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Abstract

We firstly implement various 8-methods for the Black-Scholes model,
which is a 1 —d parabolic partial differential equation. In this project,
it is used to price options dependent on a stock that follows a stochas-
tic process. By assuming that the volatility is nonconstant and that it
follows a stochastic process, we introduce an extension to the Black-
Scholes equation, which is a 2 — d partial differential equation. After
carrying out a series of transformations, we solve it numerically by
applying the A.D.I. (Alternating Direction Implicit) method and the
Ezplicit scheme. By comparing the results obtained from the 1—d and
2 —d equations for a fixed volatility, we find that, when the stock price
is negatively correlated with the volatility, the Black-Scholes equation
overestimates the out-of-the-money options and underestimates the
in-the-money options. The reverse holds when the correlation is pos-

itive,
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1 Introduction

Option pricing has become increasingly important in the field of finance over
recent years. The trade in options has grown dramatically during the last
two decades and huge volumes of options are traded globally on exchanges
(such as the London International Financial Futures exchange, the American
Stock Exchange and the European Options Exchange) and over the counter
by banks and financial institutions. A major breakthrough in the field of
option pricing has been the work of Black and Scholes in 1973 [1]. Their
model is based upon the assumption that the 'instantaneous’ rate of return
of the underlying asset cannot be predicted, and thus they describe this
rate as a random variable following a stochastic process known as Brownian
Motion (processes of this kind are observed in the behaviour of many natural
phenomena studied in Physics and Biology). Moreover, the wvolatility of the
rate of return (i.e. the standard deviation from the average value) is taken
to be constant. However, this last remark has been the subject of much
attention. Empirical analysis of stock volatility has shown that it is not
constant and that prices at which derivatives (especially call options) are
traded are inconsistent with a constant volatility assumptiom. |

For this reason, Garman[3] and Cox, Ingersoll and Ross[2] suggest an
extension to the Black and Scholes model. It is expressed by a 2 — d partial
differential equation and the volatility obeys a stochastic process. Based on
these findings, Hull and White [8] derive an expression in series form for the
pricing bias caused by a stochastic volatility. This bias is the amount by
which the actual option price when the volatility is stochastic exceeds the
Black and Scholes price in which the volatility is taken to be constant and
equal to its initial value.

The aim of this project is to apply various numerical schemes to both the
1 — d Black-Scholes equation and the 2 — d extension of it, which are used to
price Furopean call and put options on stocks. For the 1 —d problem, a closed
form solution exists and therefore we shall examine the results obtained from

the different numerical techniques in comparison to the analytic solution and



the impact of the boundary conditions on these approximations. Secondly,
we shall implement the A.D.I method (Alternating Direction Implicit)
for the 2 — d differential equation and compare these results with the Explicit
scheme. For these purposes, we have to transform the original equation into
one without a mixed derivative. However, this brings up some difficulties
which will be discussed later on.

Before moving on to explaining the numerics, it is necessary to provide

some preliminaries on financial terms and definitions.

1.1 Preliminaries

In general, a derivative product depends for its value on the value of
some other asset or assets. The simplest sort of derivative product is an
option. Depending on whether we are dealing with call or put options, an
option gives the right to buy (call) or to sell (put) an asset subject to certain

conditions within a specified period of time.

o The price that is paid for the asset when the option is exercised is called

the exercise price or strike price.

o The last day that this transaction takes place is called the expiration

date or maturity date.

Hence, an American option is the one that can be exercised at any time
up to the date the option expires, whilst a European option can only be
exercised on the expiry date. In this project we will be examining the pricing
of European options on stocks.

Normally, no shares are actually bought or sold (though they can be).
The option acts like a straight bet between the writer and the holder.
Initially, the holder pays the writer for the option. If the holder does not
exercise at maturity then no further money changes hands. If the holder
does exercise then the writer has to pay the holder what he owes him. The
writer, however, has an obligation to settle up at expiry; the holder has no

obligation to exercise.
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For example, if one bought a European call option at an exercise price of
£2.50 and at maturity the stock is valued at £2, then the option would not
be exercised. If, on the other hand, the stock has a price of £2.80, the holder
would wish to exercise the option. So, the issue here is how much to charge
the holder for the option and hence how the writer can eliminate risk since
he is technically exposed to possible infinite losses.

In relation to time, if the expiration date of the option is very far in the
future, then the value, for example, of a call option will be approximately
equal to the price of the stock. When the expiry date is very near, the
option price reaches approximately its minimum value, which is the stock
price minus the exercise price, or zero. Figures (2.1.1) and (2.1.2) show the
behaviour of the option value and the stock price for different maturities.

Consider also the following terms:

¢ When stock price > exercise price, we say that the option is in-the-

money and hence it gives the holder a positive cash flow.

e When stock price = exercise price, the option is said to be at-the-

money.

e When stock price < exercise price, the option is said to be out-of-the-

money.

Lastly, the volatility of the stock price is a measure of how uncertain we
are about future stock price movements. As volatility increases, the chance

that the stock will do very well or very poorly increases.



2 _Black-Scholes Model

As already mentioned, an important discovery for the financial world was
introduced by Black and Scholes in 1973 [1], who derived a 1 — d backward
parabolic differential equation. It is defined by

W+%JZS2V55+TSVS =rV (1)

and it models the price of an option V on a stock S (for example), with
volatility o and riskfree interest rate r. Here, the stock price follows the

stochastic process

dS = pSdt + 0 SdX,

where p = u(S,t) and 0 = 0(5,t) are the expected growth rate (drift) and
volatility of S respectively and dX is a random variable drawn from a normal
distribution with mean 0 and variance dt.

Let C(S,7) be the value of a call option satisfying equation (1). The
analytic solution for C(S,t) given by Black and Scholes is

C(S,t) = SN(dy) — Ee " T=IN(dy), (2)

where

log(S/E) + (r+0?/2)(T — 1)

@ = oI —t
= log(S/E) + (r — o?/2)(T —t)

oI —t

and N(.) is the cumulative distribution function for a standardised normal

random variable, defined by

N "yz/zdy

@)=/

T) = — e
V2T J-co

(E is the exercise price and T' the maturity time of the option).

If P(S,t) represents the value of a put option that satisfies (1), then by
the put-call parity relationship it holds that

S+P—-C=Ee ™Y, (3)

4



The final and boundary conditions for a European call option C(S,1)

satisfying equation (1) are given by

C(5,T) = max(S—E,0) 4)
c(0,t) = 0 (5)
C(S,t) — S, asS§ — co. (6)

The corresponding conditions for a European put option P(S, ) satisfying
(1) are

P(S,T) = max(E—S5,0) (7
P(0,t) = Ee(T-9 (8)
P(S,t) — 0, asS — co. (9)

In Figures (2.1.1) and (2.1.2) we show plots of the European call and
put values for several times up to expiry. Note how the curves approach the
payoff functions of S, that is max(5—FE,0) for a call option and max(E—S,0)
for a put option, as t — T.

There are also other methods available for pricing options without the
need for partial differential equations such as the Monte Carlo simulation and
lattice methods [6]. However, pricing through the solution of the differential
equation has the advantage of greater generality and also is a faster and more

accurate approach.
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Figure 2.1.1: The European call values C(S,t) as a function of S for
several values of time to expiry; r = 0.1,06 = 0.2,F = land T -t =
0,0.5,1.0,1.5.
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Figure 2.1.2: The European put value P(S,t) as a function of S for several
values of time to expiry; r =0.1,06 =0.2,F =1and T — ¢t =0,0.5,1.0, 1.5.
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3 Finite Difference Methods

To derive an approximate solution to the 1 — d partial differential equation
(1), we shall be looking at various 6-methods. The parameter 8 basically
controls the implicitness of the scheme. However, we will also consider cases
in which 0 is chosen so that the scheme becomes explicit.

Before introducing these numerical techniques, we need to transform
equation (1) by just reversing the time. Hence, by letting 7 = T — t to

be the time to maturity of the asset, then

0= 8
or Ot
and thus (1) becomes
W, = %O'ZSZWSS +rSWs —rW (10)

with V(S,t) = W(S, 7).
Clearly, we cannot solve this problem numerically for all 0 < S < oo
without taking an infinite number of S-steps. Instead we consider a finite,

but suitably large interval such that
0< 85 <8< 8,

which we will discretise accordingly.
The initial and boundary conditions for a call option C(S,7) satisfying

(10) now become

C(S,0) = max(S— E,0) (11)
C(S™,7) = 0 (12)

For S = 5%, we choose between the following three conditions:
1. A Dirichlet condition defined by

C(S*t,7) =8+ — B (13)



2. A Neumann condition, given by

Cs(St,7)=0.

3. A different condition on the derivative, given by

Cs(S+, T) =1

Similarly, the conditions for a put option P(S, ) satisfying (10) are

P(5,0) = max(E - S,0)
P(ST,r) = 0
P(S™,7r) = Ee" -8~

(14)

(15)

The aim here is to show the impact the boundary conditions can have

on the approximations. We choose to do that only for call options as the

equivalent problem for put options is not much different.

Having set all the necessary conditions, we can discretise the initial bound-

ary value problem using finite difference methods. Let N be the number

dividing the interval of S into equally spaced subintervals, such that

S; = i8S, i=0,...,N,
§5 = (S*—S7)/N.

