ and hold Y-X back for

the present.

Then Y0 equals the right hand side of (59) with Y replaced everywhere
with X. This may be written

0 _ & - _ N
YY = Y0 + quz{a(YU XNEJ + B(YD XN) + Y(YD XOJ + G(Y0 XE]

valXy =YY o+ BOX, - Yg) + vXg, - Yg) + 80X - Yy )}

+ v1f1 . vz){u[YO = XNE) + BEYO = XN] + Y(YU = XU] + G(YO - XE]

+ G(XN = YU] + B(XNw - YD] + Y[XW - YD] + GIXD = YUJ}

+ v2(1 - v1]{a[YD - XNE] + S[Y0 B XN) + Y(YU - XO] + G(YO - X_)

E

+ a(XE = YD) + B[XO = YU) + Y[XS = YD) + G(XSE = YO)}

(62)

=[1- (a0 + B + 6]{v1v2 + v1(1 - v2] + v2[1 - v,l]}]YO

-‘Y{v1v2 + v, (1 - v,) + v, (1 - v,I]}X0 , (63)
together with terms with positive coefficients that take the sign of the

X or Y-X that they contain. This is true provided that the weights

a, B, v, § given by (56) are all positive. The condition on A for this
to be true is readily shown to be

-1 + |v1 + v2| <A<t -|v, -v (64)

17l

<
for 0 < Vyr Vo < 1.

It remains to assign the quantity Y-X, to be allocated with weight 1 to

the downwind ecorner N (ses fig. 21. Then Y0  rperpiuves additinpal terms
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v1v2{(YSW = Xoyyd [YD - XU)} +V 1(1 = vzl{(Yw = Xw) = (YO = XD]}

SW
+ v2(1 - v1){(YS - XS) - (YD - XU)} (B85)
= —{v1v2 + vq[1 - v1] + v2(1 - v,l]}[Y0 - XD] . (66)

together with terms with positive coefficients that take the sign of the

X or Y-X that they contain.

When Y is completely allocated the result is

YO = {1 - (2 - y)v12}vo + (1 - yIv, X (67)

V12%0
together with terms with positive coefficients that take the sign of the
X or Y-X that they contain. Here

Vg = VgV, t v1(1 N v2] + v2(1.— v1J (68)

and we have used equation (54).

We now seek conditions on A such that the coefficients in (67) are always

positive.

Using (56) these conditions may be written

7 - - v, - v2)v12 <1 (63a)
and G vyt vy <1 (69b)
Condition (69b) requires X <1 e&and is already covered by (64). Using
(64) also we can write the left hand side of (69a) as

1 N N N 1 N
(7 A vy v2]v12 < i[8 2[\)1 + v2]]v12 (70)

which is < 1 in a certain region of the Vs Y, plane. Since

vyotY, 2 0, it is certainly < 1 if V42 < 1 which, since

v =1 -0 - v1J[1 - vzl F (71)

12

confines Vs Vo to the region shown shaded in fig. 5.
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v
2 AN
1
i
¢z
-/4// )
0 ) 1 Vi
fig. 5
The curve is part of a rectangular hyperbola.
The full condition
-1
[2 2[V1 + vz)]v12 <1 (72)

is satisfied in a slightly larger region. These are all sufficient condi-

tions.

In one dimension we were able to identify Y (the corresponding notation
was g) as proportional to a difference of u's, so that the one-signedness
of Y was eguivalent to the monotonicity of " u. In two dimensions this
is not the case but we may write Y as a linear combination of three dif-
ferences, corresponding to the x, y and diagonal directions, namely

Yg = —v1(1 N \)2)(uC = uD] = V2[1 - V1][UC - UB) - V1V2[uc - uA]

(73)

It is the sign of this quantity that is preserved by the algorithm from one
time step to the next and this is the sense in which the algorithm is mono-
tonicity-preserving. It can readily be shown that (73) is an approximation

to the component of Vuy in the direction (a, b) at the point C. Since
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the component of Vu perpendicular to the direction (a, b) 1is preserved
exactly, the local curvature is approximately preserved overall.

