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ABSTRACT

This paper presents details of a one-dimensional numerical simulation
of the redistribution of dopant concentrations during the thermal oxidation
of silicon. The mathematical model is governed by a non-linear partial
differential equation, and contains a moving interface whose motion is
prescribed and at which there are coupled silicon and oxide dopant concentration

conditions.

A non-dimensionalisation of the original problem reveals insignificant
diffusion in the oxide region, enabling a partial decoupling of the silicon
and oxide dopant concentration sub-problems. A transformation of the
concentration variable in the silicon region is made, the moving finite
element method is applied to the modified differential equations, and the
resulting system is solved using an iterative technigue. The dopant
concentration profile in the oxide is then determined by applying an advection

argument to the known interface silicon dopant concentrations.



1 INTRODUCTION

Silicon oxide is grown in metal oxide semiconductor field effect
transistors (MOSFET's) in order to electrically isolate one such device
from its direct neighbours and to provide insulated surfaces for device
interconnections. Before thermal oxide growth commences, high concentration
dopant (in the form of boron, phosphorus, arsenic or a combination of these)
is implanted into crystalline silicon, and this serves to provide source/
drain regions and to further increase electrical isolation between devices.
The dopant then diffuses in the diminishing silicon and enlarging oxide
regions. The thermal oxidation of silicon comprises two distinct physical
processes: firstly the diffusion of the oxygen through the axide to the
silicon-oxide interface (where the oxide forms, causing stresses which result
in motion) and secondly, the diffusion of the dopant in the silicon and
oxide regions. These two processes, however, can be decoupled if it is

assumed that the oxidation rate iIs independent of the dopant concentration.

The interface motion and dopant diffusion problems have been studied by
many workers in both one and two dimensions. Experimental work on a one-
dimensional form of the first problem by Deal and Grove [1] has indicated
the existence of .@a temperature-dependent linear-parabolic oxide growth rate
law, which Masscud et al. [2] have implemented to determine accurate values
for its rate constants. King [3] has considered an analytic solution of the
two-dimensional interface motion prcblem. A numerical finite element
solution of this problem has been produced by Stettler et al. [4], and Chorin's
pressure-velocity algorithm [5] has been implemented in [61,[7]1 with

boundary technigues, and in [8] with the finite element method.



The dopant diffusion problem has been solved numerically, both on
fixed silicon domains (in [91,[101 in one dimension and [11] in two), and
also on those which include a moving oxide boundary. Efforts of the latter
type can be divided into two categories : those which do not solve for the
dopant concentrations in the growing oxide region, and those which do. Authors
of the first category include Budil et al. {121, in one dimension, and
Penumalli [13], Maldonado et al. [141, Taniguchi et al. [15] and Desoutter
et al. [16]1, in two. The finite difference approaches of [13] and [14] include
the transformation of the time-dependent silicon domain onto one which is
stationary in time. The physical domain is considered in [15] and [16], where
finite difference and element technigues, respectively, are employed. Koltail
and Trutz [17] include continuous grid deformation in their numerical method
for determining dopant concentration profiles in both the silicon and oxide
regions. This problem has also been studied by Borucki et al. [18], whose
finite element technigue is implemented together with an automatic mesh

generator in the two regions.

In this paper we consider a one-dimensional model of the dopant diffusion
moving boundary problem. Our code contains the user-specification of both
clustering (see [10]) and oxidation. In the silicon we obtain a numerical
solution in the physical domain using the moving finite element (MFE) method
([191,[201,[21]1), which is attractive due to its ability to accurately track
moving boundaries. Oxide dopant concentration profiles are also displayed,

using the known silicon information.

In section 2 we present the mathematical model and discuss its main

features, leading to an impertant simplification. The solution technique



for the simplified problem is described in detail in section 2.
Section 4 contains the numerical results, which are then analysed in 5

where conclusions are also drawn.



2. THE MATHEMATICAL MODEL

The one-dimensional model considered here is that of Fair [22), which

contains only one diffusing species.

