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Abstract

For linear multivariable time-invariant continuous or discrete-time singu-
lar systems it is customary to use a proportional feedback control in order
to achieve a desired closed loop behaviour. Derivative feedback is rarely
considered. In this paper we examine how derivative feedback in descriptor
systems can be used to alter the structure of the system pencil under vari-
ous controllability conditions. It is shown that derivative and proportional
feedback controls can be constructed such that the closed loop system has
a given form and is also regular and has index at most 1. This property en-
sures the solvability of the resulting system of dynamic-algebraic equations.
The construction procedures used to establish the theory are based only
on orthogonal matrix decompositions and can therefore be implemented in
a numerically stable way. The problem of pole placement with derivative
feedback alone and in combination with proportional state feedback is also
investigated. A computational algorithm for improving the ‘conditioning’ of
the regularized closed loop system is derived.




1 Introduction

We consider linear time-invariant continuous or discrete-time dynamical sys-
tems of the form

Et:= Edz/dt = Az(t)+ Bu(t), z(to) = zo (1)
y(t) = Cz(t), (2)
or
Ezyy, = Azy+ Buy, Zo given (3)
Ve = C-’Ek, (4)

where E,A € R™, B € R™™ (C € RP" and rank B = m < n, rankC =
p < n. Here z(t) or zx € R" is the state, y(t) or yx € RP is the output,
and u(t) or ux € R™ is the input or control of the system. Such systems are
called descriptor or generalized state-space systems. In the case E = [, the
identity matrix, we refer to (1)-(2) and (3)-(4) as standard systems.
Descriptor systems arise naturally in a variety of circumstances (19, 13]
and have recently been investigated in a number of papers (18, 4, 5, 6, 7,
10, 12, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26]. The response of a descriptor
system can be described in terms of the eigenstructure of the matrix pencil

af - BA. (55

In order to alter the behaviour of the system, it is customary to use pro-
portional state or output feedback to modify the matrix A. The closed loop
system pencil then becomes

aF - 3(A + BFC), (6)

where the control is taken to be u = Fy+voru; = Fyp+vg. In the theory of
matrix pencils, the roles of E and A are interchangeable, but the analogous
use of derivative state or output feedback in multivariable systems has not
been investigated much in the literature. Derivative feedback modifies the
matrix E, and the closed loop system pencil then becomes

o(E + BGC) - BA, (7)

where the control is taken to be u = -Gy +vor ux = —GYk41 + vk .




Derivative information has long been used in the practical design of PD
controllers. Recently it has been applied in the construction of a discrete-
time observer using both current and past output data in the current state
estimation [18]. This leads to a system for the error with a matrix pencil of
the form

a(E +GC) - B(A+ FC). (8)

Even for non-singular E the use of the output derivative information is
valuable, and it is shown in [18] that choosing G such that the condition
number of E + GC is small gives improved state estimates.

Theoretical aspects of derivative feedback for descriptor systems are
studied in a few recent papers (4, 16, 21, 26]. A control of the restricted
form u = F(az — £) + v is discussed in [4, 21, 26]. In [16] a full state feed-
back of the form u = —Gz + Fz + v is studied for the the pole placement
problem. In these papers the main task of the derivative feedback is to
transform E into a nonsingular matrix E + BG. Complete controllability
and regularity of the system pencil (5) is assumed.

In this paper we investigate both derivative and proportional state feed-
back and examine the properties that can be achieved with these types of
feedback under various controllability conditions. Applications to pole place-
ment are also considered. Detailed proofs of results previously presented in
(2] are given and new results on strongly controllable systems are derived.

The principal aim of this paper is to provide numerically stable methods .
for constructing the feedback controllers based on orthogonal matrix decom-
positions [9]. Parts of the mathematical theory developed here have been
derived concurrently by Dai [6]. Additional assumptions are required in [6],
however, and the techniques used for constucting the feedback matrices in
[6] are not suitable for numerical computation. It is assumed in [6] that the
matrix pencil (5) associated with the system (1)- (2) or (3)-(4) is regular.
This assumption is not required to establish the results presented here. Fur-
thermore, in [6] it is necessary to transform the system into separate ‘fast’
and ‘slow’ subsystems in order to obtain the feedback controls. This trans-
formation is well-known to be computationally unreliable {22]. The proofs
given here do not require this transformation; and it is shown specifically
how to select a feedback in a numerically stable way so as to ensure that
the closed loop system is regular and that the controllability (observability)
properties of the system are preserved.

In the next section of the paper we introduce notation and examine how
the response of the system depends on the eigenstructure of the associated



matrix pencil. Definitions of complete and strong controllability are given
and the significance of these conditions is discussed.

In Section 3 we summarize the system properties that can be achieved by
derivative and proportional state feedback under the different controllability
conditions. It is shown that a system which is completely controllable can
be transformed into a standard system by derivative feedback. It is shown,
furthermore, that a system which is strongly controllable can be transformed
into a regular system of index at most 1 (that is, a system in which impulses
are excluded) by either proportional or derivative state feedback. Derivative
feedback can be used, however, to increase the explicit degrees of freedom
defining the solution space (reachable subspace) of the system. The construc-
tion of the required feedback matrices is obtained by reducing the system
pencil to an equivalent ‘canonical’ form using orthogonal transformations
which are numerically stable [9]. Most but not all of the conclusions of this
section can also be achieved by output derivative and proportional feedback.
Preliminary results are presented in [1, 2].

In Section 4 applications to the pole placement problem are discussed.
The extent to which the poles can be assigned by derivative and/or pro-
portional state feedback whilst retaining regularity is examined under the
different controllability conditions.

In the final section we discuss a numerical technique for regularizing
the dynamical part of a descriptor system by a derivative feedback which
optimizes the conditioning of E + BG. The results of the paper are then
summarized, and concluding remarks are given.

2 Definitions and Properties

The system equations (1) and (3) are said to be solvable if and only if the
system pencil (5) is regular, that is

det(aE - BA) £ 0 VY(a,B) € C*\{0,0}. (9)

For solvable systems there exist unique solutions for any sufficiently
smooth input and any admissible initial conditions corresponding to an ad-
missible input [3, 25]. The behaviour of the system response is then governed
by the eigenstructure of the system pencil. In the next section we examine
the eigenstructure of generalized state-space systems and in the following
section we define conditions which ensure the controllability (observability)
of the system.




2.1 Eigenstructure of Descriptor Systems

For a regular pencil generalized eigenvalues are defined to be pairs (a;, §;) €
C? such that

det(a; E - B;A)=0, j=12,..n. (10)

Observe that pairs (a;, ;) and (taj,t8;), t € C\{0} are identified. Eigen-
value pairs (aj, 3;) where §; # 0 are said to be finite and, without loss of
generality, can be taken to have the ‘value’ A\; = «;/3;. Pairs where §; = 0
are said to be infinite eigenvalues. The maximum number of finite eigenval-
ues which a pencil can have is less than or equal to the rank of E. (For a
pencil which is not regular, the generalized eigenvalues are similarly defined
as pairs (a;, 4;) such that the pencil loses rank.)