We can alsoc obtain the stronger result
0] »
Y] = |xU| : (74)

J

(c.f.[SB]). Suppose that the minimum of the four guantities IYUI, |Yw

|Y |, IY is |Y Then X, =Y. and eguation (63) reduces to

SW Sl OI' 0 0

0 - =
Y = (1 \)12]Y0 ) {75)

apart from terms with positive coefficients.that take the sign of the X

or Y-X they contain. Hence IYOI P |YU » since v12 < 1. Now suppose
that the minimum in (B61) is |Yw|. Then X, = Yw and (63) becomes
0 - B -
Y [1 (oo + B #+ G]v,]z]YO W'IZYW
= (1 - v12]Yw +[1 - (a+ B+ Y]v,lz](YD - YWJ » (76)

apart from terms with positive coefficients that take the sigh of the X
or Y-X that they contain. Hence |Y°| P le|. Similar results hold

for lY being the minimum and for IYSI being the minimum. Bringing

sl
the four results together gives (75].

A regional monotonicity-preservation result then follows: if Y at one
time step is positive (or negative) in a region then it is positive (or
negative) at the forward time step in the same region with the possible

exception of a rim of boundary cells on the upwind edge of the region.

We have proved that the strategy described at the beginning of this section
restores monotonicity in the sense that the sign of Y (as given by Yg

in (42) when 0 < Vs YV, £ 1) is preserved on taking a time step.

It
<

If the strategy is repeated consistently over a region in which XU

it
Q
o
-3

Y You OF YS, one of the upwind schemes given by (58) (with n
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m=0 or 1) is regained, so that second order is maintained in smooth

reglons for which this is the case.

The switching equivalent of the strategy is to switch the quantities

J, 8{Y, - X_) across the cell 0 Ffrom the points

OL(YO - Xq), B[Y0 - X 0 0’

g 0

A, B, D, respectively, to the point C (fig. 2). ‘

All the results in this section hold in the cases -1 < v1 <0, 0= vz < 1;
-1 < Vs Vo £0; 0<= vy <1, -1 v, £ 0, with the appropriate choice of

Y. Difficulties arise only when Vv

0 or v, change sign in a region as

1

in the non-linear case. We discuss such cases below.
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§6. Non-linear aspects in two dimensions

In the non-linear case there are several problems not encountered in the

linear case. First there is the question of the evaluation of %Eu %%
. in order to obtain the quantities Vs Yy in (38). Secondly, there is

the difficulty of v v, varying in sign with the consequent need to

,IJ
vary the downwind corner of a cell and to distinguish between the forms

(42), (44), (45), (46).

As far as the calculation of ggy'%% is concerned the cbvious choice is
to make the approximations
o _ At s e og _Ba "8 T B T g i
du Uyt uy T ug - UL ’ du Uy tug T oup T g ’
which give values for Vs Yy and identify the downwind corner of the
cell 0 (see fig. 2). It is illuminating to note that the incremental

quantity Y, calculated from the mass flow integral (49) with trapezium

rule approximations to the line integrals on each side, is

v - _ _ At . o
Yo © " TEaytlfe * o o fa - fply + lgp * gy - gy - gglax] (78)
- - A B -
=T anTs o fa T o) T8t &y T gp T gg) (79)
= = l— - - . l— - _

where ;}, Gé are the values of vq, v, giVen by (38) with the approxima-

tions (77), namely,

—~ at|fat o~ 5 ¢ — AtgA+gB—gC_gD1
Vi T, U -u -u V2 Taylu, run mu - " (81)
A D B C A B C D/
It is clear from (78) that
Yy Y=0, (82)

cells
except for boundary values, so that conservation is maintained in the

sense of (13).
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If we seek weights o, B, v, & which assign YD’ given by (80) with

constant v1 =V, VY, T Vo, to the corners A, B, C, D of fig. 2 in such
a way that second order accuracy is obtained, then we obtain the familiar
~weights (56). This is because, to the required order of accuracy, (80) is
indistinguishable from (42}, (44), (45) and (46). However, the scheme
using (80) and the weights (56} cannot be made monotonicity—préserving with

any obvious kind of switching; the appropriate downwind form (42), (443,

(45) or (46) is needed.

In using a downwind form instead of (80), a third order variation in the
scheme is incurred. As long as vy and v, are ur uniform sign the

main properties of the scheme are unaffected but in the case of converging
flows, where vy o or v, changes sign from one cell to the next, different
downwind forms are used and (82) will not hold to the extent of a third

order error. This is not true in one dimension where the equivalent of

(80) is always used.

In a more sophisticated model of the mass transfer mechanism, (42), (44},
(45) or (46) will be replaced by more complicated expressions taking account
of convection in all possible directions (see Appendix B). Conservation

(in the discretised sense (82)) will then be assured.