Similarly, let M be the number dividing the time interval, such that

T; = jor, 7=0,..., M,
st = T/M.

The grid used for the numerical schemes is shown in Figure (3.1.1).
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Figure 3.1.1: The mesh for a finite difference approximation

For an interior point (z,7) on the grid, %VSK can be approximated by a

central difference, given by
W Wi —Wi,
as — 268

For 2% we use the forward difference approximation
or”’ PP

ow Wit —wyi
or o '

Lastly, fTVf 1s approximated by

PW WL, —2W] + Wiy,
05t = (65)?




Hence, the generalised #-methods take the form

Wik — 2wt + w@’ﬁl) a0 (M;l — oW + ws;.-l)
(85)? 2 (65) ]

JHL i
I/Vz WL :%U2Sf[el<

ot
witl _ ittt Wi, — W/
; 0 ( 141 1—1 ( 141 t—1>]
= [ T a5 T\ T s
—r[oswi + 0] (19)
For consistency, we require that ¢, +60; = 63+ 604 = 65+ 05 = 1. Rearranging
(19), we obtain
Wit — Wi = auldu(WiE = 2W/ + WiH) + 0(Wi, — 207 + W)
+B:l0s(WIE — W) + 0a(Wiy — WLy
YO WiH + 0 W7, (20)
where
1 54 6T 1 .57' _
az—QUS',-((SS)2>O, 'B'_2TS’<SS>O’ v =—rér <O0.
(21)
Rearranging (20), we are left with
Wi+ aWiT + bWl = WL + o W] + W), (22)
with coefficients
¢ = —a;b; + Bi0; ¢; = iy — B4
a; =14 200, — 705 a;- =1—2a;0; + ~0s
b,j = —ozi@l — ,Bi03 b: = a'i02 + ﬁi94.
The problem is then reduced down to solving the system of equations
(23)

AWt — BWi 4 d,

10
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where A and B are the following (N — 1) x (N — 1) tridiagonal matrices

((av b 0 ... 0 [(a; b 0 - 0
¢ ay by : cy ay by :
: cN-2 anN-2 N2 : cNiz an-g by_g
\ 0 ... 0 envo1 an— J \ 0 ... 0  cy.y an_, /

and the vector d adjusts the system at each timestep to allow for the Dirichlet
boundary conditions (13), if we are pricing call options, and (16) if we are

pricing put options;

—61W0 + Cll Wo
0

(S8
Il

—by_ W + by Wn

If we consider the Neumann condition (14), we only need to solve AC*! =
BC?, where A and B are now of dimension N x N (C(S,7) is the value of
a call option satisfying (10)). The only differences are the values of the
coefficients ¢y and cy of the matrices A and B respectively, which are now
replaced by

cN = oy + by ey — ¢y + by (24)
This is obtained by approximating the derivative Cs(S*,7) = 0 by a central
difference. Hence, we get an expression for the ’fictitious’ point, say, cyy1,
which we then substitude into (24) for : = N.

Lastly, for condition (15), we approximate again the derivative by a cen-
tral difference so that (24) still applies. Thus, we need to solve the system
of equations (23) with A and B being N x N tridiagonal matrices. The last
entry of d is now (by — b}V)Z(SS and all the others are zero.

Solving for put options, the procedure is the same as for the call options
but with different initial and boundary conditions.

For the schemes that we will be considering, the §’s take the following

values:

11




Scheme | §

Crank-Nicolson

-
=)
[ =)
=
w
N~
N
ey
o
e
[«>)

Kenneth-Vetzal
Fully Implicit
Semi Implicit

Explicit 1
Explicit 2 | 0
Table 3.1.2

O = = e

== OO O e
O O O = - R
—t — ot O O -
— O = = O N
(e = T e B i Y [

The first four schemes, as shown in Table (3.1.2), involve three unknown
values of W on the new time level 7 + 1. So, it is required to invert the
tridiagonal matrix A on the Lh.s of the system of equations (23). The last
two schemes considered are explicit. The Ezplicit I scheme uses three values
of W at the current time level j and Ezplicit 2 scheme uses two values of
W at time level j. Hence, inverting a matrix is not needed and the values
of W at the new time level are found explicitly. A natural generalization of
an implicit and explicit method is by taking a weighted average of the two.
Crank-Nicolson is such a scheme.

We will now continue to analyse the stability and convergence of the nu-

merical methods.

3.1 Invertibility

Before carrying out any stability analysis, it is necessary first to ensure, in
the case of the implicit schemes, that the matrix A is invertible. So, consider

the following definitions:

Definition

A tridiagonal matrix A is said to be strictly diagonally dominant (s.d.d) if

and only if
lai [>] e[+,

where the a;’s are the coefficients on the diagonal and the ¢;’s and b;’s are the

12
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coeflicients on the lower and upper diagonal respectively. Then, the matrix
A is non-singular.

Consider also the mesh Péclet number Pe;

_ ,8,' _ réS
Pe = = = 5 (25)
We assume that
r < o2S; Vi, (26)

and hence Pe < 1 (Vi) provided that 65 < 1. Condition (26) implies that
the differential equation (10) is diffusion dominated.
If we consider, for example, the matrix A corresponding to the Fully

Implicit scheme, its coefficients are

¢ = —o;+
a¢:1+2a,-—’y
bi = —a; — B

Hence, from (26) it follows that ¢;, b; < 0, a; > 0 (since v < 0) and so
1420 =7 > (i = i) + (i + i)

=>|ai|>|c,-|+|b,-|.

The matrix A is therefore s.d.d. and thus invertible. However, this is a
sufficient but not a necessary condition for invertibility [14].

Similarly, the matrix A corresponding to Crank-Nicolson and Kenneth-
Vetzal schemes is s.d.d, provided that condition (26) is satisfied.

Lastly, for the Semi-Implicit scheme, the coefficients of A are

¢ =—0; <0
ai:1+2a,~—7>0

b; = —a; < 0.

Clearly, in this case A is s.d.d without any restriction on the Péclet number.

13



3.2 Stability

We shall now introduce the problem of stability of the finite difference calcu-
lations used to solve equation (4) subject to Dirichlet condition (14). If we
consider the more general boundary conditions that involve a derivative term,
the analysis for stability and accuracy is concentrated on the nodes that lie
on the boundary. Here, we will examine the behaviour of the schemes for the
simple case.

Let 7 and R’ be two solutions of the system of equations AW/t =
BW? + d, that have the same inhomogeneous term d but with different
initial data Q° and R°. Then, their difference W7 = Q7 — R’ satisfies the
homogeneous system of equations and stability is achieved by establishing
that

AWt = BW? and = |[W/| < K||W°|
(|I-|| defines the norm). If the constant K is such that | K |< 1, then the
scheme is said to be stable.

Fourier analysis is the most precise and useful tool for studying stability
in the I norm. It can be, however, quite restrictive since it can only be
applied to linear problems with constant coefficients and periodic boundary
conditions, approximated by difference schemes on uniform meshes. Noticing
that the problem we are solving has variable coefficients, the method can still
be applied locally as long as the stability condition is satisfied at every point
in the interior of the domain [12]. Moreover, Fourier stability is, in general,
both a sufficient and a necessary condition.

(1)Fully Implicit
Substituting W™ = \,,e’*55 into (22), we are left with

M(—os + B:)e ™ + (14 205 — ) + (—as — Bi)e**¥} = 1

= {—2c; cos(kéS) — 2¢f;sin(kdS) + 1 + 204 — v} = 1. (27)
Since cos(k6S) =1 — 2sin®(£2), from (27) it follows that
)= 1

4o sin®(B3) — 2i8;sin(k6S) + 1 — v

14



1
2__
= (1+4048? — )2 4+ 16872s%(1 — s?)’
where s? = sin*(¥2) € [0,1]. The quantity ) is the amplification factor and

=] A (28)

for stability we require that | A |[< 1. For s? = 0, A |? attains its maximum
value (V1); i.e.

1
AJP= - .
M=y

Now, | A |*< 1, since (1_1,7)2 = (H_TIST)Q <1 and so the scheme is uncondition-

ally stable.
(i1)Semi Implicit
Carrying out the same process as in part (i), the amplification factor in
this case is found to be
1 +2:82sin(kéS)
1+ 4oy sin®(£3) — 4

1+1682s%(1 — s?)

(1 —v+4a;s?)?
The maximum of | A |? occurs at the point

2 1—7— /28]

5= 2(1 — v+ 204)’ (30)

=| A |’=

provided that

Q

| —y—
07 %, >0
2
=0’ < , since 67 < 1. (31)
147
Hence, provided that (31) holds, substituting (30) into (29) we get
2(1 + 44%)
A 2__ 181( [ . 9
A= e = e =
For stability, we require that
o?
L+ 48 < (=) + ol =) = 5. (33)

From the assumption in (31), inequality (33) becomes

14467 < (1—7)?

a;
p?

15



and since o?/f2 > 1 (condition (26)), then

467 < (1 —79)?

= 01 < =5

55
5t 1

= E < ‘:“5,; = ?”55.