For regular pencils the solution of the system equations can be character-
ized in terms of the Kronecker canonical form (KCF) [8]. In this case there
exist non-singular matrices X and Y (representing the right and left gener-

alized eigenvectors and principal vectors of the system pencil, respectively)
which transform E and A into the KCF :

T _|Io T _[Jo
YEX_[ON], YAX_[OI . (11)
Here J is a Jordan matrix corresponding to the finite eigenvalues of the
pencil and N is a nilpotent Jordan matrix such that N™ =0, N™-1 £,
corresponding to the infinite eigenvalues. The indez of the system, denoted
by indeo(E, A) is defined to be equal to the degree m of nilpotency. (For
pencils which are not regular, the KCF can also be defined and the index is
then given similarly by the dimension of the largest nilpotent block in the
KCF. See (1, 8].)

We observe that a descriptor system is regular and of index 0 if and
only if E is non-singular. In this case the system can be reformulated as a
standard system and the usual theory applies. In practice the reduction to
standard form can be numerically unstable, however, if E is ill-conditioned
with respect to inversion. Hence, even for index 0 systems, it may be prefer-
able to work directly with the generalized state-space form.

We observe also that a descriptor system is regular and has index at
most 1 if and only if it has exactly ¢ = rank E finite eigenvalues. Conditions
for the system to be regular and of index less than or equal 1 are given in the
following lemma [10]. (Here and in the following we denote the nullspace of
a matrix M by N(M)).



Lemma l Let E, A € R™. Let S and Too be full rank matrices whose
columns span the null spaces N(E) and N(ET), respectively. Then the
following are equivalent:

(i) aE — BA is regular, indo(E,A) < 1

(ii) rank[E, ASeo) = n

(iit) rank [TOIZA =n.

0

For systems which are regular and of index at most 1, there exists a
unique solution for all admissible controls with consistent initial conditions.
Such systems separate into purely dynamical and purely algebraic parts,
and in theory the algebraic part can be eliminated to give a reduced order
standard system. The reduction process, however, may not be numerically
stable [15].

For higher index systems, if the control is not sufficiently smooth, im-
pulses can arise in the response of the system and the system can lose causal-
ity (23, 1]. It is desirable, therefore, to use a feedback control which ensures
that the closed loop system is regular and of index less than or equal to 1,
if possible. In the next sections we show that this can be achieved under
certain ‘controllability’ (‘observability’) conditions.

2.2 Controllability and Observablilty of Descriptor Systems

The definitions of controllablility and observability for standard control sys-
tems can be extended to descriptor systems. Various types of controllablil-
ity /observability can be identified, however [25]. Here we investigate the
properties of the generalized state-space system (1)-(2) and (3)-(4) under
the following conditions:

CO : rank[aE — A, B] = n, Y(e,f) € C?\{(0,0)};
C1:rank[AE — A, B} = n, VA € C; (12)
C2 : rank[E, ASw, B] = n, where the columns of S., span N (E).

For systems which are regular, these conditions characterize the controlla-
bility of the system. We have the following definition:

Definition 2 Let aE — 3A be a regular pencil. Then, the triple (E, A, B)
and the corresponding descriptor system are said to be completely control-
lable (C-controllable) if and only if Condition CO holds.




We remark that a descriptor system satisfies Condition Co, i.e. is com-
pletely controllable, only if

rank[E, B] = n. (13)

Complete controllability ensures that for any given initial and final states
To,Zs € R™ of the system, there exists an admissible “ontrol which transfers
the system from zo to z; in finite time [25]. Hence, descriptor systems which
are completely controllable can be expected to have similar properties to
standard systems.

A weaker definition of controllability is given by the following.

Definition 3 Let aE — A be a regular pencil. Then, the triple (E, A, B)
and the corresponding descriptor system are said to be strongly controllable
(S-controllable) if and only if Conditions C1 and C2 hold.

We remark that C-controllability implies S-controllability. Clearly Con-
dition C1 follows from Condition CO for § # 0 and \ = a/p. Condition C2
follows from (13), but is weaker. In the literature, regular systems which
satisfy Condition C2 are often described as ‘controllable at infinity’ or ‘im-
pulse controllable’ [5, 10, 23]. For these systems ‘impulsive modes’ can be
excluded. A descriptor system which has a regular pencil of index less than
or equal to 1 is always controllable at infinity, since by Lemma 1 we have
rank(E, ASx) = n.

The controllability conditions are preserved under certain transforma-
tions of the system. Specifically, Conditions CO, C1, C2, are all preserved
under non-singular ‘equivalence’ transformations of the pencil and under
proportional state and output feedback. With the exception of condition
C2, these same conditions are also preserved under derivative state feed-
back. The following Lemma summarizes these results.

Lemma 4 Let (E, A, B) satisfy the condition CO or C1 or C2. Then

for any non-singular P and Q € R™" and for any F € R™™, the system
(E, A, B), where

E=PEQ, A=PAQ, B=PB (14)

or
E=E, A=A+BF, B=8B (15)

also satisfies these conditions.



Furthermore, for any matriz G € R™™, the system (E, A, B), where
E =E + BGC, A=A, B=B (16)
also satisfies these conditions with the exception of C2.

Proof. In case (14), for all (a, 8) € C2\{(0,0)} we have

rank([aE — SA, B]) = rank(P[aE — A, B) [ . ] )

0 I (17)
= rank([aE - B4, B])

and

Q@ 00
rank([E, ASeo, B]) = rank(P[E, AQQ~'S,B] | 0 I 0 |) 18
0 0 I (18)

= rank([E, ASw, B)),
where Soo = Q~15,, spans N(E). Therefore, Conditions Co, C1, C2 are

preserved under the transformation (14).
In case (15) we have

rank([aE — fA, B]) = rank([aE — A, B] [ _é ritld ]) (19)
= rank([aE - B4, B))
and
I 0 0
rank([E, ASco, B]) = rank([E, A4S, B] [ 0 I 0 |) (20)
O 255 ol

= ra.nk([E, Agooa B])’

where S, = So, since E = E. Therefore the Conditions C0, C1, C2 are
all retained.

In case (16) the proof that Conditions CO and C1 are preserved is shown
analogously to case (15). The condtion C2 is not necessarily preserved,
however, since in the case (16), the nullsapce S, is altered by the feedback
and So # Soo. O

An example is given in [1] demonstrating that Condition C2 is not nec-
essarily preserved under derivative feedback. If derivative feedback is used




to change the system dynamics, it is therefore necessary to be careful not
to lose controllability at infinity. In the next subsection we investigate the
use of derivative feedback to make the system regular and of index at most
1. Thus, the resulting system is always controllable at infinity. Regularity
of the original system is not needed to achieve this result.

Observability conditions for the time-invariant systems (1)-(2) and (3)-
(4) can be defined as the dual of the controllability conditions. Specifically
a system represented by the triple (E, 4, C) is said to satisfy conditions 0o,
01, 02 if and only if the dual system, represented by the triple (ET, AT, CcT)
satisfies the conditions C0, C1, C2, respectively. A regular system is defined
to be completely observable (C-observable) if and only if Condition OO is
satisfied and strongly observable (S—observable) if and only if Conditions O1
and O2 hold.