If we use (42), (44), (45) and (46) in the non-linear case with Vi Y,
given by (81) we have to tolerate a small loss of conservation in converging

flaws. This is of the same order as the loss of accuracy that is tolerated

in smooth flows.

Having identified the downwind corner of the cell 0 wusing (77), there may

be some advantage in redefining v, v in terms of the local, one-sided,

1 72

differences at the downwind corner. For example, if the downwind corner

is C (fig. 2} and we define
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rtlfe = o at|8c 8
Tt v e R R vy I (83)
Mo 0 Yte B

then (68) becomes

At At
Y, = - A—X[’l = vzl[fc = fD] = H“ = \)q][gc = gBJ = \),lvz[uc = uA] {84)

0

which, for small V4 and Vo is approximately a straight sum of the two

corresponding one-dimensicnal quantities.
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§7. A test praoblem in two dimensions

As a simple test problem for the two-dimensional scheme of §4 and §5 we
take the problem considered recently by Dukiewicz and Ramshaw® of the
convection of an L-shaped discontinuity acraoss a region. The governing

equation is (50) where a and b are constants.

The initial position of the discontinuity is shown in fig. 6: the larger
square region shown is a 17 x 17 grid and the smaller is 12 x 12. Ax
and Ay are taken to be 0.1, a = 1.5, b = 0.5, and At = 0.2, so that

v, = 0.3, v, = 0.1, in tables 1 and 2, which show the values of u after

1 2

20 time steps. Table 2 is obtained without switching (i.e. the centred
scheme) while in table 1 we have used the switching strategy of 85. Through
out the calculation A was taken equal to zero. The results were obtained

on the NORD-100 system at Reading University and are given in Appendix C.

Boundary conditions were chosen as follows. On upwind boundaries we took

u =2 to retain a steady inflow. Had this not been done the oscillations i
table 1 would have extended even further upwind. On downwind boundaries u
was taken equal to its value on the grid just inside the boundary simulating

a transparent boundary condition.

In addition to the tables given, surface plots of u have been obtained.
The results are given in Appendix C. Plots 1 and 2 correspond to tables

1 and 2.

fig. 6
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In addition plot 3 shows the results of an unswitched 'Fromm' type scheme

{see Appendix A).
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§8. The three-dimensional method

We can readily extend the algorithm described in §4, §5 and §6 into three
dimensions, for which the corresponding scalar equation is

up * f, g, *h, =0 (85)

or uy *+ Fluu g lWug + R (W, =0 . (86)

The three dimensional space is subdivided into rectangular parallelepipeds

of sides Ax, Ay, 4z: a typical cell is shown in fig. 7

Z
1N
B, | C,
|
(
|
€y l Th
o — - — — — -
Pl B,
Ve
-
7~
By C3
Fig. 7

The jincrement Y0 corresponding to (42) in two dimensions is

Yg = “Vqvovgluy - upd - Xvivj(1 - v luy - uBK)

-1 -y - vV lup - uc ), (87)

Kk

where the sums here and in what follows are taken over cyclic permutations
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of 1, 2, 3. [In the two-dimensional case we could have written (42) as

Yo ™ —v,lvz(uca = ud - Xvim - ij(uCS - qu) ; (88)

where the sum was over permutations of 1, 2.]

The increment (87) is the appropriate one when D is the downwind corner

of the cell. Corresponding forms of YU can be written down for the
other seven corners of the cell. In (87) v1, vé, vy -are approximately
_ At 9f _ At 9g _ At 9b
V4 T Bx B Vo T &y Bu V3 77 Bu e
<
where 0 £V, vy, Vg < iz (90)
and the form of YU corresponds to the approximation
uDAxAyAz (91)
for the integral
m = u dxdydz (82)
(see fig. 7).
Consider the case of the linear wave eguation
u, *au ¥ bu +cu_ =0, (93)
X R z
wheras
_ At _ LAt _ At
Ve S aEg s VT b V3= O £l

are the CFL numbers. In the first order method YU is allocated wholly

to the downwind corner D. The resulting scheme is exact for specimen

polynomials u =1, u=x, U=y, u-= 2, To obtain the second order method

assume that Y0 is allocated to the eight corners in fig. 7 with weights

o, 61, 82, 83, Y1' Y2» Y3 and & (in an obvious notation).
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specimen polynomials u = xz, u = y2, u = 22, u=yz, u=2zx, u=xy, of
second degree. Since u = (éy - bx)2, u = (bz - cy)?, u = (ex - az)2 are
all exact solutions of (93) the number of conditions is reduced by three.
The remaining three conditions together with the condition for first order

accuracy, namely,

give four conditions for the eight unknowns o, 8, Bi, i (i =1, 2, 3).