2.1 Diffusion Equations and Accompanying Conditions

We shall assume that the silicon is stationary and that the oxide

motion obeys the Deal and Grove rule ([11). Let

/ 2 2 .
s(t) = 1 {V A° + 4[s(0)° + As(0) + Btl - A} , (2.1)

(where B and B/A are the respective parabolic and linear temperature-
dependent rate constants) denote the position of the silicon-oxide interface
at time t.. Then, owing to the expansion which occurs when silicon oxidises

to silicon dioxide, the external oxide boundary moves with a velocity

- (¥-1) &(t) ,
where the dot denotes differentiation with respect to time and Yy 1is the
silicon-oxide specific volumes ratio. The silicon and oxide regions are
taken to be

(s(t),s ) and (s_(t),s(t)) ,
T 1

respectively, where S, is constant and

Sl(tJ = sl[UJ - {¥-1) [s(t) - s(0)]. (2.2)

The partial differential equation governing dopant diffusion in the
silicon is

acs P dc (2.3)
ot X



Here Cq denotes the total dopant concentration (which can be expressed

as the sum of its active, c?, and clustered, cg parts), and
. J 1+ 8ln_(e )/n,] (2.4)
5 s il 5
1+ 8B

where Di , B and DN are constant. The local electrical charge is

2

N CA + i CC + ,f . CA + ——1-—-0C + 4n? } (2.5}
s s ) 5 i
o+1 a+1 // a+1 a+7 j

NI=

ne(cs) >

where o is the ratio of the electric charge of an active atom to that of a
clustered one ([10]). The diffusion of dopant in silicon dioxide, which must

account for oxide motion, obeys the equation

aco 8200 Bco
— = DD —5- + (y-1) 8(t) — , (2.6B)
ot X X

where c, is the total dopant concentration and DO the diffusion

coefficient. In keeping with previous workers, we do not account for

clustering effects in the oxide.

We shall consider homogeneous Neumann conditions, namely,

oc  _ -
DSE05) g5s = o , x = Sk , (2.7)(al
X
800 (2.7)(b)
DO S 0 X = sl[t]

which model no flux leakage at external boundaries.



We assume that the dopant flux across the moving interface is
continuous. This flux is determined by a simple chemical reaction which
attempts to segregate the interface silicon and oxide dopant concentrations

in a particular ratio. The resulting conditions are:

P .
D (o) "8 + 8(t)e_ = -h (e o /m) . (2.8)(a)
X
D %% +y at)c =-h(c-c_/m) (2.8)(b)
X © .

where h and m are respectively the boundary transport rate and
equilibrium segregation ratio. Similar conditions appear in [8] and [18]

- but without the important advective terms!

Ion implantation into silicon typically produces a Gaussian dopant

profile. Our initial data in this region is therefore taken to be

c 1,00 = N exp [ - (x-R)Z / 40 1 , (2.9)(a)

ovZm

where N , 0 and R are respectively the dose, straggle and depth of the
Gaussian. If oxide is present at the outset, then we assume the layer to
be sufficiently thin that its dopant concentration is initially constant,

yielding the condition:

co(x,DJ = CS(S(D],D] . (2.9)(b)



2.2 Simplification of the Original Model

In order to determine the most important features of our problem, we

non-dimensionalise as follows:

c =n, C
s i s
c =n, C
] 1 O
x =L X
(2.10)
t = LE_ T P
D,
i
s(t) = s(0) + SO S(T)
DB(CS] = Di DS (Cs]

where upper case symbols denote the non-dimensional form of the corresponding

physical variables. Here the constants n, L, Di and S0 are

representative of the dopant concentration, initial thickness of silicon,

diffusion coefficient and depth to be oxidised in the silicon region.

The diffusion eguations (2.3) and (2.6) respectively become

3C, _ Eh.’ b, (C.) 3C, (2.11)
3T X 5 9% ’
and
5C 32 3C
n = 81 o + 3§, (y-1) s'(T) "o , (2.12)
5T ax? 3X

where the dash denotes differentiation with respect to the dimensionless

time variable, and “61, 62 are constants. The external boundary conditions



If we, therefore, neglect diffusion in (2.12), then the p.d.e. becomes

8Cy - 8, (y=1) S"(T) L, (2.17)

oT X

which is of first order and so does not require the external boundary
condition (2.13)(b). The additional assumption of equilibrium segregation

at the interface allows a modification of conditions (2.14):

1 oC : Y (2.18)(a)
! one1 s ¢ 8hm gy - S (RIG a

62 X
C -C /m=0 , (2.18) (b)
o s

Substitution of the oxide dopant concentration from (2.1B)(b) into (2.18)(a)

results in

T 5 c1 % +s'M MM—y/mc.=0 |, (2.19)(a)
— 5 <) — S
5, X

Co = C_/m . (2.19) (b)
S

We note that these are inconsistent with the initial data, and this

point will be discussed in detail in section 3.1.4.