In the following sections we derive numerically stable techniques for con-
structing feedback controllers to achieve particular ob jectives. By duality
these techniques can also be used in the construction of state estimators and
observer based controllers.

3 Derivative and Proportional Feedback for De-
scriptor Systems

In this section we discuss conditions under which we can alter the structure
of the system pencil (5) by the use of derivative and/or proportional state
feedback. We show that if the triple (E, A, B) satisfies Condition Co, i.e.,
is C-controllable, then the system (1) or (3) can be transformed into a
completely controllable standard system by derivative feedback [1]. We show
also that if a system satisfies Conditions C1 and C2, then a closed loop
system which is strongly controllable, regular and of indez at most 1 can be
obtained by derivative or proportional feedback. With derivative feedback,
however, the explicit degrees of freedom describing the reachable subspace
of the system (corresponding to the number of finite poles of the closed loop
system) can be increased to a maximum equal to rank([E, B]). Previously
it has been shown that proportional state feedback can be used to obtain a
regular closed loop system of index at most 1 and simultaneously to place
¢ = rank(E) poles, [10]. Here we describe a simpler numerical procedure for
constructing a regular closed loop system of index at most 1 by proportional
state feedback. This procedure does not guarantee that the closed loop
poles take specified values. In Section 4 techniques for pole placement are




discussed.

In the first part of this section we give basic theorems which form the core
of the numerical construction techniques. Subsequently the C-controllable
and S—controllable cases are each examined, and finally the combined use
of both derivative and proportional feedback is discussed. Throughout the
development we make extensive use of the singular value decomposition
(SVD) of a matrix M € R™", e.g. [9]. In the ususal notation the SVD is
given by

0 0

where U and V' are m X m and n X n orthogonal matrices, respectively and
¥ is a rank(M) x rank(M) diagonal matrix with positive diagonal entries.
Here we also refer to the orthogonal reduction of M to diagonal form

M=U[2 O]VT, (21)

T 0
UTMV = [ = 0] (22)

as an SVD of M, because we always need it in this form.

3.1 Preliminary Theory

The first Lemma serves as a basic tool and provides a ‘canonical’ form for
the system (1) or (3) which can be obtained in a numerically stable way.

Lemma § Let E € R™, B € R™" and rank(B) = m < n. There ezist
orthogonal matrices Q,U and V such that

) 00 0
QEU = Eg] Egg 0 and QBV = EB ’ (23)
0 00 0

where ¥y and ¥ g are ¢ X £ and m X m diagonal matrices, respectively, with
positive diagonal entries and E,3 is an m X 8 matriz with full column rank.
The partitioning in QEU and QBV is conformable.

Proof. Let .
PBV = [ 2‘3 (24)

be an SVD of B. Let -
P= [I: foom | B (25)




Then we obtain

-1 0 _| B
PBV—[EB],PE—[E2], (26)
with a compatible partitioning. Let
_1Z 0
WE Z, = [ 0 0 ] (27)

be an SVD of Ey, where X is an £ x £ diagonal matrix with positive diagonal
entries. Then

21 0
[“3 IO]PEZ1= 0 o], (28)
i Ey Ey

where [Ey;, E35] is a compatible partitioning of £27;. Let Z; be an orthog-
onal matrix which does a ‘column compression’

Ey22) = [Eg,0) (29)

on Ey, such that Eyg has full column rank. ‘The matrix Z, could for example
be derived from an RQ-decomposition of Ey, ( e.g. [9])

Ey = [R,0)1Z7. (30)

Then from (26), (28) and (29) we get the desired transformation as

L 0 o0 5, 0 0
0o 0 I, [%IIO]PEZI[{)‘ZO]= Ey Es 0
0 Inem—e O . 2 0 0 0
(31)
and
I, 0 0 0
o 0 I, [V([)’ IO ]PBV: S5 |. (32)
0 In-m—t 0 . 0
0

In the next theorem we establish conditions which guarantee that there
exist matrices F" and G such that the matrix pencil a( E+ BG)-3(A+ BF)
is regular and of index at most 1 and such that rank(E + BG) = r, where
r can be chosen to be any integer satisfying ¢ — m < r < ¢ = rank([E, B)).

10



Theorem 6 Let E,A € R*", B € R™™ with rank(B) = m < n, and let S,
be a full rank matriz whose columns span N(E). If rank([E, ASe, B]) = n
and r € N such that 0 < £ = ¢ — m < r < q = rank([E, B)), then there ezist
matrices F, G € R™" such that the matriz pencil a(E + BG) — 3(A + BF)
is regular, indoo(E + BG,A+ BF) <1 and rank(E + BG) = r.

Proof. By Lemma 5 there exist orthogonal matrices Q,U and V such
that (23) holds and we may choose

0
S =U 0 : (33)
In—l—s

Partitioning QAU compatibly with QEU we have

An fiu 413
QAU = | Anr A A (34)
A3z Az Az
and then
%13
n = rank([E, ASe, B]) = rank([QEU, | A3 |,QBV)) (35)
Ass

implies that A3z must have full row rank, that is, rank(As3) = n — £ - m.
Without loss of generality we may assume that the last n—m—¢ columns
of Aa3 are linearly independent. If this is not the case, we can achieve
this property by a ’column compression’ of As3 to the right using an RQ-
decomposition of Az or with an SVD.
From (23) we see that rank(E) = £ + s and ¢ = rank([E, B]) = £ + m.
Let

G=[6G1, G Gs ] (36)
and choose G; = —25‘ E; and G5, G3 such that
[ E22 + X5Gz, ZpGa ] = [ &y 0 ] ; - (37)

where £; is an m X (r—£) matrix of full column rank. Forinstanceif r > ¢+s,
we may select G, = 0 and

Gs = [ T5 B [ I'-‘*a ] , 0 ] ; (38)

11




where E,, forms a basis for the orthogonal complement of Egj; if r < £+ s,
then we may choose G3 = 0 and

Gy = [ 0, —T5'Exn [ I¢+0 ] ]? (39)

and if r = £ + s = rank(F) then we may choose G3,G2 = 0. (The matrix
Eq9 can be obtained in practice from the RQ-decomposition (30) used in the
reduction of Lemma 5.) Then QEU + Q BV G has rank equal to r precisely
and its nullspace is spanned by
0
0] "

Now let Z be an orthogonal matrix which gives a column compression
of the last n — r columns of [ Asp, Aas ] to the right; that is, such that

[ s, A%][Ino_r]2=[o, s | (41)

where A4 is a nonsingular (n — £ — m) X (n — £ — m) matrix. This is
achievable by our assumption that the last n — £ — m columns of A;; are
linearly independent. Then with

I, 0
o[ 2] 5
we obtain
. ¥ 0 00
(QEUZ+QBVG)=| 0 & 0 0 (43)
0 0 00
and
Al Az Az Ay
QAUZ = | Ann Ay Ay Ayg |. (44)
Azr Az 0 Az
Now let

F= [ Fl, Fg, F3, F4 ] y (45)

partitioned conformably with QAU Z and choose F3 such that the m x m
matrix [ &y, Apz+ IpgF; ] is of full rank. For instance, if r < £ + m, we

12



may select F3 = Egl(f:'g — Aa3), where &; spans the orthogonal complement

of &. (If G is as previously suggested, &, is easily constructed from E; and
Es2).