There will therefore be a four parameter family of solutions.

The remaining equations for the unknown weights can be written down as

for x2 : =g - 62 N 33 T Y + 61 + Yo + Yy * § = vy
2 - b s - =

for vy a 63 81 Yy Byt iy & Yot 8 v, (88)
2 v -y — = - =

for =z H [+ 61 62 Y3 i 63 + Y1 + Y2 + 4 VS .

and (95), (96) can be solved in terms of four free parameters, say

Aos Ags A,

27 "3% "4

One possible solution, corresponding to (57) in two dimensions is

"

o = (1 - v1J%[1 - vZJ%(1 - v.)

™
n
Vi
—~
-
+

viJ%[1 vj)%(1 -v)

r (97)
Y, = 3(1 + vi)%(1 + vj)%(1 - v, )

§ =201 +v)i01 + vj)%(1 v )

(i, j, k being cyclic permutations of 1, 2, 3), for which the weights are

clearly non-negative since 0 < v Vos Vg <1,

1!
Upwind weights can easily be found, the essential change being the replace-
ment of v,, v., v, in (96) by v

1 2 3
(cf. (58)),

- 2n, v2 - 2m, v, - 22, respectively

1 3
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§3. Monotonicity-preservation in three dimensions

Once again we propose the variation of the above algorithm which allows
'monotonicity’ preservation to be proved. Instead of allocating YD with
the above second order weights, we allocate instead XD’ where X0 has

the same sign as Y, and is such that

0
%ol = min|YU| (98)

where Yu goes through Y0 and its adjacent upwind cells, eight cells
in all (see fig. 8). z

!//3‘r

‘B l.-.ﬂ'a/

3 i
1_
4‘!5!‘@ \
BZ

/

fig. 8

When this has been done the remaining YU - XD (if any) is allocated to

\

the downwind corner D. Uniform repetition of this procedure can lead to

an upwind scheme, as in two dimensions.

'Monotonicity' preservation is proved in the same manner as in §5. For

gaciy contribution XU - x to Y® we replace XU - X by XD = YU together
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YD - X Since all the terms YD - X are necessarily of the same sign as

Y by virtue of (98], and all terms X bave the same sign as the corres-

OJ
ponding Y, we consider only those terms containing YD and XD. This

leads to an equation which corresponds to (63), namely,
3 - 3
0 - - - &
Y = [1 [a + 121 By + 121 Yi]v123]YO 8V, 55Xy » (99)

together with terms with positive coefficients (using e.g. (397)) that take
the sign of the X or Y-X they contain. Here

\ =V, Vg * Xvivj(1 -V - v, 1 - vj)vk . (100)

123 172
When the remainder Y - X 1s allocated, additional terms arise, the
relevant one (corresponding to (66)) being

-\)123[YU - XD] . (101)

Taking (93) and (101) together gives

YO = {1 - (2 - §) Y. o+ (1 = 8)v, - X (102)

V123’ o 123"
apart from terms with positive coefficients that take the sign of the X

or Y - X they contain. Here we have used (85).

The coefficients in equation (102) are non-negative if

IA

(2 - 6]v123 1, (103a)

§ <1 . (103b)
With 6 given by (97), condition (103b) is satisfied, and condition (103a)

can be written

1
{2 —‘6{1 + v1l(1 + v21(1 + vsl}v123 <1, (104)
which is necessarily satisfied if V423 < 3. Since
Vi3 © 1 - 01 - v1)(1 - v2)[1 - vS) (105)

we can illustrate this region in fig. 9.



34.

'l
T
Ni=

NI=
—
N

fig. 9

The region corresponding to the full condition (104) is somewhat larger
than this. We have thus obtained a sufficient condition for 'monotonicity’-

preservation.

As in two dimensions we may identify Y as a linear combination of differ-
ences corresponding to various downwind directions (see (87)). It is this
quantity whose sign is preserved by the algorithm in a time step, rather than
the single difference (16) in one-dimension. It can readily be shown

that Y 4is proportional to an approximation to the component of Zu in the

direction (a, b, c) at C.

We can also show, as in §5, that

YOI = |x,| - (108)

'Monotonicity’-preservation in a region then follows, except possibly for an

upwind skin of boundary cells.