-r

(34)

If, on the other hand, condition (31) does not hold, then the maximum
of | A |? is at the point s? = 0, which substituted into (29) gives

2 | . Il
'”‘(1—7)2”(1+7~5T)231 (35)

and hence the scheme’s unconditional stability follows immediately.
(iii)Crank-Nicolson

The amplification factor is now

14 /2 — 204 sin?(28)] + 1, sin(k6.5)

A= ;
[1 — /2 + 2a; sin®(¥8)] — i; sin(k6S)

If 1 + /2 — 2a; sin®(%2) > 0 Vi, it holds that
k ké
(I+7/2 -2 sinz(g)) <(1—9/2 42 sin2(TS), Ve.
If, on the other hand, o; and 7 are such that 1 4+v/2 — 20 sin?(#2) < 0,
it follows that

. 5, k0S . o, k6S ,
—(147v/2 — 20 smz(T)) <(1—9/2+4+ 2 sm2(7), V.

In any case, plotting the numerator and denominator of A on a real-
imaginary plane, then the ratio of the two lies always in (or on) the unit
circle. Hence, | A |[< 1 and the scheme is unconditionally stable.
(iv)Kenneth-Vetzal

The amplification factor is found to satisfy

(1+)*

A=
A1 (1 +4a;s2)? 4+ 1682s%(1 — s2)

16



For s> =0, | A |* attains its maximum value; i.e.
| A P= (1 +7)% = (1 —rér)2

Provided that

2
1—r57‘2—1=>67‘§;, (36)

the scheme is stable.
(v)Explicit 1

Here,
| APP= (14 9)" + (1667 — 8(1 + 7)au)s* +16(af — B7)s*.  (37)

By considering (37) as a quadratic function of s2, for stability we require that
it lies in the interval [0, 1] by ensuring that the coefficient of s? is nonpositive
and that | A |*€ [0, 1] for s2 =0, 1.

Hence, we need to satisfy

1 ot
I = (2
26; — (1 +7)ei <0 = 2Sz (55)2

(r267' —(1- 1"67')02) <0

2

= 61 < )
T r2 4 ro?

Substituting s* = 0 into (37) then | A |2>= (1 + 7). Thus, we need
—1-721
2
Moreover, substituting s> = 1 into (37) we get | A |>= (1 + v — 4;)? and
requiring | A |2< 1 then
da; —-vy—-1<1

or < il
85) (o257 + TG

= ( (40)

From condition (26), it can be shown that the conditions (38) and (40) are
equivalent.
(vi) Explicit 2

17



The amplification factor is now

(1 — 4048%)? + 16825%(1 — s%)

M (1 —9)?

Since (1 — )% > 1, it follows that
(1 — 4a;s?)? + 1662s%(1 — s?)
(1—9)?
Hence, it is sufficient to show that the quadratic 1+ (165? — 8c;)s? + 16(cv; —
f;)s* lies in [0,1]. Using the same principles mentioned in part (v) it follows
that

< (1 —40;8%)% 4+ 16B2%(1 — s%).

2

26?7 — a; <0 = sr< 2
r
Also, require that | A *< 1 for s> =1; i.e
1
(1-4e,)? <1 L (41)

= 657 = o25F

3.3 Convergence

The next issue that we need to examine is the matter of convergence, which

consists of finding the conditions under which
Wappr:c(S*’T*) - Wexact(s*,'r*) —0

1.e the difference between the analytic and the numerical solutions of the
differential and difference equations at a fized point (S*,7*) tend to zero
uniformly as 65,67 — 0 and ¢,j — oo, with :65(= S*) and jér(= %)
remaining fixed ((5™,7*) lies in the domain (5=, S%) x (0,T)).

We start by looking at convergence for the Ezplicit I scheme.
(i)Explicit 1

Let € = Wappra(S*,7*) — Wegaet(S*, 7*). Now, Wappra(S™*, 7*) satisfies
equation (22) exactly (for the appropriate choice of the 6’s), while Wz, (S*, 7*)
leaves as a remainder the truncation error pit'6r. Thus, the error is deter-

mined from the relations

" = (ai = Bielr + (1= 200 + y)el + (i + Br)ely, + 67pi™t (42)

€

18



fore=1,...,N—1land j=0,...,M — 1. We assume that the coefficients
on the r.h.s of (42) are nonnegative. Thus, o; — B; > 0, which is satisfied by
our initial assumption (26) and also 1 — 2c; + v > 0. Hence,

6t < 1
(65)? = 025 — r(65)%’

(43)

which is slightly more restrictive than the Fourier stability condition (40). We
show that by assuming the coefficients on the r.h.s of (42) to be nonnegative
are sufficient conditions for convergence.

Using the triangle inequality we deduce that
| el < (ei=f) | ely | +(14205—7) [ €] | H(eit i) | elyy | +87pi™ (44)
From the boundary conditions, we have that e} = e{, = egv = 0 and we define

E = MaTo<i<N | ef |
7 = mazicicn-1 | pi* |

Equation (44) becomes
BV <E 465 <(1—~)E + 65 (v <0).
Because £° = 0 and T € [0,T], by induction, we can show that
E! < jérp < Tp. (45)

The bound on the truncation error is found to be

o%S? 7S
241 12 mazx l Wsss |}(5S)2

1 ,025? 1

E( 5 Ymaz l Wssss l +rS;maz | Wsss |);},

- 1
pf“ < 5(67_)ma$ | Wor | +{ maz | Wssss | +

il
< 6T{§max | Wer | +

where v = (fTT)z is a refinement path.

In general, to define convergence of a difference scheme which involves two
meshes 65 and 67, we need to specify what relationship we assume between

them as they both tend to zero. This is defined by the refinement path v,

19



which is assumed to satisfy condition (43). Hence, from (45) E? — 0, as
6t — 0.
(ii)Explicit 2

The argument for convergence in this case is similar to the one in part
(). The truncation error is again of order O(67)+ O(6S5)?. This time v must

satisfy the condition
1

0252

which agrees with the Fourier stability condition (41). As before, 7 — 0 as

v < Vi,

67 — 0 and thus the approximate solution converges to the analytic one.
(iii)Fully Implicit

Here, the error ¢! is determined by

(—oi + Bi)ell J+1 + (14 20; —y)e f“ + (—a; — B) fj_'ll = e 57’p3+1

= (14205 —7)el™ = (o — B)eld ) + (i + Bi)elt + el — 6rpi™t,  (46)
for: =1,...,N—land j =0,...,M — 1. As in part (), we have that
e =¢j) = N = 0. Since the coefficients of (46) are nonnegative (condition

(26)), it follows that
E < (1 —4)E* < BV + 675
Because Ey = 0, then by induction we get
E? < jérp < TP.
The order of the truncation error is, as in the explicit case, O(67) + O(65)2.
In this case, there is no restriction on the refinement path v. By fixing v and
letting 67 — 0 and 65 — 0 uniformly, it follows that EY — 0.

For the rest of the schemes, the process to show convergence is similar to
part(iii). The difference lies essentially in the fact that the truncation error
of the Crank-Nicolson scheme is of order O(67)% + O(65)? [11]. As a result,
we can achieve good accuracy economically.

The convergence as well as the stability analysis arguments used in Sec-

tions 3.2 and 3.3 follow similar arguments to the corresponding arguments

in [13] and [14].
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3.4 Results

We will now implement the generalised §-methods to give approximate so-
lutions to the 1 — d Black-Scholes equation (4), considering both cases of

call and put options on stocks. In the computations we use the following

parameters:
S~ :min. value of S | 50
St :max. value of S | 150
E : exercise price 100
T : maturity date 0.25 (1/4 of a year)
r : interest rate 0.08
o : volatility 0.2
Table 3.4.1

Observe that given the values in Table (3.4.1), condition (26) is satisfied
and hence the problem we are solving is diffusion dominated.

Tables (3.4.2), (3.4.3), (3.4.4) and (3.4.5) show the approximations to call
options and Tables (3.4.6), (3.4.7), (3.4.8) and (3.4.9) show the corresponding
results for put options. The numerical solutions were obtained using the
programs theta, thetal, theta2, which we wrote in Fortran 90 and the exact
solutions were computed using Mathematica.

In all cases, it is apparent that by taking a smaller §S we obtain better
accuracy, but this is done at the cost of having to take an even smaller §7 and
hence a large number of steps. For the explicit schemes this is necessary for
stability. Recalling condition (40) for Ezplicit 1 scheme and taking 65 = 0.5
and max;{S;} = 150, then v = §7/(65)? < 0.001. If N is the number of
timesteps, then since §7 = T'/N, N should be at least equal to 925 to reach
the final time 7 = T'. A similar argument applies to Ezplicit 2 scheme, but
with a less restrictive condition on v. Therefore, as shown in Tables (3.4.2),
(3.4.4),(3.4.6) and (3.4.8), when v does not satisfy the stability conditions
(40) or (41), the ezplicit schemes become unstable whilst all other methods
preserve stability. Also, ¢? = 0.04 > 0.005 = r2/(1 + ) and hence the Semi-

Implicit scheme is expected to be unconditionally stable, which is verified
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from the results. In general, Crank-Nicolson has the fastest convergence,
which is due to its truncation error of order O(67)% + O(8.5)2.

Also notice that Ezplicit 1 in comparison with Fzplicit 2, seems to con-
verge faster. Taking though a relatively large timestep, we can see by com-
paring Table (3.4.4) with (3.4.5) and Table (3.4.8) with (3.4.9) that the two
schemes produce very similar results.

