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1. INTRODUCTION

The problem of harnessing tldal energy has attracted considerabls
interest over the past years. In Great Britain investigation has concentrated
on the generation of power from tidal flow in the Severn estuary, and
a recent report [6] has concluded that a barrage across the River Severn
could be both technically and economically feasible. The evaluation of
a tidal power scheme requires the accurate calculation of both component
costs and total energy production, and poses an extremely complicated
optimization problem. In this paper a global technique using the mathematical
theory of control is described for determining the maximum average power
generated from a tidal power scheme. This approach simultaneously takes
into account both items of plant, such as turbines, sluices, barrier sites
etc., and the dynamic nature of the estuarine flow, while optimizing the
engineering control parameters.

In previous studies of tidal power schemes [3] [6] [7] [13], the energy
absorption figures are calculated primarily using a simple linear model
of one-dimensional flow in a rectangulér basin, although for selected cases
some two-dimensional computations are undertaken. Wilson [13] analyses the
optimization of plant items using a flat surface model in which dynamic
effects of flow in the basin are not included. Count [3] examines the
dynamic model with an unperturbed tidal elevation imposed on the seaward
side of the tidal barrier and derives the optimal constant controllers for
two-way generating schemes with and without pumping, but in this analysis
time-dependent control parameters are not allowed. A describing function
approach is used by Jefferys [7] to investigate time-dependent controls,
with switches, in a similar linear dynamic model, and he derives an expression
for the average power output dependent on the switching times. He assumes,

however, that the head-difference and velocities at the barrisr vary
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harmonically with the tidal pseriod at a single frequency. This

approach 1s therefore limited in not taking account of significant higher
harmonic effects introduced by the switching controls, and 1s, furthermore,
difficult to generalise to more sophisticated system models with non-linear
head-flow relationships.

A general technique for optimizing the control parameters taking
into account both the estuarine dynamics and plant items simultaneously
is described by Birkett [1] and by Birkett & Count [2]. Optimal control
theory is applied to the full tidal power problem and the maximum-average
energy output is calculated for the simple flat basin model and for the
linear dynamic model of flow in a rectangular estuary. It is again
assumed that the tidal elevation on the seaward side of the barrier is
unperturbed by the flow across the barrier, and that the flow is directly
proportional to the head difference at the barrier. The feasibility of the
global optimal control approach is established, and various power
generation schemes are simulated, including both two-way and ebb generation
only schemes, and schemes with dual controls for sluices and turbines.

In this report we extend the application of these optimal control
techniques to more realistic models of estuarine flow in which the dynamics
in both the outer estuary and the estuary basin are taken into account.

The linear channel flow equations with variable coefficients are used,

allowing an estuary with variable cross-section to be treated, and

relationships between discharge and head difference are represented by
non-linear, but differentiable, functions. In the next section the mathematical
model of the system is described and the corresponding optimal contré;

problem 1s formulated. The model 1is analysed and necessary conditions for

the solution of the control problem are derived in the following sectilons.

In Section 3 a numerical method for determining the optimal control strategy

is developed and a computational algorithm 1s given. Results are presented

in Section 4 for two model schemes: the first for a rectangular channel,



and the second for an approximation to the Severn sstuary. Conclusions

are given in Section 5.

2, THE MATHEMATICAL MODEL

2.1 The System Equations

The fluld dynamics in the estuary are modelled by the one-dimensional

linearised shallow water equations [12]:

b[XJnt = _(A(X]U)x

X € [—21:22] ’ (1)

[y
n

£ = TEny - pu/h(x)

where b(x) > 0, A(x) > 0, h(x) > 0 are the mean breadth, mean vertical
cross-sectional area and mean height of the channel, respectively, g > O,

p > 0 are gravitational acceleration and linear friction constants,
respectively, n(x,t) 1is the water elevation above mean height, and

ulx,t) 1is the horizontal component of fluid velocity. The tidal basin

is taken to lie upstream of the tidal barrier, located at x = 0, as shown
in Fig. 1. At the seaward end of the estuary (x = -21) the tidal elevation

f(t), assumed periodic with period T, is imposed, and at the upstream end

of the basin (x = 22] zero flow is assumed, giving boundary conditions

n(—2/11t] =] 'F(t) ’ U(lz.t] = 0, (2]