)
As in two dimensions special problems arise in the approximation of 353
%%, %E- and the identification of the downwind corner. We may define
fA + FB + {C + fB = [fB *fe * fD + {C )
of _ 2 1 3 -1 3 2 - (107)
ou  u, *+u, *u. +u, - (u, +u, +u, +u,)
A B2 C1 B3 B1 C3 D C2
dg dh

with similar expressioné for and use the signs of these quantities

Ju’ Ju’
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to identify the downwind corner. As in two dimensions these approximations
are consistent with a calculation of Y0 based on the mass flow surface

integral

- (-FJ g! h] Id§- -

baundary
of O
With the above definitions of %5, etc. we can write this Y0 either in

terms of +f, g, h or in terms of u, 01, Vo Vg in an obvious interqhange—
able way (c.f. (79), (80), (81)), and conservation is self evident (c.f. (82)).
The use of a downwind form of Y, e.g. L87) jeopardises exact conservation

in converging flows and in such flows should be replaced by a more complex
mass transfer expression (c.f. Appendix B). The conservation errdr is

not of lower order than the order of accuracy of the scheme, however.
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§10. Conclusion

We have seen that a multi-dimensional extension of P.L. Roe's interval
approach can be constructed which leads to new 'monotonicity' preserving
algorithms. The principle of convection of mass ensures conservation
although in converging flows more-sophisticated expressions than are used
here are needed (see Appendix B). A simple form of Roe's switching device

allaws the algorithms to be second order without developing oscillations.

To summarise the algorithm, an estimate is first made of the "mass” incre-
ment convected into and out of a cell due to motion in the cell and in
adjacent cells with local wavespeeds. This mass iz normalised to density
and allocated to the nodes of the cell with prescribed weights. The
weights are chosen to ensure second order accuracy in smooth parts of the

flow and monotonicity-preservation in a discretised sense.
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Appendix A. Less Compact Algorithms

One of the reasons why second order methods cause oscillations for rapidly
varying data is that the mass increment can be overestimated when the approx-
imations (7), (40} or (91) are used. Only if the modulus of the gradient is
not increasing in the direction of the stream is the true mass increment
underestimated or'correctly estimated. It is also underestimated in the

increasing gradient case when the upwind approximation (101) is used.

A more accurate approximation to (3) is

Nl

(uk+1 + uK]Ax (A1)

(see fig. 1), which leads to a mass increment which is the average of (8) and

the same expression with k replaced by k - 1. This gives rise to

. . abt _
Bkl ax ket ™ Fien

) . (A2]

(c.f. (9)).

If we follow through the analysis for determining the weights o, B for

the allocation of (A2) to the ends of the interval (xk, Xk+1]’ we obtain
a=1- 1v, B = 3v, (A3)
where v = a%% and the equation is ut + aux = 0, as usual,

This scheme, being the average of the centred scheme and the upwind scheme,
is identical to that of Fromm!0. It has the property of calculating

exactly the mass increment for the specimen function u = x2, unlike the
earlier schemes. Second order accuracy is maintained at both the 'increment
calculation’ stage and the 'allocation to node’ stage of the algorithm.

This scheme will not be monotonicity-preserving since it may still over-
estimate the true mass increment, but by a much smaller amount. Overshoots
are therefore likely to be much nrilder. On the other hand it is less com-
pact than the schemes described earlier, requiring a mass increment calcula-

tion over three points.
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A corresponding algorithm can be constructed in two or three dimensions.

In two dimensions the approximation corresponding to (A1) is

1
..[uA tug tugt uDJAxAy (A4}
(see fig. 2). A two-dimensional Fromm type scheme can therefore be con-
structed. Instead of calculating a new mass increment and new weights,

we can achieve the same result by allocating one quarter of each increment
over the cell 0 and its three upwind neighbours to the corners of 0 with

; the appropriate central or "upwind” weights (57), (58).

Similarly, in three dimensions one eighth of each increment in eight cells

is given to the eight corners of the basic cell with the appropriate weight.