Table (3.4.10) illustrates the solution for different boundary conditions.
For the problem we are solving, it seems that a ’bad’ choice of the bound-
ary condition produces poor results for the nodes near the boundary region,
whilst the central nodes are not affected as much. Hence, we may use ’in-
correct’” boundary conditions and still consider numerical solutions in the
central region of the domain. For financial modelling, this is quite important
since in many cases, we do not know the behaviour of the solution along the

boundaries.
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European call options

So BS CN KV FI SI El E2

80 0.0690 0.0691 0.0954 0.0948 0.0840 0.0 0.0

85 0.3162 0.3154 0.3536 0.3520 0.3288 0.0 0.0

90 1.0254 1.0241 1.0456 1.0423 1.0093 0.0 0.0

95 2.5253 2.5251 2.5051 2.5001 2.4718 0.0 0.0

100 5.0169 4.9567 4.9724 4.9664 4.9567 -2x10'7 | -2x10'7

105 8.4585 8.4588 8.4248 8.4189 8.4267 9x1011 3x101!

110 12.6204 | 12.6202 | 12.6122 | 12.6069 | 12.6213 | -4x10'? | -4x10!?

115 17.2281 17.2286 | 17.2365 | 17.2319 | 17.2445 | 2x10%3 -1x10%3

120 22.0666 | 22.0698 | 22.0791 | 22.0750 | 22.0831 | -4x10*® |2x10%3
Table 3.4.2 65 = 0.5,67 = 0.025 ( 10 timesteps)

So BS CN KV FI SI E1l E2

80 0.0690 0.0691 0.0694 0.0694 0.0693 0.0688 0.0688

85 0.3162 0.3163 0.3167 0.3166 0.3164 0.3159 0.3158

90 1.0254 1.025 1.0251 1.0251 1.0247 1.0248 1.0247

95 2.5253 2.5243 2.5241 2.5239 2.5236 2.5246 2.5244

100 5.0169 5.0157 5.0153 5.0149 5.0148 5.0163 5.0159

105 8.4585 8.4576 8.4573 8.4567 8.4568 8.4580 8.4575

110 12.6204 | 12.6201 12.6199 | 12.6191 | 12.6193 12.6200 12.6194

115 17.2281 17.2282 | 17.2280 | 17.2270 | 17.2272 17.2274 | 17.2270

120 22.0666 | 22.0668 | 22.0666 | 22.0654 | 22.0655 | 22.0657 | 22.0654

Table 3.4.3 65 = 0.5,67 = 0.0002 ( 950 timesteps)
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So BS CN KV FI SI El E2

80 0.0690 0.0690 0.0758 0.0757 0.0730 0.0 0.0

85 0.3162 0.3162 0.3259 0.3255 0.3194 0.0 0.0

90 1.0254 1.0252 1.0304 1.0295 1.0211 0.0 0.0

95 2.5253 2.5251 2.5201 2.5189 2.5119 0.0 0.0

100 5.0169 5.0134 5.0058 5.0042 5.0019 -3x10717 | -3x1077

105 8.4585 8.4583 8.4499 8.4483 8.4503 8x 101! 3Ix101!

110 12.6204 | 12.6203 |12.6181 | 12.6166 | 12.6204 | -6x1012 -5x10'2

115 17.2281 | 17.2278 |17.2302 | 17.2285 | 17.2319 | 3x10%3 -2x10'3

120 22.0666 | 22.0664 | 22.0699 | 22.0676 | 22.0698 | -3x1013 2x1013
Table 3.4.4 65 = 0.25,67 = 0.00625 ( 40 timesteps)

So BS CN KV FI SI El E2

80 0.0690 0.0690 0.0691 0.0691 0.0691 0.0689 0.0689

85 0.3162 0.3163 0.3164 0.3163 0.3163 0.3162 0.3162

90 1.0254 1.0254 1.0254 1.0254 1.0253 1.0253 1.0253

95 2.5253 2.5252 2.5252 2.5251 2.5251 2.5253 2.5253

100 5.0169 5.0168 5.0168 5.0167 5.0168 5.0169 5.0171

105 8.4585 8.4586 8.4587 8.4587 8.4588 8.4584 8.4589

110 12.6204 | 12.6209 | 12.6210 | 12.6212 | 12.6213 12.6202 | 12.6211

115 17.2281 | 17.2289 | 17.2290 | 17.2292 | 17.2292 | 17.2280 | 17.2291

120 22.0666 | 22.0674 | 22.0677 | 22.0676 | 22.0677 | 22.0667 | 22.0680

Table 3.4.5 65 = 0.25,67 = 0.000065 ( 3800 timesteps)
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European put options

So Bi§ CN KV FI SI E1 E2

80 18.0889 | 18.0888 | 18.1133 | 18.1165 | 18.1057 | -1x10%° |-1x10°

85 13.3361 13.3352 | 13.3715 | 13.3737 | 13.3506 | -5x10° 1x101°

90 9.0453 9.0439 9.0635 9.0641 9.0311 -5%x10'° | 1x1010

95 5.5452 5.5449 5.56230 5.5220 5.4936 -9x10° -1x1011

100 3.0368 2.9765 2.9903 2.9882 2.9785 -2x1017 | -2x10%7

105 1.4784 1.4786 1.4428 1.4407 1.4485 0.0 0.0

110 0.6402 0.6396 0.6301 0.6286 0.6430 0.0 0.0

115 0.2479 0.2472 0.2545 0.2536 0.2661 0.0 0.0

120 0.0863 0.0860 0.0971 0.0966 0.1047 0.0 0.0
Table 3.4.6 65 = 0.5, 67 = 0.025 ( 10 timesteps)

So BS CN KV FI ST El E2

80 18.0889 | 18.0892 | 18.0894 | 18.0887 | 18.0883 18.0889 18.0879

85 13.3361 13.3363 | 13.3366 | 13.3362 | 13.3357 13.3359 13.3351

90 9.0453 9.0449 9.0450 9.0447 9.0443 9.0447 9.0442

95 5.5452 5.5442 5.5439 5.5437 5.5434 5.5445 5.5441

100 3.0368 3.0356 3.0351 3.0349 3.0348 3.0361 3.0359

105 1.4784 1.4774 1.4770 1.4769 1.4770 1.4778 1.4777

110 0.6402 0.6397 0.6396 0.6396 0.6397 0.6399 0.6398

115 0.2479 0.2477 0.2478 0.2477 0.2479 0.2476 0.2476

120 0.0864 0.0864 0.0865 0.0865 0.0866 0.0862 0.0862

Table 3.4.7 65 = 0.5,67 = 0.0002 ( 950 timesteps)
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So BS CN KV FI SI El E2

80 18.0889 | 18.0891 | 18.0952 | 18.0962 | 18.0935 |-1x10° -2><1010~

85 13.3361 | 13.3362 | 13.3453 | 13.3460 | 13.3400 |-9x10® 3x108

90 9.0453 9.0451 9.0497 9.0499 9.0416 -4x10° 4x10M

95 5.5452 5.5450 5.5395 5.5392 5.5323 -11x10° | -2x 101!

100 3.0368 3.0332 3.0251 3.0246 3.0222 -3x10M7 | -3x10'7

105 1.4784 1.4782 1.4693 1.4687 1.4707 0.0 0.0

110 0.6402 0.6401 0.6375 0.6371 0.6408 0.0 0.0

115 0.2479 0.2478 0.2495 0.2493 0.2526 0.0 0.0

120 0.0864 0.0864 0.0892 0.0891 0.0913 0.0 0.0
Table 3.4.8 65 = 0.25,67 = 0.00625 ( 40 timesteps)

So BS CN KV FI SI El E2

80 18.0889 | 18.0884 | 18.0872 | 18.0876 | 18.0882 | 18.0883 | 18.0883

85 13.3361 | 13.3356 | 13.3351 | 13.3350 | 13.3354 | 13.3355 | 13.3356

90 9.0453 9.0449 9.0445 9.0443 9.0444 9.0447 9.0447

95 5.5452 9.5450 5.5446 5.5446 5.5444 5.5447 5.5448

100 3.0368 3.0366 3.0363 3.0362 3.0362 3.0364 3.0365

105 1.4784 1.4782 1.478 1.4779 1.4779 1.4781 1.4782

110 0.6402 0.6402 0.6401 0.6401 0.6401 0.6402 0.6402

115 0.2479 0.2478 0.2478 0.2478 0.2478 0.2478 0.2478

120 0.0864 0.0864 0.0864 0.0864 0.0864 0.0863 0.0864
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So BS CN KV F1 ST El E2
85 0.3162 0.3163 0.3167 0.3166 0.3164 0.3159 0.3158
0.3163 0.3167 0.3166 0.3164 0.3159 0.3158
0.3163 0.3167 0.3166 0.3164 0.3159 0.3158
95 2.5253 2.5243 2.5241 2.5239 2.5236 2.5246 2.5244
2.5243 2.5241 2.5239 2.5236 2.5246 2.5244
2.5243 2.5241 2.5239 2.5236 2.5246 2.5244
100 9.0169 5.0157 5.0153 5.0149 5.0148 5.0163 5.0159
9.0154 5.015 5.0145 5.0145 5.016 5.0156
5.0151 5.0146 5.0142 5.0141 5.0156 5.0153
105 8.4585 8.4576 8.4573 8.4567 8.4568 8.458 8.4575
8.4553 8.4549 8.4543 8.4544 8.455 8.4552
8.4530 8.4525 8.4519 8.4520 8.4535 8.4529
110 12.6204 | 12.6201 | 12.6199 | 12.6191 | 12.6193 | 12.6202 | 12.6194
12.6072 | 12.6068 | 12.6060 | 12.6062 | 12.6074 | 12.606
12.5942 | 12.5937 | 12.5929 | 12.5932 | 12.5947 | 12.5939
120 22.0666 | 22.0668 | 22.0666 | 22.0654 | 22.0655 | 22.0667 | 22.0654
21.8747 | 21.8738 | 21.8727 | 21.8731 | 21.8754 | 21.8741
21.6827 | 21.6810 | 21.6799 | 21.6807 | 21.6841 | 21.6829