Across the barrier the continuity condition
- - + +
ACO ) u(O0 ,t) = A(0') ul0 ,t) (3)

must be satisfied, and the functions n, u are required to be periodic

in time with period T, such that

n{x,0) = n(x,T), ulx,0) = ulx,T). (4)
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The barrier 1s assumed to contain two types of device: turbines
and sluices, which can both be controlled. The discharge for each turbins
and slulce is denoted by q1(t), q2(t], respectively, and the relationships

between discharge and head-tlfference AH(t) are described by
qq[tJ = P(MH(E)), qz(t) = RCAH(E) ),

where P and R are differentiable functions with derivatives

P'20, R'20, and M is defined by
M(t) = n(07,t) - nlo’,t).

The total influx of fluid Q(t) from the estuary to the basin across

the barrier is then given by
Qlt) = k1a1[t] P(AH) + k2a2[t] R(AH),

where the control vector a = [a1,u2]T gives the proportional discharge
across the turbines and sluices, respectively, and kq’Kz are constants
representing the maximum number of turbines and sluices available for

operation. The controls are thus bounded such that
0 < U.,](t], uztt) < 1:
and we require that the flow at the barrier satisfies
AL0TIul0®,t) = Qrt).

The instantaneous power developed by each turbine is assumed
proportional to head difference and is given by pgq1AH, (although a more
general relationship can be used). The average power output P of the

tidal power plant is therefore given by

T
—=")_g-.
P T jg k1a1P(AHJAH dt.

(5)

(6)

(7)

(8]

(8)



2.2 The Optimal Control Problem

The optimization problem is then to determine the controls G, O
to maximize the average power output P, given by (9), subject to system
equations (1) and boundary conditions (2) - (4) and (8). Admlssable
controls are assumed to be piecewise continuous (with a finite number of
finite jump discontinuities) and are required to satlsfy (7).

It is convenient, both theoretically and numerically, to separate
the differential equations describing the dynamics in the estuary and

in the basin into two sets, coupled by the boundary conditions at the

barrier, and to rescale the equations thus obtained such that 0 < x, t £ 1,

in each set. The optimal control problem is then reformulated as:

1
max Eal) = [ a1(t] P(AH)AH dt
0 < a1t <1 0
0 < azt <1
subject to system equations
~i 1 =i i
b ng = (A~ u )x
X € [01131 i=112:
1 _ -1 i« 1,1
Up = 8" n u/h

and boundary conditions

(1) nleo,t) = #(t)

: "2 2 -
(11) A2(0)W2(0,t) = koa,P(AH) + K, 0 R(AH) L
(111) Al(DWl(1,1) = A2(0)u2(0, )
(iv) 201,t) = 0

e
and
0 = ntix, 1
i=1,2,

ui(x.DJ = ui[x.1J

where AH(E) = nl(1,t) - n2(0,t).

(10)

(11)

(12)

(13)

(14)



The superscripts 1=1,2 indicate quantities for the outer estuary and

the estuary basin, respectively. We note that the average power output

P, defined by (8), is now given by P = pgk1E. The system parameters

~ 1 s ~1 ~1 ~ .

p, £, b (x), AT(x), h"(x) (i =1,2) and f(t) are rescalings of the original

system parameters p, g, b(x), A(x), h(x) and f(t) described in Section

2.1, and are written, henceforth, without the tilde (~).

2.3 Analysis of the Maodel

For the control problem (10) - (13) to be well-posed it is necessary
that, for any given admissable (non-trivial) control functions aq(ti,
az(tJ, the system equations (11) together with the boundary conditions (12)
and (13) have a unigue solution, continuously dependent on the data of
the problem. To show this it is necessary to demonstrate that the boundary
conditions (12) are consistent and that time-periodic conditions (13) are
natural to impose.