If r = { + m = rank([E, B]), then we may select F = 0. Finally with
G = VGZTUT, F = VFZTUT, we find that the nullspace of E + BG =
E + BVGZTUT is spanned by

] 0
smvz 2| ”

and it follows that
rank([E + BG, (A + BF)S))

=rank(| QEUZ + QBVG, (QAUZ+QBVF‘)[ " ] ])
(47)

In-+
£, 0 Aia Ay
=rank(| 0 & Axp+IpF3s A+ XpFy |)=n.
| 0 O 0o - Azy

By Lemma 1, the pencil a(E + BG) — B(A + BF) is therefore regular and
has index less than or equal 1. O
An immediate consequence of Theorem 6 is the following:

Corollary 7 Let E, A € R™*, B € R™™ with rank(B) = m < n, and let S,
be a full rank matriz whose columns span N(E). If rank([E, ASw, B]) = n,*
then the following hold:

(i) There ezists a matriz G € R™" such that the matriz pencil a(E +
BG)—- (A is regular, has indez at most 1 and rank(E + BG) = rank([E, B]);

(ii) There ezists a matriz F' € R™" such that the matriz pencil oE —
B(A + BF) is regular and has indez at most 1.

Proof. The first result follows directly from the construction of F' and
G in Theorem 6 in the case r = rank([E,B]). The second result, where
r = rank(FE), also follows as in Theorem 6, with the exception that G = 0
is selected and F3 is constructed such that the » X » matrix

5 0 Ajs

48
En Ex2 A +ZIpFs (48)
is of full rank. The feedback F3 could, for instance, be taken as

F3 = 35" (Ey — A2s + EnT7 Ara), (49)

13




where E5, gives a basis for the orthogonal complement of E;;. O

We remark that the decomposition (43) of Theorem 6 reveals the extent
to which the structure of £+ BG can be controlled by a derivative feedback
G. In a later section we discuss techniques for selecting G to give a ‘well-
conditioned’ regularization of the descriptor system. Lemma 5, Theorem 6
and Corollary 7 provide the key steps in the proofs of the following theorems.
We note that these results can also be achieved using the generalized singular
value decomposition (see [9]), but the full reduction to this decomposition
is not needed here, and it is preferable to use the decomposition (23), which
requires only orthogonal transformations, for numerical stability.

3.2 C-controllable Systems: Derivative feedback

We now show that if the triple (E, A, B) satisfies Condition CO, then systems
(1) and (3) can be transformed into completely controllable standard systems
by derivative state feedback. These results have also been established in [16)
and [6), but here numerically stable techniques for constructing the feedback
are provided. Regularity of the system (E, A, B) is not required.

The main theorem is given as follows:

Theorem 8 There ezists a real feedback control u = —G& + v or up =

—Gzry1 + vk such that the system defined by the triple (E + BG, A, B) is

C-controllable and the matriz E+ BG is non-singular if and only if the triple_
(E, A, B) satisfies Condition CO, that is, rank([aE —fBA,B])=nV (a,0) €

€*\{(0,0)}.

Proof. The Condition CO implies that rank([E,B]) = n and hence,
rank([E, AS«, B]) = n. Therefore, by Corollary 7 there exists G € R™™
such that rank(E + BG) = rank([E, B]) = n. Now by Lemma 4, the condi-
tion CO is preserved under derivative state feedback and the theorem follows
immediately from the definition of C~controllability. 0O

We remark that the condition rank([E, B]) = n is both necessary and
sufficient to find G such that £ + BG is non-singular. Sufficiency follows
from Corollary 7 and necessity from the observation that

E+BG=[E,B][é]. (50)

From Theorem 8 we conclude that systems (1) or (3) which satisfy Con-
dition CO can be transformed into standard systems by derivative feedback.

14



If the system matrix § = E + BG is non-singular, then the corresponding
closed loop system is equivalent to the standard system

¢ = Az + Bv, (51)

or
Thyl = Az + f?vk, (52)

where A = S-'A, B = S~!B. Transformation to this standard form may
not be numerically reliable, however, if § = E + BG is ill-conditioned with
respect to inversion. The decomposition (43) of Theorem 6 reveals the extent
to which the conditioning of § can be controlled by an appropriate choice
of G. In a later section of this paper we discuss techniques for selecting G
to provide an optimally conditioned ‘regularization’ of the system.

The following example illustrates the regularization of a very simple
system (given in [23]).

Example 1 Let

E=[g (1)],A=[(1)2],B=[(1)]. (53)

Then (1) gives the equation of a simple electrical circuit, where z; is the cur-
rent and z, is the potential of the capacitor. The system is C—controllable.
Let G = [g1, g2] with g; # 0; then

E+BG= [ 0 4 ] (54)
g1 92
is non-singular, and choosing ¥ = —G% + v transforms the system into the
system
T2 =Ty, (55)

Q121 + 9232 = 22 + v,
which is equivalent to the completely controllable standard system

= -2 1 1
2_‘.1 91z1+9122+91v’
Iy =1T1.

(56)

If g1 is taken to be very small, the conditioning of E + BG is very poor and
the standard system (56) may be very sensitive to perturbations. Selecting

g1 = 1,9, = 0 optimizes the conditioning of £ + BG and ensures that the
system (56) is robust.
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We have established here that a C—controllable descriptor system can
be transformed by derivative state feedback into a completely controllable
standard system of full order. By duality the analogous results hold for
C—observable systems.

We remark that the transformation to standard form cannot be achieved
with proportional state feedback alone. In the next subsections we show that
under the weaker S—controllability condition, a closed loop system which
is regular and of index at most 1 can be achieved by either derivative or
proportional state feedback. Such systems are equivalent to reduced order
standard systems and are completely controllable within a subspace of less
than full dimension.

3.3 S—controllable systems: Derivative feedback

We now show that a system (E, A, B) which satisfies conditions C1 and
C2 can be transformed by derivative state feedback into a system (E +
BG, A, B) which is regular and has index at most 1, has system matrix
E + BG of maximal rank equal to rank([E, B]), and is S—controllable. The
main theorem is given as follows:

Theorem 9 There ezists a real feedback control u = -Gz + v or up =
—Gzry1 + v such that the continuous or discrete closed loop system defined
by the triple (E + BG, A, B) is S-controllable and the system pencil a(E +
BG)-pA is regular, indo(E+BG, A) < 1 andrank(E+BG) = rank([E, B))
if the triple (E, A, B) satisfies Conditions C1 and C2, that is, rank([\E —
A, B]) = n VA € C and rank({E, ASw, B])) = n, where S, forms a basis for
N(E).