Table 3.4.10 European call options valued using different boundary con-

ditions. Each cell in the table contains the numerical solution obtained

using the conditions C(S*,7) = ST — Ee™™, Cs(S*,7) =0 and

Cs(S*+,7) =1 (65 = 0.5,67 = 0.0002)
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4 Extension of Black-Scholes Model

We will now consider the case where the stock has a stochastic volatility and
thus the Black-Scholes 1 — d equation cannot be applied to this problem. As

a result, we shall examine an extension to it. So, define

S : stock price
V : variance of §.5/S(volatility)
¥(t) : drift rate of §5/S
n(V) : drift rate of 6V
£ : instantaneous standard deviation of §V/vVV
p : instantaneous correlation between §5/Sand §V/V/V.

Since the volatility is now modelled as separate state variable, S and V

are assumed to obey the stochastic processes

—Sb: = ydt +VVdz (47)
dV = qdt + £vV'Vduw, (48)

where dz and dw are Wiener processes.
Garman [3] and Cox, Ingersoll and Ross [2], showed that a security f
whose price depends on stochastic variables 6;, must satisfy the differential

equation
af *f Z
8t -I- E Pij0i05 56 80 —rf= 0; i[_ﬂz + /\»,O'z], (49)

where o; is the instantaneous standard deviation of the proportional change
in 0;;, pi; is the instantaneous correlation between 6; and 6;, p; is the propor-
tional drift rate of 8; and ); is the market price of risk for variable ;. When
variable 7 is traded, the ith element of the r.h.s of (49) is —r01§gi
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It follows that, for the two state variable case in question,

of o*f O f o f

2 ) _
%73 {VS 8S2+2 V65858V+£V6V2 rf
_ L d0f af
Assuming that the market price ), is zero, we are left with
of 0 Of oy O GO _ 0
5+ 51V g+ Vet + €V k) o = a5 " Tov BV
The initial and boundary conditions for (51) are:
f(S,V,T) = max(S — E,0) (52)
F0,V,8) = 0 (53)
f(S,V,t) = S, asS§ — o (54)

As we did for the 1 — d problem, we consider S in the finite interval [S—, 5]
C [0, 00], so that conditions (54) and (53) become

f(SH,V,t) = §t — Ee~(T-7) (55)

(57, V1) =0. (56)

We also need two more boundary conditions on V. So, if V € [V~, V1]

C [0, 0], then consider the Neumann conditions
(S VT,t)= (S, VH¢) =0, for S~ < S < St (57)

If £ and 7 are zero, then (51) devolves into (1), the Black-Scholes equation.
We shall assume that £ is constant and that the drift rate of V, 5, is given
by

n=a+bV, (58)
where a, b are constants. In order to ensure that V remains nonnegative we
require @ > 0. From (58), we can have a constant drift (b = 0), a constant

proportional drift (a = 0), or a mean reverting process (a > 0,b < 0). In

this latter case, V tends to revert to a level —a/b with a reversion rate —b.
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A lot of research has been done on option pricing with a stochastic volatil-
ity. Hull and White [8] derive an expression for the pricing bias in series form.
Also, for the special case where p = 0, i.e. the volatility is uncorrelated with
the stock price, they produce analytic results for a European call option
[9]. More recent work was carried out by Heston in 1993 [6], who gives a
closed-form solution for other values of p in the interval [0,1]. A.Kurpiel and
T.Roncalli [10] tackled the problem numerically using Hopschotch methods,
considering both cases of European and American options.

Here, we will deal with European call options on stocks that satisfy the
2—d partial differential equation (51) and derive numerical solutions by using
the method called Alternating Direction Implicit (A.D.I). However, in
order to be able to implement this scheme, we must eliminate the mixed
derivative term ?_f_/gs dV. To achieve this, consider the following standard

based transformations. The same sort of transformations were carried out in

[4].
4.1 The transformed equation
As in the 1 — d case, we need to solve (51) backwards in time, so define
r=T-—1.
With (S, V,7) = f(S, V,t), equation (51) becomes
dc  VS? A% eV 9% de

Ll = - {535 tr Vﬁsasav 5 av2+"9%+"av

}+re (59)

The operator L[.] is parabolic if and only if the differential operator

VS? 9% d%c £2V 9% dc Jc
ld= =535 TP 5557 + 5572 7% T oy

(60)

is elliptic. This is achieved by letting

(VS — (i) L = Vi~ 1) <0

Hence, we require that p € (—1,1), which agrees with Hull and White [8].
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Having established that the operator {[.] is elliptic, then at each point,
there are coordinates (z,y) such that the second derivative terms in (60) can
be written in the form ﬂ(g—;‘; + %), where § = f(z,y). Hence, consider the
following series of transformations.

Define the new variables z and y by

z=@(S5V)
y = ¥(S,V).

A necessary condition on the functions ® and ¥ to ensure a coordinate
transformation for every point (S, V'), there corresponds a unique point (z,y)

and vice versa, such that the Jacobian
J(S, V) =050y — ¥gdy,

does not vanish in the region of interest.

For simplicity, rewrite the coeflicients in (60) as

vs? ev

— = — = h:
5 pEVS, d 5 9 rS, n (61)

a =

so that 52 52 52 P 3
=55 T 55y T oy T 955 gy (62)

Now, let ¢(S, V) = u(z,y). Using the chain rule, the operator I[.] with respect

[

to the 'new’ variables z,y becomes
0? 0? d? g 0
M =A(ﬂf,y)a?+3($ay)mﬁLD(%y)a—?ﬂ‘i'G(m,y)a—w‘FH(ﬂ?,y)g; (63)

where

A(z,y) = a®% + bPsDy + dD?,

(z,y) = 2a05Us + b(@sTy + Usdy) + 240y Ty
D(z,y) = a¥% + b¥sUy + dU%
(z,9)
(z,9)

€T,

= g®s + hdy

T,

H = g¥s+ hly

L,
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So, equation (59) is transformed into

Mu] —ru = %:—f
Setting B =0 and A = D, then
a(@ﬁ- — \I/g) + b(@sq)v — \Ilg\Ilv)d((I)% = \I/%/) =0 (64)
2aPsVg + b(q)s\llv + \IJS(I)v) + 2dPy ¥y =0 (65)

and so we need to solve the above set of equations for ® and ¥. Hence,
multipling (65) by ¢ and adding it to (64) we end up with the following

quadratic equation of the complex variable { = z + 1y;
acs + blslv + d¢3 = 0. (66)

A root of (66) is found to be

(s xs+1ys _‘_b+z\/4ad——b2

C_V. N Ty + tyy 2a

Separating real and imaginary parts, we get

. dyv — by_g

T8 = Jhed — 02

- _byv + 2ays
T Viad—B
By arbitrarily fixing y = S, the transformation of the ’old’ variables to

the 'new’ variables « and y is given by

=9
{y it (67)

T =
E/1=p?

Finally, the original partial differential equation (51) is transformed into

the general form of a 2 — d parabolic equation;

0% H%u Ou ou Ou
<~S
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where the coefficients of (68) are found to be

Az, y) = Yo = 5;\/1 =) (69)
Gle,y) = L) (70)
H(z,y) = ry. (71)

Notice that A(z,y) > 0, since substituting the expression in (67) for «,

we get

_ 2
4 ¥elwe yzp+yV/£) _ y2V >0, since V > 0,

Also, the drift rate is now a function of z and y and from (67) it follows that

The conditions (52), (55) and (56) w.r.t. the 'new’ variables z and y

become

u(z,y,7) = max(y — E,0) (72)
u(z,y”,7) =0 (73)
u(z,yt,7) =yt — BeT @), (74)

Our domain is no longer a square (see Figure (5.1.1)), since z is a function
of both S and V. Therefore, by fixing V = V~, V = V7T in turn and letting
S vary in the interval (5=, S*) , we obtain a set of boundary values for z,
say, () and z(? for each case respectively. The boundary conditions (57)

that before applied to the extreme values of V, V= and V*, now become
ug(eM,y,7) = uy(2W,y,7) =0, vy~ <y <y* (75)

ux(w(z),y,T) = uy(x(2),y,r) =0, y~ <y<yt. (76)
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5 Numerical Schemes

As already mentioned, our aim is to solve the 2—d partial differential equation
(68) using the A.D.I method. We will also apply to the problem the Explicit
scheme and then compare the results.