2.3.1 Boundaqy conditions

The equations (11) represent a system of hyperbolic partial differential
equations, and for consistency it is necessary that the boundary conditions
(12) provide a unigue transfer of values from incoming to outgoing
characteristics at each boundary (see [8]). The characteristics for

system (11) are given by

dx/dt = +ct(x) =+ etAtoamiog,  1=1,2, (15)

and ci(x] represents the local wave speed. Equations (11) may therefore

be re-written in terms of canonical variables vi, wi, defined such that
ni = (vi + wi]/ Vgi s

o - whs alnt,

(16)

cC
]

and 1t may then be shown that vi. wi are given (locally) along the



characteristic linas by

dvi/dt = - p(vi-wi]/Zhi along X = + ci[x).
(17)
dwi/dt = + p(vi-wi]/Zhi along X = - ci[x].

(Here ws have assumed that dAi/dx. dbi/dx are small compared to Ai, bi

and therefore that the remaining terms in (17) may be neglected locally).
The values of vi, wi are therefore carried into and out from the boundaries
along characteristic lines of positive and negative slope, respectively,
as shown in Figure 2, and it is sufficient to show consistency of: the boundary
conditions (12) in terms of the canonical variables.

Boundary condition (12)-(iv) is simply a reflection condition
eqguivalent to

w2(1,t) = v2(1,t), (18)
and condition (12)-(i) simply gives
vl(o,t) = 2 Vgl f(t) - wl(o,t). (19)

These two conditions are therefore consistent, and it remains to show
that wl(1,t), v2(0,t) are uniquely determined from v!(1,t), w2(0,t)
by the conditions (12)-(ii) and (12)-(iii). From the latter we
obtain

wl(1,t) = vl(1,t) - /A2b2 (v2(0,t) - w2(0,t)) / YAlbl , (20)
and substituting into the former we find that v2(0,t) must satisfy
v2(0,t) - w2(0,t) - F[,or,lvl['l,t] +02w2[1,t] —03v2to,tn = 0, (21)
where
Fly) = B1P(yJ + BZR(yJ.

and coefficients 8 and o are all positive constants. By

10 B 3
assumption P'(y) 2 0, R'(y) 20 ¥y ¢ R, and hence 3F/3vZ = -o4F/dy < 0.



Equation (21) therefors has, at most, one solution for v2(0,t), and
together (20) and (21) define v2(0,t), wi(1,t) uniquely in terms of
vi(1,t), w2(0,t), as required.
2.3.2 Time-periodic conditions

The time-periodic conditions (13) effectively replace the usual
initial conditions associated with a hyperbolic initial-boundary value
problem. We show now that these conditions are natural to impose in the
sense that, in the limit as t + «, the soluticon o? the system equations
(113, with any given initial state, converges to a solution satisfying
the periodic conditions (13); that is, a "steady-state” periodic solution
to the system equations exists, satisfying (13).

To demonstrate this result we construct a periodic solution to equations
(11) with boundary conditions (12), using an iterative process. Starting
with any smooth initial state vector, the initial-boundary value problem
(11)-(12) is integrated with respect to time t over the interval [0,1]
The process is then repeated using the solution at t = 1 as the new
initial vector for the problem. The solution z(t) = nlix,t), ulix,t),
n2(x,t), uz(x,t]]T of the praoblem (j1]—(12) with initial data z = z(0)

at t = 0 may be denoted by
z(t) = G(t,0)z(0) ,

where G(t,0) is the "solution operator” of the equations. The iteration

process may thus be written in the form

M est,02" L, n=ot.2, ... (23)

If the iteration converges to a fixed point, that is, z" +.£* as n > o,

where E* N G(1,0)E* » then the solution of problem (11)-(12) with initial
data z(0) = 5* satisfles z(1) = E* = z(0) , and is the required solution

satisfying the periodic conditions (13).