The non-dimensionalisation analysis has therefore enabled us to almost
completely decouple the silicon and oxide dopant diffusion sub-problems.
Hence, our solution approach is to first solve the silicon sub-problem, and

then use this information to obtain an oxide dopant concentration profile.
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S METHOD OF SOLUTION

In this section we describe the numerical technigues employed to
determine dopant concentration profiles in the silicon region, and alsao,

how corresponding oxide ones are obtained using this information.

3.1 Numerical Solutuion of the Silicon Sub-problem

We now describe the numerical solution technique used for the
simplified problem in the silicon region. The method contains prescriptions
for the following difficulties encountered: the presence of steep fronts,
initial node placement, inconsistent initial data and implementation of the

interface condition (2.19)(al.

3.1.1 The Moving Finite Element Method

Here we briefly describe the one-dimensional form of the MFE method,
which was introduced by Miller and Miller [18], and further analysed by
Miller [20] and Wathen and Baines [21]. We consider the case of piecewise
linear basis functions and so seek an approximate solution which is

continuous and consists of straight line segments ([19]1,[207,[211).

Differentiation of the assumed form of the solution with respect to
time produces an expression involving nodal value and position velocities
([191,[201,[2113. Now the second order differential operator terms in the
p.d.e. act on the piecewise linear form of solution to produce a series of delta
functions. To overcome this problem we employ a recovery technique and this
yields smoother estimates of the troublesome derivative terms ([23]). The square
of the L2 norm of the residual of the differential equation is minimised

over these unknown velocities, and this produces a 2x2 block tridiagonal



system of linear equations. A diagonal block pre-conditioned conjugate
gradient method ([24]) may then be used to efficiently invert this system ([251])
to yield a velocity vector. The nodal positions and values are then updated

by applying the first order Euler time-stepping scheme to this vector ([211),
with the time increment being chosen to prevent nodes from colliding ({211) and

preserve accuracy of the numerical solution (for details, see section 3.1.5).

3.1.2 Resolution qf Steep Fronts

The presence of propagating steep fronts in the silicon causes severe
numerical difficulties. Please and Sweby [26] have overcome such problems
by transforming the dependent variable into one which represents a velocity

potential. In the present case, the new variabls, @S, is given by
= C,/ny *+ 1n {CS / ni} . (3.1)

This transformation causes the partial differential equation (2.711) and conditions

(2.13)(a), (2.19)(a) and (2.15)(a) to respectively become

3?5 = Cs+1 E__ { Cs DS (Cs] BQS } , (3.2)

aT CS X Csf1 9 X

CS Dé’[Cé] 8@5
C +1 ax = U » (3-3)

1 CS DS (CS] BQS '

T 5% + S (T) [1-y/ml CS = 0 (3.4)
2 S

® (X,0) = C. (X,0) +1n {C_(X,0)} , (3.5)
) 5 S

which constitute the dopant diffusion problem in the silicon regian.
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3.7.3 Initial Node Placement

As previously mentioned, the inclusion of oxidation in the diffusion
model is user-specified. Whether this process be present or not, the initial
node placement is obtained by equidistributing the modulus of the second
derivative of the transformed initial distribution raised to the power of
two-fifths. Carey and Hung [27] have proved this to be optimal for

piecewise linear functions.

Consider now the case when oxidation is present. We assume that
initially the motion of the interface dominates the diffusion effect in the
silicon region. In order to determine an approximate initial profile close

to the interface, whose motion is to be taken into account, (2.3) is modified to

320 dc
0= Di s + §(0) s . (3.6)
sz X
A solution of (3.6) is
B §(0)
g, = exp { Di X } 5 (3.7)

which can be expressed in non-dimensional variables as

C. = exp { - 3g 2 L X } /n, . (3.8)
s . = i

We now perform a second equidistribution (in an identical manner as before)
of a specified number of nodes [(namely 2}, to (3.8) between the interface and
its nearest silicon node from the previcus equidistribution. Since the
transformation (3.1) does not significantly affect the profile (3.8), the
above resulting arrangement of nodes is used as the silicon mesh on which

the initial Gaussian is to be represented.
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3.1.4 Treatment of Inconsistent Initial Data

In this section we describe a procedure to overcome the numerical
problems caused by the initial inconsistency of the Gaussian (2.15)(a)

with the interface condition (2.49)(al.