In general, however, because of poor stability properties, explicit difference
methods are rarely used to solve initial boundary value problems in two or
more space dimensions. Implicit methods are used more, but they require a
set of equations to be solved at the advanced time level, which is not always
easy to accomplish directly. Accordingly, A.D.Iis introduced, which is a two
step method involving the solution of tridiagonal sets of equations along lines
parallel to the z- and y- axes at the first and second steps respectively. Such
a method was first proposed by Peaceman and Rachford in 1955 [15] who

used it in oil reservoir modelling.

5.1 Discretization of the problem

Having transformed the original 2 — d equation (51) into equation (68), we
now need to specify the region in which to solve the problem and thus define
our numerical grid.

As already specified, we cannot solve the problem for all 0 < S < 00, but

instead we consider a suitably large finite interval;
0S5 <S5<St
Also, the volatility V varies so that
0V <V <VH,
Recalling from the transformations (67), the extreme values for y are
(57 =)y~ <y <y*(=957). (77)

Now, z is a function of both variables S and V and most importantly, its
sign depends on the sign of the correlation p. To define the interval in which

z varies, consider the following values:
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e

St =9, S— =1
V+=0.100 V- =0.001

£=0.15 .
p=-05,05
Table 5.1.1

e If p = 0.5, then V™ < £p < V* and hence = takes up both negative

and positive values;

St(ép— V) <SP —VT) _ 4 (78)
EVI—p? T T p?

The region of the tranformed problem is shown in Figure (5.1.2).

=z <z

o If p = —0.5, then z is always negative and so
St(ép—V?) S~ (ép—V7)
— = <z<———""=3"<0 79
EvV1—p? £V1—p? (79)

In this case the region of interest changes its shape and is shown in

Figure (5.1.4).

The difficulty now arises in the discretization of the domains. For com-
putational ease, we divide up the domain so that the nodes lie exactly on the
boundaries AB, CD, AG, BJ (see Figures (5.1.2) and (5.1.4)). However, the
slopes of AB and CD and the ones of AG and BJ are not equal and so for
the first case (p > 0) we have unequal spacing along the x-axis and for the
second one (p < 0) both z and y are unequally divided.

We now show the way we discretized the two types of domains.

e p=20.5

Firstly, we divide the y-axis into, say, M equally spaced subintervals;
y; =360y, for y=0,...,M,

where by = (y* —y7)/M = (St - S7)/M.
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Figure 5.1.2: The domain of the transformed equation when p = 0.5

We then calculate the meshes 8z, and éz3 along the x-axis. As shown

in Figure (5.1.3) it holds that

§z1 = \/(AB/M)? — (6y)? (80)
6z = \/(CD/M)? — (6y)* (81)

The remaining interval corresponding to BD in Figure (5.1.2) is divided

into, say, NV equally spaced subintervals; i.e.

§z5 = BD/N. (82)
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\ N \
Y l
— bz, — b2, ——>]

Figure 5.1.3: Calculating the different meshes along the z-axis
p=-—0.5

Here, we start by dividing BC into, say, M subintervals;

Sy1 = BC/M (83)

= 621 = \/(AC/M)? — (6y,)? (84)

This discretization allows the edge CD of triangle BCD to be divided
into M subintervals of length éz5;

822 = \/(BD/M)? — (6ys)? (85)

In effect, we introduce a new spacing, 6y, along the edge DE of triangle
CDE;

8y = \/(CE/M)? — (62,)? (86)

Doing that, we then divide the edge EF of triangle DEF into M subin-
tervals of length éz3;

623 = \/(DF/M)? — (§y5)? (87)

Lastly, we automatically introduce another spacing , éys, in y;

8ys = \(EG/K)? — (z3)? (88)
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Clearly, K # M and it can be found compuationally by taking the
integer part when dividing FH by éz3.
Now, from triangle FHJ, éy; introduces another spacing in z, §z4 de-

fined by

824 = \/(FI/K)? — (6ys)?. (89)

6.’171

Sy u(zy,yt,7)
u(zo,y*,7)
bz
0 A\ D
oya dz3
SN

B ;
bys %
G H

_ U($3M+k,y_,7')
u(ToMpk, Y, T)

Figure 5.1.4: The domain of the transformed equation when p = —0.5
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The time interval [0,7] is discretized such that if R is the number of
timesteps, then

n=1ér, forl=0,...,R,
where 67 = T/R.

5.2 The Alternating Direction Implicit Method (A.D.I)

The idea behind the A.D.I. method is to apply implicit finite differences in
‘the one space dimension and explicit finite differences in the other and vice
versa, each at an intermediate time level k + % This implies having to solve
tridiagonal sets of equations at each time step.

Since we are dealing with unequal spacing in z direction if p > 0 and in
both z and y directions if p < 0, we approximate the derivatives as follows:
let h;, h;—1 be the two unequal spacings in z and g;, g;—1 the corresponding
spacings in y. The derivative term can be thought of as the weighted average

of the two gradients; i.e.

Uiyj+1
Ui—1,5 Uit1,j Uipj-1

hiq hi

Figure 5.2.1: Unequal mesh spacing along the z and y axes.

Ou(zs, y;) ~ hi <ui,j - ui—l,j) n hi_1 <Ui+1,j - Ui,j)
Oz hicy + hi hi—y hi1+ hi h;
_ hi i — Rluion + (R — AT ui (90)
hihici(hi + hig1)
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O*u(z;,y;) 1 : ,
a2 " fhia+ %hi(u”%'j - ui_%’j)
i—1Uig,; + Ritio1,; — (hict + hi)ug
hibiei(hi + hiz1) ] (91)

= o

Similarly, the approximations w.r.t. y are given by

Ou(ziy;) . 9; (u,-,,- = ui,j—l) gi—1 <“m'+1 = “m')
= +
Oy gi-1+g; gi-1 gi-1+ g; 9;
R _yuigyr — giuij1 + (97 — 97 1 )wi

= 92
9i9i-1(g; + gi+1) 6%
O*u(z;, y;) 1 / '
~ U. . — U, .
Oy? 395-1+ %gj( ity ™ Yii-p)
_ opfizttigtt T giti-1 = (gi-1 + 95 )i (93)

9igi-1(g; + gi-1)

In the case where g; = g;_1 (90) and (93) reduce down to the usual central
differences.
By treating the z direction implicitly at a half timestep, the difference

equations approximating (68) are

M = A; {2( hi‘lufrl%,j + hiufjl%j — (hiz1 + hi)uf;-%)
5 S hihi—1(hi + hiy)
+Aij{2(gj‘1uﬁj+1 +gjul;_y — (gi-1 + gj)uﬁj)}
’ 1 9191-1(191' + gi-1) 1
o Pt Ak + 0
' hihi—1(hi + hiy1)
+H, j{g?_luf’j_l_l - ngf{j_l + (gf - g?_l)ui?’j }
' 9i9i-1(g; + gi+1)
k+%

i (94)

—TU
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Rearranging equation(94), we get

(_ A; o7 n G jhiéT ) ki +( Ai.j&’-__ Gij(hi — hi—1)é7  réT k+1
hica(hi + hizy) * 2hio1(hi + hi_q) ot h ihi 2h;h; 4 +7> Ui
+<_ A,‘gj&" B Gi,jhi_l(ST > k+1
hi(hi + hi—y)  2hi(hi + hi—q) Uit
( Aij6T Hi;g;67 > k| _|_<1_Ai,j5T+Hi,j(§j —91—1)57'> K
9i-1(95 + 9i-1)  205-1(g; + gj-1)/ 7 9i9i-1 2991 b

A,‘ 0T Hi 'g'_167'
+( J 4 i 93 )uf o
9i(g; + g9i-1)  2g;(g; + gj—1)/ ! (95)

Once equations (95) are solved for each point (z;,v;), the solutions u*+3
are then used in the next set of equations to determine u over the whole

timestep k + 1;

BL_ bt

Yig —Yig A; { (hi lu'“:r‘ + hiu t“rlz,f (Ri1 + hiJu Hg)}
L2 . hihii(hi 4+ hi—1)

(gJ 1“u+1 + g;u k.a+11 (gi-1 + gj)u kH)}

FA;L {2
’ 9i9i-1(9; + gj-1)
k+1 k+
+G {h2 1u1+11 hzzuz 12_7 (h2 hzz 1) :
= h hz l(h +hz+1)
+H; {ga it — giuitl + (g} — gy )u kH}
" 9i9i-1(9; + g5+1)
—ruft! (96)

Rearranging equation (96), we get

( Hijgiér — Ayér )) k+11+<1+Ai,j5T_Hf..j(gj—gj—1)57+15_7’)uk+1

ults S,
295-1(95 + gi-1)  gi-1(g; +gj1)/ ™ gigi-1 29; 951 2 /)
+(_ H;gi16T - A; 6T )uk-l-_ll
29;(9; +9i-1)  9i(g; +951)/ T
- ( Ry on B G jhidT ) Ic+2 +( A6t Gii(h = hi_q )57’) k+15
" \hici(hi + hic1)  2hiq (R + hisy) it hihi_1 2hihi_y =
A; ;01 Gijhi—16T ) k4l
) ) 2 7
T <hi(hi +hic1)  2Rhi(hi + hioy) it (o7)
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5.3 The Explicit Scheme

An alternative way to solve equation (68) numerically is to apply an explicit
scheme. The value of u;; at the 'new’ time level is expressed as a linear
combination of u;,; and its neighbouring values u;_1 j, Uit1,j, wij—1 and u; j41

at the ’old’ time step. Hence, the difference equations are

. 2A”57 _ 2487 | Gig(hi = hina)87 | Hijbr(g; —g;-1) r&) b

i ( 1 1h 95951 hihi—l 95951 N
N ( 2A; ;6T G hioT > k
— Us .
hica(hi + hip1)  hica(hs + hiza)/
n ( 2/1 ,Jér G{.J'ht’_.]a'r )uk
hi(hi 4 hiz1) ha-(h,- + hipy)/ TN
n ( 2A; ,]57' Hi,]’gj&r )U?’j_l
9i-1(g; + gi-1)  gi-1(95 + gi—1)
2A; ;6 H;::q: 16
e ( il , .,.;9'_: 1, T )uﬁj.i.l' (98)
9;(g;5 + gj—1) JJ(Q‘; + gj-1)

5.4 Discretization along the boundaries

As we did for the 1 — d equation, we approximate the derivative condition on
the boundaries AB and CD (as shown in Figure (5.4.1)) by finite differences.