The results of using the two-dimensional scheme on the test problem of §7,

e | e, T e i e s

with no attempt at switching, are shown in Appendix C. Switching procedures
can be devised for these less compact schemes, although this degrades their

compactness further.

et o o T T e i
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Appendix B. Generalised increments

In non-linear converging flows it is not a realistic model to assume that

the mass increment in a cell comes from one adjacent cell: all such cells

must be considered. In the one-dimensional case, returning to fig. 1, we
can evaluate three wave speeds in the three intervals (xk_1, xk],
: of of of
(x, 5 X, ), (x , % .-), namely, E—J , P—J , L—J . These may be
kK™ "k+1 k™ “k+2 ou k-1 au kel ou Kk+3
estimated by the ratios 2
k7 Fke1 fier T T Fez T P B
Y 7 Y- Uke1 T Yk Uk+2 7 Yk
and we denote them by ap_isa, 1, @, .3 Assuming that each cell draws in
k-3 k+3 k+2 _

a convected mass and has mass drawn out from it by adjacent cells, the

interval [XK’ X } will receive a net mass increment

K+1
A g m + a, L5 m - a g m - a+ L1 m
Mt = Fk+d Bx Mk-1 * %+l Bx K+§ k-3 Bx Mk+3 k+2 Bx Mk+i ?
(B2)
where
>

. a, @a,= 0 i [D a, >0

a, = a, = 1 " (B3)
<
0 a, <0 a, ag = 0

Each interval now has a unigue downwind end but it will vary from interval
to interval. A downwind mass estimate like (7) will vary from interval to

inverval but there is no danger of losing mass balance because of the con-

struction of (B2). We write
mk = AX Ug (B3)
>
where k u£+% [al 2 0)
Ug = (b4)
uz_% [a2 < 0)

Then (B2) can be written
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= . _ ~ N . -
Amk+% = ak+é At Uk—% + ak+% At Uep3 ~ 8 At Uy a3 At Uyt
2 2
(B5)
_ + ~ - ~ - - + ~
= Dy Uk-1 * Vet Yk+3 7 Vkit Ykey T Vked uk+%]Ax (B6)
2 2
At _ + At 4 - A _ -
where Ay ax = Vg A i © Ve Ay " Vg ot (B7)
Normalising to density, we obtain
o N - . - = + N B
gk+% = vk+% Ug -1 + vk+% Uk+§ = vk_% Ul vk+§ Uk+% ’ (Bg)

which is the quantity to be incremented (c.f. (16), (12)).

Weipghts for second order accuracy will be evaluated just as in §2 since

in smooth one way flows (B8) reduces to (1B). Indeed in the one-dimensional

case there is virtually no change in the method.

When we consider two dimensional flows the difference becomes more crucial
because of the difficulties with conservation mentioned in §6. Using
fig. 4, suppose that we know wave speeds (a, b) for each cell which may
vary in sign. Then
+ - + -
Amg = v1(1 = vzlmw + v1(1 = v2)mE + v2(1 - v,llmS + v2(1 = v1)mN

+ 4+ -+ + - S
P UV VqVaMsE T VY T VY™

- v, (1 m. - v, (1 - ) NNCEE )
Vi,W Vow'™ T Vq,E V2,e’M™a T Vg, Vq,s’Mg
- 1 - ) - v, - -y :
Vo N Yo, M0 T V1, swV2,sw™0 T V1,sEY2,5eM0
v RN (B9)
Vi,nwV2, ™ T V1, neV2, N
where v v=0 0 v=0
+ + - -
v =V, = vV o=V T {B10)
0 v <0 v v <0
and similarly for vw, VSW’ vS, VSE' vE, vNE' VN’ va.
Now let
m. = AyAv; = (B11)
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>
where UC v1, v2 =20
o u v, <0, v, 20
5 - {0 1 2 (B12)
Up Vys Yy < 0
g v1 =0, v, <0
with similar definitions for m mSW’ mS, Mo e s mE, mNE’ mN, me. Then,
dividing by AxAy, we obtain
+ ~ = - + ~ - -
Y[J = v,][’l - vz)uw + v,l['l - vz)uE + v2[1 - v(l)uS + v2(’l - v,lluN
+ fa + v it + vivIy .
VaVolgy * V4Valse T VValny T V4VaUne
VWt T Vo T VsV, suto T Ve,stt T Ve LslY
- Yie = 9 . Y= _mu 5
Vo:n Ya,8% T V1,802, 5wt T V1,582, 88Y%
G y 5 (B13)

" Vw2, nwo T V1, neY2, e
a single expression for YU (c.f. (42), (44), (45), (46)), which, because
of the mass balance, always ensures conservation if completely allocated

in the sense of (82).

Second order weights (derived from smooth solutions) are as before and
switching will ensure smoothing without affecting conservation. A

similar approach is available in three dimensions.



Appendix C. Results for the problem in §7

Numerical results as detailed in §7
Surface plot of table 1

Surface plot of table 2

Surface plot of the scheme in Appendix A

applied to the probklem in §7 (not scaled)

46

47

48

44.
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