Proof. By Corollary 7 Condition C2 ensures the existence of a ma-
trix G such that a( £ + BG) — BA is regular, indeo(EF + BG,A) < 1 and
rank(E + BG) = rank([E, B]). The triple (E + BG, A, B) therefore also sat-
isfies Condition C2 and by Lemma 4 the Condition C1 is preserved under
derivative feedback. Thus, the closed loop system is S—controllable. 0O

We remark that the converse of Theorem 9 does not hold. The con-
dition rank([E, ASes, B]) = n is not necessarily preserved under derivative
feedback, since So, is altered. The condition rank([E, ASw, B]) = n is there-
fore sufficient, but not necessary to obtain a regular pencil o( E + BG) - SA
of index at most 1 with rank(E + BG) = rank([E, B]). An example is given
in [1}.
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From Theorem 9 we conclude that systems which satisfy Conditions C1
and C2, or, are S—controllable, can be transformed by derivative feedback
into completely controllable, reduced order, standard systems with maximal
dimension equal to the dimension of the reachable subspace of the original
system. By Lemma 5 and Theorem 6, Condition C2 ensures that there exist
orthogonal matrices @, U,V and Z such that (23), (43) and (44) hold, where
r = rank([E, B]) = m + {, A34 is non-singular and

Egp:= [ 26 8(2) ] (57)

is also non-singular. The last (n — ¢ — m)-block of algebraic equations of
the equivalent system (Q(E + BG)UZ,QAUZ,QBV) can thus be solved
and the corresponding variables can be eliminated from the first (£ + m)—
block of equations, leaving a purely dynamical descriptor system of the form
(ER, AR, Br) with Eg non-singular. This reduced order system has dimen-
sion £ + m = rank([E, B]) and is equivalent to the completely controllable,
standard system
= EEIARZ + EEIBR‘U. (58)
or
2ky1 = EﬁlAnzk + EEIBRvk. (59)

The reachable subspace of this system is thus of dimension £ + m and .
the degrees of freedom are all explicit in the initial conditions. To illustrate
this result consider the following example:

Example 2 Let
1 00 010
E={000|,A=]|100]|,B=1}1]. (60)
0 00 0 01

This system is S—controllable, but not C—controllable, and is already in
decomposed form (37) and (43). The solutions to this system are given by
zy = —u, 3 = -4, and z3 = 0. For a specific choice of control, there
are no degrees of freedom in the initial state of the system. The reachable
subspace over all possible choices of the control has dimension 2 and is given

by spa.n([ IS ] ). If we now let G = [g;, g2, 0] with g2 # 0, then the feedback
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% = —G& + v transforms the system into

£ = Ty,
121 + 9232 = 71 + v, (61)
= Z3.

The last variable can be eliminated and the remaining dynamical system
can be transformed into standard form by inverting the matrix

1 0
[ N 92 ] (62)

to obtain the completely controllable system

&) = zq,

. 63

z2=312-x1—%::2+§;v. (63)
These equations can be initiated from any state with any control and

the dimension of the reachable subspace is precisely 2.

We remark that the reduction to standard form of systems which are
regular and have index at most 1 may not be numerically reliable if the
matrices Az4 and ER obtained from the decompositions (43) and (44) are
not well-conditioned for inversion. The conditioning of Eg is influenced by
the selection of the derivative feedback G; the matrix A3, is not affected by"
the feedback G.

We have now established that an S—controllable descriptor system can be
transformed by derivative state feedback into a reduced-order, completely
controllable standard system with explicit degrees of freedom in the initial
conditions equal to the dimension of the reachable subspace. By duality
the analogous results hold for S—observable systems. In the next sections
we examine what can be achieved with proportional feedback alone and in
combination with derivative state feedback.

3.4 S—controllable Systems: Proportional Feedback and
Other Results

We next show that a system (F,A,B) which satisfies Conditions C1
and C2 can be transformed by proportional state feedback into a system
(E,A+ BF, B) which is regular, has index at most 1 and is S—controllable.
This result has been established (implicitly) in (5, 6, 7, 10] using various
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approaches. Here we give another proof, based on the decomposition of
Lemma 5, which allows for the construction of the required feedback in a
numerically stable manner.

The main theorem is given as follows:

Theorem 10 There ezists a real feedback control u = Fz + v or u; =
Fz, + v, such that the continuous or discrete system defined by the triple
(E, A+ BF, B) is S-controllable and the system pencil oE — 3(A + BF) is
reqular if and only if the triple (E, A, B) satisfies Conditions C1 and C2,
that is, rank([AE — A, B])) = n VA € C and rank([E, ASw, B]) = n, where
Se forms a basis for N(E).

Proof. By Corollary 7 Condition C2 ensures the existence of a matrix
F such that aE — (A + BF) is regular and indeo(E,A+ BF) < 1. The
remainder of the theorem is established by applying Lemma 4 which ensures
that the conditions C1 and C2 are both preserved under proportional state
feedback. 0O

We remark that the condition rank([E, ASo, B]) = n is both necessary
and sufficient to find F such that aE — (A + BF) is regular and of index
at most 1. This follows because E and therefore S,, are not changed by
proportional state feedback.

From Theorem 10 we see that systems which satisfy Conditions C1 and
C2 can also be transformed by proportional state feedback into regular sys-
tems of index at most 1 and hence into completely controllable reduced order
standard systems. The order of the standard system is minimal, however,
being equal to rank(E). The degrees of freedom in the reduced order dy-
namical system thus do not reflect the dimension of the reachable subspace
of the original descriptor system.

As an illustration consider again Example 2:

Example 3 Let (E, A, B) be given as in Example 2 by (60). Let F =
(f1, f2,0]. The feedback u = Fz + v transforms the system into

I, = g,
0= (14 fi)z1+ f2z2 + v, (64)
0= zj,

which is regular and of index 1, provided f; # 0. The last two equations of
(64) can then be solved explicitly and eliminated from the first to give

I, — <0, (65)




a standard system of order 1. The solution space of the system (64) is in
fact of dimension 2 and hence, the degrees of freedom in the reduced order

system (65) do not explicitly describe the reachable subspace of the original
system.

We conclude that although proportional state feedback can be used to
eliminate impulses by controlling poles at infinity, it cannot be used to reg-
ularize a descriptor system completely. Using proportional feedback in com-
bination with derivative feedback, on the other hand, can provide good
design techniques which are computationally reliable. A suitable strategy
is to use derivative feedback to obtain a well-conditioned regularization of
the dynamic-algebraic equations and then to apply proportional feedback to
achieve further objectives, such as pole assignment or stable reduction to a
reduced order system. This approach is particularly attractive, since pro-
portional feedback cannot make the system lose regularity, once the rank

of E has been maximized so that rank(E) = rank([E, B]). We have the
following:

Theorem 11 If rank(E) = rank([E, B]) and rank([E, ASe)) = n then for
any F € R™", rank([E,(A + BF)Sx]) = n. Here Sy, defines a basis for
N(E).