Jup  ug — uw

bz 262 =0 = ug =uw (99)
8uo Uus — uUn
oz 28y 0 = us=uy (100)
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Figure 5.4.1: Discretization of the nodes along AB and CD
Hence, we substitute the above expressions for the ’fictitious’ points uy
and uw into the difference equations that correspond to the nodes along the
boundary AB. We treat the difference equations for the nodes lying on CD

in the same way.

5.5 Stability

(i) Alternating Direction Implicit (A.D.IL.)
To examine the stability of this scheme, we shall apply Fourier analysis
and in order to do that we assume equal spacing in both z and y directions;

l.e. let h; = hi_1 = 6z and ¢g; = g;—1 = 6y. Then substituting

u:c’] = )\kez(iéﬁz:)bl ez(j&y)bZ, (101)

where z = +/—1, into the difference equations (95) we obtain

I 2; ; 8in? (££2) + ie; ; sin(Syby)

P 1+ 204,502 (PE2L) — if; ; sin(6xby) +

A (102)

The coefficients «; ;, 8;;, 7,; and € ; are such that

o A,',j(ST
Ying = (6z)?
Gi,j(ST

Pii = o8
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A,',j(ST

iy = T
T (8y)?
on = H; ;6T
W o5y

Substituting now (101) into the difference equations (97), we get

1 — 20 ;sin®(22L) + i3, ; sin(6xby)
’ . 1-67'] (103)

=
711 + 2, sin®(8%2) — j¢; ; sin(6yb,) +

Hence, substituting the expression (102) for /\%, we find that the amplification

factor satisfies

5 - [ 1 —20; sin2(6—”2bl) +16;; sin(ézby) ]

1+ r_gl + 20, Sinz(%@l) — 1f3; jsin(ézby)

x[ 1 — 27;, sin®(°42) + iey,; sin(6ybs) ] (104)

1+ ™+ 2, sin (éﬂ—bl) — i¢€; ; sin(dyby )l
By arguing in the same manner as we did for the stability of the Crank-
Nicolson scheme, consider the ratio
(1 — 20 ;sin®(%&1)) + iB; ; sin(Szb;)
(14 22 + 20 ;5in?(%22)) — 4, ; sin(6zby)’

2

(105)

Since A;; > 0, then «;; > 0 and hence

1)
) < (14 T 4 gasint (2,

—(1 — 2 ; sin®(
It follows that the ratio (105) is < 1, V4, 5.

Similarly, since v; ; > 0, it holds that

(1 — 2 ;5in ( %)) + te; ; sin(8yb,)
(14 2% "57 + 27, ; sin (5 vby 2)) — i€ ; sin(8ybs)

<1l

Hence, | A |<1 and thus the scheme is unconditionally stable.

The question of stability along the nodes where we have unequal spacings
still remains. The results in Section 5.6 show that in practice the scheme is
stable everywhere in the domain.

Considering the consistency of the scheme, it can be shown that the trun-
cation error pF*7 is of order O((67)* + (6z)2 + (6y)?) [14].
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(i1)Explicit scheme

In this case, we analyse stability by using Mazimum Principles. Consid-

k+1

ering the difference equations (98), u;T" is expressed as a linear combination

of its neighbouring values at the previous time level; i.e. uf;, uf ) ., ey o
uf'j_l, uf’jﬂ. Thus, assuming that the coefficients on the Lh.s of (98) are all

nonnegative and by using the triangle inequality, we have

luk+1 | < < 24 ;6T o 24;,;67 Gi.j(hi - hi—1)57' + Hi,j‘s”'(gj = gj—l) _ r6T> ‘ k |
hiihi  gijgi-1 hihi—1 gigi— g

—+

24; ;6T GijhiéT ) Lt |
hi—1(hi + hz+1) hi—1(hi + hiy1) =

(5
( 24ij67_, GizhiabT )I ™
(o
+ (o

-+

ht(h + h‘v{-l) hi(h“—l—h,‘.{_l) ui+1’j
24,567 Hi ;9567 ;
)) I 4a—1 |

9i-1(g5 + 95-1)  gi-1(g; + gj—1
24; ;67 Hi;jgj—léT

(g5 + gj-1) gj(gj'i-gj—l

“+

)> | ui'c,j+1 | (106)

By defining
Uk = max; ; qu l,

it follows that
UMt < (1 — ré7)U* < U*, since 767 < 1. (107)

So the Mazimum Principle shows that the numerical values are bounded
by the maximum and minimum values on the boundaries, provided that the

following hold:

2A: ;
hiy, by < S50 108
DTS G (108)
24; ;
G0, G & —Hi,jj (109)
61 < ! Vi, j (110)
T > 94 ;=G (it 24 —Hi;(g5—-0;-1) v Vb
hihi_1 U sis = 9:-‘;1 = I

However, conditions (108)-(110) are only sufficient but not necessary to

achieve stability.

45



Also, the truncation error is now first order accurate in time (and second
order accurate in z and y). So, convergence is best achieved with the A.D.I.

method.

5.6 Results

To approximate European call options when both the stock price and the
volatility follow the stochastic processes (47) and (48) we use the parameters
in Table (5.1.1). Also, we choose the coefficients a and b that define the drift
rate 17 (58) to be

a=0.003, b=-0.3.

Hence, the volatility reverts to the level —a/b = 0.01.

If ¢(S, V, ) is the call price satisfying the 2—d partial differential equation
(59) and C(S,7) is the corresponding analytic solution of the 1 — d Black-
Scholes equation (10), then we compare ¢(S,V,7) with C(S,7) at the points
S = Spand V = V. For the results obtained in this section, we use V5 = 0.01.

From the transformations defined in (67), it follows that

o = So(p — Vo)
0 6/——1_)02 ’

However, z is not a linear function of V' and hence for a tixed V = V; and

Yo = So.

S = So, o may not be equal to any of the discretized values z;. To overcome

this we argue as follows; if z; < zo < z;4,, then

Ti41 — To To — &4

(20,90, 7) & —————c(xi, Yo, T) +

C(xi+la Yo, T)
Tip1 — X Tiy1 — T4

i.e. we take a weighted average of the neighbouring call values c(z;,yo,7)
and ¢(2i41, Yo, 7).

As shown in Tables (5.6.1)-(5.6.8), when p < 0, Black-Scholes model tends
to overestimate the price of out-of-the money options and underestimate the
in-the-money options. This is because, when the stock price increases, volatil-
ity tends to decrease, making it less likely that really high stock prices will be

achieved. On the other hand, when the stock price decreases, volatility tends
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to increase and so it is more likely that really low prices will be obtained.
When p > 0, the reverse happens; i.e. the Black-Scholes price is too high
for in-the-money options and too low for out-of-the money options. These
remarks agree with the ones made in [8] and [11].

From the results inluded in Tables (5.6.1)-(5.6.8) it is clear that the 4.D.I.
method is unconditionally stable whilst the Ezplicit scheme is only stable for
sufficiently small timesteps.

For the case when p < 0, consider the maximum value of A;; which,
from the expression in (69), occurs when max;{y;} = 9 for which min;{z;} =
—1.7321. Thus, max;;{Ai;} = 4.05. If we let g; = g;—1 = éy = 0.1 and
hi = hi_y = min{éx} = ézy = 0.019, then via condition (110) we get that

6T = 0.000043.

Hence, from the results in Tables (5.6.1) and (5.6.2) it follows that the Explicit
scheme is unstable for 67 = 0.00125, 0.000080 (the results obtained for any
So are equal to Nan) , whilst for 67 = 0.000038 it becomes stable.

By reducing the mesh size in the y direction and keeping the ratio §7/(8y)?
fixed, as we did in Tables (5.6.3) and (5.6.4), again the Ezplicit scheme is
unstable if not small enough step sizes are taken.

Similar arguments apply to the case when p < 0. We again observe
the instability of the Ezplicit scheme over large timesteps whereas the 4.D.I
method preserves stability throughout.