We begin by sampling point values of the transformed initial data
(2.15)(a) at the nodal positions (the determination of which has been
described in the previous section). The interface condition (3.4]) is

discretised using

{3.9)

T 8,10 1) [ %,5 %,1) +s5(0) (1-y/mlC =0 ,
B e o s,1
A X
1
where the additional I and J suffices respectively denote values at the
interface and its adjacent node, and AX1 represents the length of the first

silicon element. We then rearrange (3.9) and apply a Picard iteration of the

form
(k) (k) (k) "
<I>5,I - Cs,I + Ind CS,I }
K z0 (3.10)
(k+1) : (k) [ '
otk = e+ axgs, Umy/m) 'O €+
(k)
DS(CS,I )

Note that @S remains unchanged, and that the first iterate is supplied

)
by the initial data sampling.

In practice only one iteration is required to satisfy the convergence

criterion.
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Determination of Interface Dopant Concentration

We determine the interface dopant concentration in the oxidising

silicon at each time-step by applying an iterative technique to (3.4).

The process can be summarised as follows:-

(1)

(ii)

(iii)

(iv)

(v)

Estimate the interface nodal value velocity.

Set up the full MFE system, overwrite it with the interface
nodal value velocity estimate, and then solve it for all nodal
position and value velocities.

Temporarily update the interface nodal position and value, and
those of the adjacent silicon node.

Determine whether or not the discretised form of the moving
interface condition at the next time level is sufficiently
satisfied; if not, then adjust the interface nodal value velocity
and return to (ii).

Repeat steps (ii)-(iv), but with a reduced system for the nodal

value velocities only.

We now present a more detailed description of the above algorithm. The

velocity at the previous time-step (except initially, when a value of zero

is assumed) provides a reasonable first guess in (i). The conjugate gradient

method ([241) of sectionm 3.1.1 is implemented in stage (ii), and in practice

requires two or three iterations for inversion ([25]1). Temporary updating

of the nodal positions and values (denoted by the twiddle symbol) is

respectively provided for by
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v (K

s,M 5,M s,M
M=1I,J , k =20, (3.11)
(k) _ (k) Z(k)
QS,M - ¢5,M =l <I)E;,I"I
where AT(k] is the time increment at the kth iteration step. AT(K] is

chosen to allow potentially overtaking nodes to move no further than half
the collision distance, and to restrict the relative changes of the silicon
element slopes, interface dopant concentration and values of the diffusion

function at the nodes by 10%, 10% and 20% respectively.

Consider now stage (iv) of the procedure. We discretise the moving interface

condition (3.4) in an identical way to that described in 3.1.4, and let

~ ~ ~ i

~ L B ® B (B a0 o . _ % 8" (1) [1-v/mlC *
Fle, ) = _ “s,1 78 s, { s,J - 5,1 } + 8" (M M-y/mlC,
8, e i * 1 A Xy (3.12)
with CS I obtained from @S I via a Newton inversion of (3.1). The

criterion for convergence of F to zero is taken as

[Fle, )| < gy .

, 1 (3.13)
which, if not satisfied, necessitates the evaluation of
= _J3F 7
F¢ [@S,IJ = —:—(@S,I] . (3.14)
d
s,I

The interface velocity potential value at the next time level is now

predicted, using the Newton formula, as



= B ~“(k=-1)
oK)z Uk _Fle ol k21 (3.15)
5,1 8,1 =
F ka—1]
@[ s,1 ]
Our new estimate of the nodal value velocity is taken as
. (k)
(k) _ @ =
2,1 “Eig__TE?LE » kz1 (3.16)
AT

The full MFE system in (ii) is now overwritten using (3.16), and steps (ii)

to (iv) are repeated until convergence is obtained.

Step (v) is introduced into the algorithm in order to save on
computational time, since in one dimension we can employ an efficient
tridiagonal solver for the symmetric nodal value velocity system. The nodal
position velocities and time increment, which remain unmaltered throughout
the second iteration stage, are supplied by the last step of the first
iteration procedure, as is tha first estimate of the interface nodal value
velocity. As in the first stage, we discretise (3.4) using (3.12) and

investigate convergence via

|Fle_ )] <€, | (3.17)

;1
If (3.17) is not satisfied, then evaluation of (3.14), (3,15) and (3.16) must

be performed together with a further iteration.

The convergence tolerances in (3.13) and (3.17) are given by

€ = 1x107 , € = §x107° (3.18)

In practice, stages one and two of the iteration process are performed only

about one and two times respectively.
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3.2 Determination of Oxide Dopant Concentration Profiles

In section 2.2 we obtained a purely hyperbolic first order p.d.e.,
(2.17), governing the bebaviour of dopant in the oxide. This implies that
any profile in this region maintains its original shape and is propagated

at a velocity
-GZ[Y—1] S (T)

Any oxide initially present contains dopant whose concentration is given
by (2.15)(b). Subseguent interface concentrations can be acguired from

(2.19)(b).