Proof. Suppose there exists z # 0 such that zT[E,(A + BF)Ss] =
0. Then, 2TE = 0, and 2TAS,, = —zTBFS,. But since rank(E) =
rank([E, B)), it follows that z2TB = 0 and thus 27AS, = 0. But then
zT[E, ASw)] = 0 which contradicts the assumption that rank([E, AS.)) = n.
0

If a system (E, A, B) satisfies Conditions C1 and C2, it follows that
there exists a derivative feedback G such that the system (E + BG, A, B)
satisfies rank([E + BG, B]) = rank([E, B]) = rank(E + BG) and is regular
and of index at most 1, and is S-controllable. By Lemma 1 then rank({E +
BG, ASy)) = n, where S, gives a basis for N(E + BG). Theorem 11 then
guarantees that for any choice of F' the system triple (E + BG,A + BF, B)
satisfies rank([E + BG, (A + BF)Sy]) = n, and hence the system remains
regular with index at most 1.

We have shown here that an S-controllable system can be transformed
by proportional state feedback into a regular system of index at most 1, and
hence into a reduced order, controllable standard system. By duality, anal-
ogous results hold for S—observable systems. Of more practical significance,
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however, we have established that if a system has already been transformed
into a regular system of index at most 1 by a derivative feedback which max-
imizes the dimension of the dynamic part of the system, that is, the system
has been fully ‘regularized’ by derivative feedback, then no proportional
feedback can cause the system to lose regularity.

We complete this part of the paper by examining the results that can

be obtained in general with a combination of derivative and proportional
feedback.

3.5 Combined Derivative and Proportional Feedback

We now summarize the results that can be achieved by using both deriva-
tive and proportional state feedback together. We show that for a system
(E, A, B) which satisfies Conditions C1 and C2, a closed loop system can
be obtained such that the system pencil a(E + BG) — 3(A + BF) is regular
and of index at most 1, and such that rank(E + BG) = r, where r is any
integer between £ = ¢ — m and ¢ = rank([E, B]). (Here m = rank(B).) We
have the following theorem, which follows directly from Theorem 6.

Theorem 12 There ezists a real feedback control u = Fr — G + v or
up = Frr — GZryq + vi such that the continuous or discrete time system
defined by the triple (E + BG, A + BF, B) is S-controllable and the system
pencila(E + BG) — (A + BF) is regular, indoo(E + BG,A+ BF) < 1 and
rank(E + BG) = r with £ < r < q, where ¢ = rank([E, B]), m = rank(B)
and £ = ¢ — m, if the triple (E, A, B) satisfies Conditions C1 and C2, that
is, rank([AE ~ A, B]) = n VA € C and rank([E, ASe, B]) = n, where S
forms a basis for N(E).

Proof. The existence of F' and G such that a(E + BG) — 3(A + BF) is
regular and of index at most 1, and rank( E+ BG) = r follows from Condition
C2 and Theorem 6. Then the transformed system given by (E + BG,A +
BF, B) must also satisfy Condition C2, and by Lemma 4 Condition C1
is preserved under both derivative and proportional state feedback, which
establishes the theorem. 0O

We include Theorem 12 here primarily for completeness. It essentially
shows that if Conditions C1 and C2 hold, then we can transform the sys-
tem (1) or (3) by derivative and proportional state feedback into a regular
system of index at most 1 with precisely r finite poles, where r is between
rank([E, B]) and rank([E, B]) — rank(B). We emphazise that regularity of
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the original system is not required. Moreover the feedback matrices ' and G
which achieve the result can be constructed in a numerically stable manner,
using only orthogonal transformations.

Since the transformed system is regular and of index at most 1, it can be
further transformed into a completely controllable, reduced order, standard
system of precise order r. For this reduction, however, the feedback matrices
F and G must be selected with care.

In the next section we examine how derivative and proportional state
feedback can be used to place the poles of the system in prescribed locations.
In the final section we derive a computational algorithm for optimizing the
conditioning of regularized dynamical systems obtained by derivative and
proportional state feedback.

4 Eigenvalue Assignment in Descriptor Systems

We now examine the consequences of the theory of Section 3 for the prob-
lem of eigenvalue assignment. The conclusions follow directly from the ‘reg-
ularizability’ results of Theorems 8 and 9. We begin by stating the pole
assignment problem.

Problem 1 Given a triple of- real matrices (E,A,B) and a set L =
{(ahﬁl)a(_a?’ﬂZ)""’(amﬂn)}» where (a;,B;) € C? and (a;,5;) € L im-
plies (&j,02) € L for j = 1,...,n, find F,G € R™" such that all pairs in "~
L are generalized eigenvalues of the matriz pencil o( E + BG) — f(A + BF)
and such that

det(a(E + BG) — B(A+ BF)) # 0, for some (a,8) ¢ LU {(0,0)}. (66)

The condition (66) ensures that the closed loop system obtained by the
feedback u = Fz—~Gz or uy = Frp—Gz41 in system (1) or (3), respectively,
is regular. In assigning a set of eigenpairs by feedback, it is always possible
for the closed loop system to lose regularity, even if the original system is
regular. It is important, therefore, in assigning eigenpairs, to ensure that
(66) holds.

The problem of pole assignment by proportional feedback alone has been
treated in {7, 10]. In this case for systems which satisfy Conditions C1 and
C2, at most r = rank(E) finite generalized eigenvalues (a;,5;), 3; # 0, j =
1,2,...,7, can be assigned such that the closed loop pencil is regular. The
remaining n — r infinite eigenvalues (a;,0), j = n—r + 1,...,n, cannot
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be reassigned. By exchanging the role of E and A in the system pencil, it
can be seen that under analogous conditions at most s = rank(A) non-zero
eigenvalues (aj,0;), a; # 0, j = 1,2,...,s (including infinite eigenvalues)
can be assigned with derivative feedback alone. It might, therefore, be
expected that with both derivative and proportional feedback, a full set of
n eigenpairs could be assigned. This is, in fact, the case if and only if the
system satisfies Condition C0. We note that no assumptions are needed
about the regularity of the system. We have

Theorem 13 For any arbitrary set L of n self conjugate poles there ezists
a pair of real matrices F' and G solving the pole placement problem, Problem
1, if and only if the triple of real matrices (E, A, B) satisfies Condition CO,
that 1s,

rank([aE — 8A, B)) = n, V (a,p) € C?\{(0,0)}. (67)

Proof. Since the triple (E, A, B) satisfies Condition CO, the triple
(A, E, B) also satisfies this condition. Therefore, by Theorem 8 there exists
a feedback matrix F; € R™" such that A+ BF] is non-singular and the stan-
dard system (I,(A + BFy)"'E,(A+ BF1)~!B) is completely controllable.
It follows that there exists G € R™™ such that G assigns k¥, 1 < k < n,
zero poles to this standard system, and, therefore, such that the pencil
a(E + BG) — B(A + BFy) has k infinite eigenvalues (a;,0), j = 1,2,...,k.
Let P,QQ € C™" be non-singular matrices that transform this pencil into
Kronecker canonical form:

P(a(E+BG)—ﬁ(A+BF1))Q=a[g ﬁ,}—ﬂ[‘g g] (68)

B,

I 0 J 0 B
s vl [s ] (2] (69)
still satisfies Condition CO, by Lemma 4, and hence the triple (I, J, By) is
completely controllable. Thus, there exists F; € R™("—#) such that the

eigenvalues of J + By F; are the finite eigenvalues (aj,08;), f; # 0, j =
n—k+1,...,n, belonging to £. Let F = [F3,0]Q~! + F;. Then the pencil

Partition PB = [ B, ] analogously. The new triple

a(E+BG)—ﬂ(A+BF)=P-1(a[‘; A?]—ﬂ [ J;f;lzpz ?])Q“ (70)
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has the required eigenvalues.