To obtain the results included in this section, we wrote the programs
dim2, dim2e, dim2b, dim2eb written in Fortran 90 and for the Black-Scholes

exact solution we used Mathematica.
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p So BS ADI EXPL
by =0.100 (M =80) |0.5 4.7 0.0000 0.0312 -
dzq = 0.019 4.8 0.0000 0.0553 -
bz = 0.025 (N = 30) 4.9 0.0092 0.0929 -
bz3 = 0.056 5.0 0.0990 0.1477 -
5.5 0.5990 0.5986 -
67 = 0.00125 6.0 1.0990 1.0985 -
(50 timesteps) 6.5 1.5990 1.5985 -
7.0 2.0990 2.0987 -
6y =0.100 (M =80) |05 47  0.0000 00312 -
6z, = 0.019 4.8 0.0000 0.0553
dz2 = 0.025 (N = 30) 4.9 0.0092 0.0929 -
dxs = 0.056 5.0 0.0990 0.1477
5.5 0.5990 0.5986 .
o1 = 0.00008 6.0 1.0990 1.0983 -
(2800 timesteps) 6.5 1.5990 1.5985 =
7.0 2.0990 2.0986 -
Table 5.6.1
p So BS ADI EXPL
by =0.100 (M =80) |05 4.7 0.0000 0.0312 0.0312
dzy = 0.019 4.8 0.0000 0.0553 0.0553
bz = 0.025 (N = 30) 4.9 0.0092 0.0929 0.0929
dz3 = 0.056 5.0 0.0990 0.1476 0.1476
5.5 0.5990 0.5984 0.5985
6.0 1.0990 1.0981 1.0982
6.5 1.5990 1.5985 1.5983
7.0 2.0990 2.0982 2.0983

Table 5.6.2: 67 = 0.000038 (6500 timesteps)
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p So BS ADI EXPL
dy =0.050 (M =160) | 0.5 4.7 4x1071%  0.0315
ézy = 0.009 4.8 8x1078 0.0562 -
6z = 0.012 (N = 60) 4.9 0.0092 0.0947 -
dz3 = 0.028 5.0 0.0990 0.1500 -
5.5 0.5990 0.5999
6T = 0.00125 6.0 1.0990 1.0997
(200 timesteps) 6.5 1.5990 1.5998
7.0 2.0990 2.1000 -
Sy =0.050 (M =160) | 0.5 47  4x10-®  0.0326
dz1 = 0.009 4.8 8x1078 0.0573 -
bz2 =0.012 (N = 60) 4.9 0.0092 0.0948 -
dzs = 0.028 5.0 0.0990 0.1500 =
5.5 0.5990 0.5985 .
ot = 0.00002 6.0 1.0990 1.0982 -
(11200 timesteps) 6.5 1.5990 1.5983
7.0 2.0990 2.0984
Table 5.6.3
p So BS ADI EXPL
dy = 0.050 (M =160) | 0.5 4.7 4x107'%  0.0319 0.0327
dz1 = 0.009 4.8 8x1078 0.0568 0.0567
6z2 = 0.012 (N = 60) 4.9 0.0092 0.0940 0.0946
dzz = 0.028 5.0 0.0990 0.1490 0.1492
5.5 0.5990 0.5983 0.5987
6.0 1.0990 1.0982 1.0983
6.5 1.5990 1.5980 1.5982
7.0 2.0990 2.0979 2.0982

Table 5.6.4: §7 = 0.000009 (26000 timesteps)
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So BS ADI EXPL
6y = 0.072 (M =70) |-0.5 2.01 2.5x1071¢  3.0x107%2
dy2 = 0.031 3.02 1.6x107¢ 1.1x107%®
éys = 0.018 4.05 7.5x10717  1.4x107% -
6z, = 0.097 4.99 0.0890 0.1536 -
bzy = 0.042 5.50 0.5990 0.6077 -
dz3 = 0.018 6.01 1.1090 1.1135 -
bzq = 0.011 6.52 1.6190 1.6215
6t = 0.00125 7.03 2.1290 2.1308 -
(200 timesteps)
§y1 = 0.072 (M =170) |-0.5 2.01 2.5x1071¢  2.4x107%?
dy2 = 0.031 3.02 1.6x1071¢  1.1x1071°
dys = 0.018 4.05 7.5x10717  1.2x10-¢
éx1 = 0.097 4.99 0.0890 0.1536
dxo = 0.042 3.50 0.5990 0.6077 -
dx3 = 0.018 6.01 1.1090 1.1130 -
dzq = 0.011 6.52 1.6190 1.6216 -
67 = 0.00010 7.03 2.1290 2.1308 -
(1500 timesteps)

Table 5.6.5

So BS ADI EXPL
by, =0.072 (M =170) | -0.5 2.01 2.5x1071%  2.0x107*2 8.8x107%?
0y, = 0.0315 3.02 1.6x1071¢  4.3x107%0 4.2x1072°
dys = 0.018 4.05 7.5x10717  6.7x1077  7.0x1077
dx, = 0.097 4.99 0.0890 0.1519 0.1518
bz, = 0.042 5.50 0.5990 0.6080 0.6074
8z3 = 0.018 6.01 1.1090 1.1132 1.1131
dzq = 0.011 6.52 1.6190 1.6243 1.6222

7.03 2.1290 2.1343 2.1318

Table 5.6.6: 67 = 0.00001 (25000 timesteps)
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> S BS ADI EXPL
by, = 0.036 (M = 140) -0.5 201 2.5x1071%  9.8x107%
oy, = 0.015 3.02 1.6x1071% 8.8x10~2%
dys = 0.009 4.05 7.5x1071  6.0x107
dzy = 0.048 4.99 0.0890 0.1552 -
dzq = 0.021 5.50 0.5990 0.6084
dz3 = 0.009 6.01 1.1090 1.1138 -
dxq = 0.005 6.52 1.6190 1.6226
67 = 0.00031 7.03 2.1290 2.1317 -
(800 timesteps)
dy; = 0.036 (M = 140) -0.5 2.01 2.5x1071%  5.8x10~*
dy2 = 0.015 3.02 1.6x1071¢ 8.8x1072
dys = 0.009 4.05 7.5x10717  6.2x1077 -
dx; = 0.048 4.99 0.0890 0.1552 -
bz =0.021 5.50 0.5990 0.6084 -
dz3 = 0.009 6.01 1.1090 1.1135 -
bz4 = 0.005 6.52 1.6190 1.6221 -
o7 = 0.00004 7.03 2.1290 2.1312 -
(6000 timesteps)

Table 5.6.7

p So BS ADI EXPL
dy1 = 0.036 (M = 140) -0.5  2.01 2.5x1071¢  1.1x107%° 2.3x107%
dy2 = 0.015 3.02 1.6x107¢  2.1x10722 7.1x107%2
oys = 0.009 4.05 7.5x1071"  59x107®  6.0x107®
dzq1 = 0.048 4.99 0.0890 0.1533 0.1531
bzo = 0.021 5.50 0.5990 0.6087 0.6079
dz3 = 0.009 6.01 1.1090 1.1139 1.11233
ozq = 0.005 6.52 1.6190 1.6249 1.6240

7.03 2.1290 2.1350 2.1341

Table 5.6.8: 67 = 0.00004 (100000 timesteps)
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6 Conclusions

When we implemented the generalised #-methods for the 1 — d Black-Scholes
equation, we found that the ezplicit schemes are unstable if §7/(§5)? does not
satisty the Fourier stability condition. All other schemes are unconditionally
stable. They also produce similar results with the exception that the Crank-
Nicolson scheme converges faster to the analytic solution.

Different transformations can be made to the Black-Scholes equation to
turn it into one with constant coefficients. In [5], the transformation Z = InS
is introduced so that (1) becomes

of o 0f o? 0*f

ot Sezt Tam Y

The generalised #-methods mentioned in this project (apart from the Explicit
schemes) were applied to the transformed equation along with the Semi-
Lagrangian scheme. The Kenneth-Vetzal scheme gave more accurate results
than any other method, whilst the Semi-Lagrangian scheme started to diverge
for relatively small timesteps.

Moreover, in [17], the Black-Scholes equation is transformed into the

diffusion equation;

or — 0z’
where t =T — 7/30%, x = logS/(k + 1)} and k = r/ics%
In this paper the Fully Implicit, Crank-Nicolson and Ezplicit I schemes for

e 01

European put options were tested. In agreement with the results obtained
here, the Crank-Nicolson scheme was found to be more accurate than the
Fully Implicit scheme. Also, the Ezplicit 1 scheme was unstable when big
timesteps were taken.

To approximate the extension of the Black-Scholes model, we applied
the A.D.I method and the Faplicit scheme. We compared the Black-Scholes
price for call options with the one obtained when the volatility is stochastic.
In result, we found that the correlation p has a great impact on the out-

of-the-money and in-the-money options. When p < 0, the Black-Scholes
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overprices the out-of-the-money options and underprices the in-the-money
options. When p > 0, the reverse holds.

The A.D.I scheme is shown to be unconditionally stable, whilst the Ez-
plicit one becomes unstable if relatively large timesteps are taken.

In this project, due to time restrictions, we considered the cases where the
correlation is either negative or positive. Thus, further study can be made
on zero correlation. Also, numerical approximations can be derived when the
2 — d partial differential equation (68) is used to price European put options
and -‘American options.

Lastly, different numerical methods can be tested on the extension of the

Black-Scholes model without transforming it and thus keeping the mixed

derivative 9/0V05S.
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