In practice, we adopt the following procedure in order to obtain the
required profiles. The initial interface dopant concentration is obtained
from (2.19)(b) and stored, as is the length of the region if oxide is present
at the outset. At subseguent times, the interface concentration is evaluated
(from {(2.19)(b) ), and if significantly different from the previously-recorded
one, both it and the present length of the oxide region are stored. Each

required profile is then displayed according to the following:-

(1) Determine the location of the external oxide boundary and the

interface dopant concentration.

(ii) Plot all recorded concentrations at their corresponding lengths
from the boundary. Plot also the concentration in (i) at the

interface position.

(iii) Connect all points in (ii) usinmg straight-line segments.
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In this way we obtain adquate representations of dopant profiles

in the oxide region, without requiring large amounts of computation.
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4. RESULTS

We now present results of the simplified problem, in which we solve

for the transformed variable of the concentration.

4.1 Physical Data

The initial Gaussian implant is defined by

N=10%m2 ., o=-0.050m , R=0.25um , (4.1)

and the following physical parameters are used:

n; = 2.80 x 10"8m™3 D, = 2.64 x 10" HumZs ™

o = 1.50 , B =100.0 (4.2)

Y = 2.27 , m = 10.0
When oxidation is not considered the domain is given by

s, 0.0um , s, = 1.0um , (4.3)(a)

o

but when this process is included, an oxide thickness of 10A at the outset
gives rise to the initial region:

s,(0) = -0.001um , s(0) = 0.0um , s = 1.0um . (4.3)(b)

Iy

4.2 Presentation and Analysis of Graphical Output

Figures 1-6 show logarithmic plots (in order to emphasize the essential

features) of the concentration variable, C (in om_z], against the depth
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(in uym). In all graphs the final output time is 10,000 seconds and 23 internal
nodes are used. Total and clustered concentrations are respectively represented
by full and broken lines. In figures 1,.3 and 5, where the .concentration axis
denotes the fixed external silicon boundary, we see the initial profile and

its resulting shape. In figures 2, 4 and 6 the vertical axis, however,
represents the final left-hand position of the oxide region, in which only

the final configuration is displayed.

Consider, firstly the silicon region. Clearly visible in all figures
is the effect of the diffusion, which increases with temperature (as does
the distance travelled by the front and the magnitude of its gradient). We
see that the clustered components behave like the total concentration for
lower values, but can be significantly different for higher ones. The
motion of the interface causes the dopant concentrations in figures 2, 4
and 6 to be slightly higher than their corresponding ones in 1, 3 and 5. This

process also produces additional movement of the right-hand front.

Owing to the nature of the interface condition (2.19)(b}, the oxide
dopant concentration profiles ere merely scaled records of the dopent
behaviour at the interface, as driven by the silicon. In figures 2, 4 and
6 we observe that more oxide is grown at higher temperatures than lower ones,
and that the profiles within are vastly different. The Gaussian peak is still
far from the interface in figure 2, whereas it has almost reached the interface

in 4. Impact has, however, already taken place in figure 6, where the



concentration profile is similar to that of 4, but contains an additional

shallow piece near the interface.

Our results compare favourably with experiment. Because we do not

consider enhanced diffusion due to point defect generation at the interface,

however, we are unable to compare them with those given ik [121].

4,3 Comparison of C.P.U. Times Used

Table 1 shows the C.P.U. time (in seconds) used on a Norsk Data mini
computer when simulating both with and without oxidation at various

temperatures.

TEMPERATURE (°C)

850 900 950

/ _ o oxto. | oxio. || no oxto. | oxto. || no oxio. | oxao.

C.P.U. TIME

USED (secs.) 14.5 25.6 33.1 73.2 68.6 217.7

Table 1.

The above figures indicate a very efficient solution method for the
simplified oxidation-diffusion problem. We see that simulations without
oxidation at additional 50°C intervals cause the computer time used to be
approximately doubled, whereas with the inclusion of oxidation these values

increase by a factor of about three.
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S CONCLUSIONS

In this paper we have presented a one-dimensional model governing
the redistribution of dopant during the thermal oxidation of silicon. We
have described how a non-dimensionalisation of the original problem leads
to a much simpler partially decoupled one, in which oxide dopant profiles
can be obtained once the silicon sub-problem has been solved at the desired
time. The moving finite element method has been applied to a transformed
variable in the silicon region, and has efficiently produced satisfactory

results.

We hope next to extend the ideas ot this paper to a two-dimensional

oxidation-diffusion model.
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