Conversely, if there exist F,G € R™" such that the pencil a(E + BG) —
B(A + BF) has arbitrary generalized eigenvalues, then there exist F' and
G such that the pencil has arbitrary finite eigenvalues, that is, such that
E + BG is nonsingular and the eigenvalues of (E + BG)~'(A + BF) are
arbitrary. The standard system (I,(E + BG)~!' 1+ BF),(E + BG)™1B)
must therefore be controllable. The triple (E + &, A+ BF, B) must then
satisfy Condition CO, and by Lemma 4 the triple ( E, A, B) also satisfies this
condition. 0

The construction of feedback matrices F,G in the proof of Theorem 13
requires a reduction to Kronecker canonical form, which in general is not
a numerically reliable technique. Furthermore, the poles of the closed loop
pencil obtained by this construction are not in general robust with respect
to perturbations in the system matrices. In order to assign an arbitrary
number of infinte poles to the closed loop system, the pencil must be allowed
to have index greater than 1. Such systems are necessarily less robust than
systems of index less than or equal to 1. Moreover, due to the Jordan form
of the nilpotent part of the system, ill-conditioned transformations cannot
be avoided.

In practice, it is not generally desirable to assign finite poles to infinite
positions. If the number of infinite poles to be prescribed is limited, then
the feedback matrices F' and G can be constructed such that the closed loop
pencil is not only regular and has the required finite poles, but also has -
index at most 1. Up to n finite eigenvalues can be assigned if and only if the
triple (E, A, B) satisfies Condition C0. Under the weaker assumptions C1
and C2, up to ¢ = rank([E, B)) finite poles can be prescribed. These results
follow directly from Theorem 12. We have the following general result:

Theorem 14 For any arbitrary set L of r self conjugate finite poles
(0j,B5), Bi #0, j = 1,...,r, and n—r infinite poles (;,0), j = r+1,...,n,
where q = rank([{E, B]) > r > ¢ — rank(B), there ezists a pair of real matri-
ces F' and G solving the pole placement problem, Problem 1, such that the
pencil a( E 4+ BG) — (A + BF) is regular and indo(E + BG,A+ BF) <1
if the triple of real matrices (E, A, B) satisfies Conditions C1 and C2, that
is rank([AE — A,B]) = n V A € C and rank([E, ASw, B]) = n, where So,
forms a basis for N (E).

Proof. By Theorem 12, there exist matrices G and F; such that the
pencil a(E + BG) — B(A + BF,) is regular and of index at most 1 and
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rank(E) = r, where £ = ¢ —m < r < ¢ = rank([E, B]), m = rank(B).
The system (E + BG, A + BFy, B) is, moreover, S-controllable. It follows
that there exists F; which assigns to this system up to r = rank(E + BG)
finite poles and such that the closed loop system (E + BG, A+ BF, B), with
F = Fy + Fy is regular and of index at most 1. (See [5, 7, 10]). By definition,
this system has precisely n — r infinite poles, which establishes the theorem.
a

The Conditions C1 and C2 are sufficient but not necessary for the results
of Theorem 14 to hold. Ifit is required to assign precisely n finite poles, then
Condition CO is both necessary and sufficient. Sufficiency follows directly
from Theorem 14, since CO implies C1 and C2 and rank([E, B]) = n.
Necessity follows from Theorem 13.

In order to assign precisely n finite eigenvalues (assuming Condition CO
holds) we may select G such that E + BG is non-singular, by Theorem 8,
and then select F' to assign the prescribed poles to the equivalent standard
system (I,(E 4+ BG)~1A,(E + BG)~!B). For this strategy to be computa-
tionally reliable, it is important to ensure that E + BG is well-conditioned
for inversion. In the next section we describe a technique for selecting G to
optimize the conditioning of E + BG. (In practice, it may not be possible
to ensure that E + BG is nicely conditioned; in this case the techniques of
[10] can be applied to the generalized state-space system (E + BG, 4, B) to
assign the n prescribed finite poles as robustly as possible.)

If the weaker Conditions C1 and C2 hold, but CO does not hold, then .
it is possible to assign a maximum of precisely ¢ = rank([E,B]) < n
finite poles. In this case, by Theorem 9 we may select G such that
rank(E + BG) = rank([E, B]) = ¢ and the pencil is regular and of index
1. As demonstrated in Section 3.3, the corresponding closed loop system
can then be transformed into a reduced order, completely controllable sys-
tem (ER, AR, Br) of dimension ¢, where Egr is non-singular. It is then
possible to chose Fr to assign the required finite poles to the standard
system (I, ER'Ar, Eg' Br) and hence to construct F such that the pencil
a(E + BG) - B(A+ BF) has the required finite eigenvalues. By Theorem 11
this pencil is regular and of index 1. For this strategy to be numerically sta-
ble, it is necessary for ER to be well-conditioned, and also for A4 (defined
in Section 3.1) to be well-conditioned in order for the reduction to the lower
order system to be computationally reliable.

A similar approach can be used for comstructing the solution to the
general problem of assigning r finite poles, where ¢ — m < r < g, first
applying Theorem 12 to obtain a regular S—controllable system (E+BG, A+
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BF, B), where rank(E + BG) = r, and then using a reduction to a lower
order standard form. In practice, however, this ‘reduced-order’ approach
may not be as efficient or as reliable as applying a direct procedure such
as that of [10] to the ‘regularized’ descriptor system in order to assign the
poles.

In the next section of the paper we develop techniques for ‘regularizing’
the descriptor system so as to ensure that the dynamic part of the closed
loop system is as well-conditioned as possible.

5 Algorithm for Regularizing a Descriptor Sys-
tem

In previous sections of this paper we have examined conditions under which
the descriptor systems (1) and (3) can be ‘regularized’ by derivative and
proportional state feedback, that is, conditions which ensure that a closed
loop system can be constructed which is regular and of index at most 1, and
is S—controllable. Regularity of the original system is not required, and the
construction procedures are based on numerically stable techniques.

It has been shown in general that it is desirable in constructing a closed
loop system of the form (£ + BG,A + BF, B) to ensure that E + BG is
‘well-conditioned’ in some sense. In this final section of the paper we present
a computational technique for generating a feedback G in such a way as
to control the conditioning of the system matrix £ + BG. In addition it -
is desirable to ensure that A + BF is chosen such that the transformed
descriptor system can be reduced to a standard system in a numerically
stable way. A technique is also described for achieving this result. It is
assumed that the system (E, A, B) satisfies Conditions C1 and C2.

In order for the matrix E + BG to be well-conditioned (with respect to
inversion of the non-singular part), it is necessary for the ratio omaz/omin
of the largest singular value omgaz, to the smallest nonzero singular value
Omin of E + BG to be minimal. Now by Theorem 6, there exist orthogonal
transformations @, U,V and Z and a feedback G such that Q(E + BG)UZ
is of form (43); moreover G can be chosen such that £;, defined in (37) is of

the form
£ = [ Eg ] , (71)

where I is an r X r diagonal matrix with positive diagonal components and
q — rank(B) < r < g = rank([E, B]). It follows that the singular values of
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E + BG are given by the diagonal components of £, and ¥;. Since X arises
from the decomposition (23) of E and cannot be altered by feedback, we find
that the minimal possible condition number is Gpqaz/Tmin = || Z1]l2/|Z7}|2-
This value is attained provided the diagonal components of ¥ are selected
to lie between the smallest and largest diagonal components of L.

In the case r = ¢ = rank([E, B)), the system generated by this pro-
cedure is regular and of index at most 1. In the case r < ¢, in order to
obtain a system which is guaranteed to have these properties, it is necessary
to use both derivative and proportional feedback. The proportional feed-
back matrix F' must be selected, by Theorem 6, such that (47) holds. It
is desirable also to select F' such that the last (n — r) X (n — r) principal
submatrix of Q(A + BF)UZ is well-conditioned with respect to inversion.
As indicated in previous sections, the reduction of the descriptor system
(E + BG,A 4+ BF, B) to a lower order standard system is then expected to
be computationally reliable.

From Theorem 6 it can be seen that if £; is of the form (71), then (47)
holds if we select

F3y= 25‘([ z:g ] ~ An), Fy = —Z5' Aay, (72)

where X3 is an (m + £ — r) X (m + £ — r) diagonal matrix with positive
diagonal elements. Then

Q(A+ BF)UZ [g I"O_' ] u [ 203 A‘; ] (73)

has singular values given by the singular values of A3, and the diagonal
components of £3. To optimize the conditioning of (73), we must therefore

select the components of T3 to lie between ||A52||l2™" and || Aaql|2.
If we let

WaAs4Zs = T4 (74)
be an SVD of A34 and define

Q:[I“"a Wg]Q,l7=UZ[I‘+”6 zg] (75)

then the pencil a( E + BG) — B(A + BF) constructed in this way is orthog-
onally equivalent to the pencil
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Q[a(E+BG)-ﬂ(A+BF)1r7==a[’3’3 g]-ﬂ[j; g‘:] (76)

where
_|1Z o _1Z 0
2”‘[ 022]’2"‘[ 024]’ (77)
and L, X4 are as well-conditioned as possible. The transformed descriptor

system given by the triple (E + BG, A 4+ BF, B) can therefore be reduced
to the standard system

2= Az 4+ Bv, (78)
or r .
241 = A2y + By, (79)
where the system matrix A is given by
A=I7 (A1 - 4,37 4,). (80)

The sensitivity of this computation to round-off errors then depends on the
conditioning of £y and ¥4 which are determined by E, A and B.

We have established here a stable numerical technique for constructing
a ‘regularized’ descriptor system (E + BG, A + BF, B) which is as ‘well-
conditioned’ as possible. It is assumed that (E, A, B) satisfies conditions
which correspond to S-controllability, but regularity of the original system
pencil @E—fBA is not needed. The computational algorithm for determining
the required derivative and proportional state feedback matrices G and F is
summarized in full in the Appendix. This procedure can also be extended
to the problem of regularizing the systems (1)-(2) and (3)-(4) by output
feedback. This topic is currently under investigation. Preliminary results
are given in [1].

6 Conclusions

We investigate here the use of derivative and proportional feedback in de-
scriptor, or generalized state-space systems. We define various conditions
for controllability (observability) and demonstrate to what extent the sys-

tem can be altered by derivative and/or proportional state feedback under
these conditions.
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It is established that systems which satisfy conditions ensuring complete-
controllability can be transformed into standard systems (of full dimension)
by a combination of derivative and proportional state feedback. It is shown,
furthermore, that in this case, with state feedback, all of the poles of the
system can be assigned to prescribed positions.

It is also established that systems which satisfy conditions ensuring
strong-controllability can be transformed by derivative and proportional
state feedback into systems that are regular and of index at most 1 and
have precisely r finite poles, where r lies between ¢ = rank([E, B]) and
q — rank(B). Moreover, it is shown that these r poles can be assigned to
arbitrary (finite) locations. Such systems are ‘impulse controllable’ and can
be transformed into reduced-order standard systems of precise dimension r.

The proofs of these results do not require regularity of the original sys-
tem. Furthermore, the procedure for constructing the feedback matrices
which regularize the closed loop system are based on orthogonal matrix de-
compositions and are numerically stable. In practice it is desirable not only
that the closed loop descriptor system is regular, but also ‘well-conditioned’
in the sense that the reduction to standard form is computationally reliable.
We show here that the feedback matrices which regularize the system can
also be chosen to optimize the ‘conditioning’ of the closed loop system, and
a computational algorithm for achieving this result is presented.

A Appendix Algorithm for Regularizing a De--
scriptor System

Step 1: Find orthogonal matrices P,V such that PBYV = [ 203 ], using

the singular value decomposition of B.

Step 2: Let P = 0 In-m and partition PPE = £ compatibly
with PPBV = | O |.
g
Step 3: Find orthogonal matrices W, Z; such that
%5 0 3
WE1Z1 = 0 0 ,21 = dxag(al,...,ag), (81)

by the singular value decomposition of E;.
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Step 4: Partition EyZ; = [Eg],EQg] compatibly with Wi F;Z; and find an
orthogonal matrix Z, such that EyyZ; = (E22,0], where Eq; is of full column
rank. This can, for example, be achieved by an RQ-decomposition of E,,.
Step 5: Let

I+ 0 ~ -0
o=|0 o I,,,][W O]PP,U:Zl[I‘ 0]. (82)

Step 6: Select r such that ¢ = rank([E,B]) > r > ¢ — rank(B). Find
orthogonal matrices W, Z such that

, s [ grin )
W0, [n—t-m]QAUU [ I ] Z ={0, ,), T4 = diag(Ce4m+is---+0n)
N=y

(83)
by the singular value decomposition of [0, I—s—n|]QAU U [ I e ] , Where U
n—r

is chosen such that the lower right (n — ¢ —m) x (n — £ — m) block of QAUU
is nonsingular. This can for example be achieved by an RQ-decomposition
of the lower right (n — £ — s) X (n — £ — m) block of QAUU, which is of full

rank.

Step 7: Let
R )
Step 8: Select
L, = diag(oe41y...,7), T3 = diag(ors1,...,£+ m), (85)

where
IZT 2™ <05 < UZallss G =£+1,...,m,
IS €05 < |Sallas G =7+ 1,..., L4+ m.
Step 9: Select

G=V|[Gi, G Gs, o]ﬁT,F=V[o, 0, Fy, Fi |07, (87)

where

(86)

G1 =-S5 En, [G2,G3] = EEI([ )".(,)g g ] — [Eq2,0}),
(88)

- 0 -
F= 231([ % ] — Ag), Fy = -5 Ay,
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with

[A23, A24] = [07 Im’ O]OAﬁ [ I"O_r ] . (89)
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