A sufficient condition for the sequence defined by (23) to converge is

that G = G(1,U)' is a contraction, that 1s, G satilsfiles
ligz(0) - Gz(o) ||, < K[jzto) - Z(O [, » O<K<1, (24)

for any choice of smooth vectors z(0), 2(0), where |[.||s is a suitable
norm on L;[O.1] (see [91). 1In order to demanstrate that (24) holds it is
necessary to examine the evolutionary behaviour of the difference between

two solutions of the system equations. We use the obvious notation
20t) - 206) = 8z(t) = [6nl(x,t), Sullx,t), 6n2(x,t), su2(x,t11" ,

where z(t) = G(t,0)z(0) and 2(t) = G[t.O]éﬁD] are two different solutions
to the initial-boundary value prablem (11)-(12). From the linearity of

the differential equatibns (11) and the form of the boundary conditions (12]
we find that 6z satisfies the homogeneous forms of (11) and (12)-(1), (ii)

and (iv), together with the boundary condition

PP 2 2 - _ _ -
(iii) AZ(0Jsu?(0,t) = ko, (t)LP(AH,) P(AHZJJ ® K2a2[tJ[R(AH1] R(AH,)] (12)
where

B, = nl(1,t) - n2(0,t) , MM, = Alc1,t) - n2(0,t) . (14)°

For any sufficiently smooth admissable control vector a(t) , the following

equality is then obtained from the differential equations by partial integration:

1
J[blsnldni * Alaulaut/glldx =
0

i ~1N

i=1

1 . 2 \ x=1
f (alpcsdtyz/gtnhiax - T ratsutents . (25)
1% i=1 x=0

n
1
nes--1nN

i

From the boundary conditions
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u
-_—

X
tatsutonts = k0, (£)[P(AH,) - PLAH_)I[AH, - AH_]
] Ll = 1 2 1 2

n o~1N

i
+ k2a2(tJ[R(AH1] = R(AHZJ:][AH,l . AH2] , (26)

and since a1(t], az(t] 20 and P' 20, R'" 20, we have

a1[P(AH1J - P[AH2)][AH1 - AH2] >0 ,
(27)
az[R[AH1) N R(AHZ)][AH1 = AH2] >0
Then, denoting
2 Lo o .
Ilqg(t]Hé = ) f (b*(sn™)2 + At (suM2/g ) dx
i=1 7
we obtain from (25)-(27) that
s S lszmf2 <o,
and, therefore, that
ll6z(11]|2 = ||6z(0) - 62(0) |2 < ||5_z_[0]||52 = |lz(0) - zo|z . (28)

If P, R are strictly monotonic increasing, so that the stronger conditions
P' >0, R' >0 hold, then the inequality (28) is strict and G satisfies
(24) and is a contraction. We have, therefore, that if P, R are strictly
monotonic increasing, then for all sufficiently smooth admissable controls
al(t) Z 0, time periodic solutions of the initial-boundary value problem
(11)-(12) can be constructed.

We conclude that for all sufficiently smooth data the model problem

(11)-(14) is well-posed.
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2.4 Necessary Conditions for the Optimal

Necessary conditions for the solutlon of the optimal control problem
(10)-{14) of section 2.2 are derived by a classical technique using the
Lagrangian formulation of the problem (see [4]). This approach also provides
the basis for the numerical procedure described 1n the next section.

The Lagrange functional L(a) associated with the problem (10)-(14) is
defined by

1

L(a) = Ha1PtAH)AH + v, () (a0, 8] - FI0)) + v, (6 (ALCDUI(1, ) - A2(0)u2(0,t))
0

2 2 - -
+ v5(t) (AZ(D)u?(0,8) - ok P(AH) azsz(AH)]]dt +

1

i i ii i i 4di _4i
(Wt (-byng - (ATU) )+ Wl td U - gn - pu/hT)dxdt,

+
(=] »
=] -
[
n~1N

i=1
(29)
where Y1(t], Yz(t], Y3(t], A (x,t), ultx,tl (i = 1,2) are Lagrange
multipliers. For a(t) = [a1(t], az(t]]T to be optimal, it is necessary

that the first variation 6L(a,8a) of the functional L 1is negative,

where 6L 1is defined to be linear with respect to 6o = 8 - a and such

that
L(B) - L(a) = 8L(a,80) +o(]||B8 - af])

for all (smooth) admissable controls B . If we denote now the difference

between the responses of the system (11)-(14) to controls o and B by
Gnl(x,t], sut(x,t), i =1,2, then taking variations and using integration
by parts, we find that the first variation of the Lagrangian (239) can be

written in the form
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1

SL(a,80) = £)5a1(PtAHJAH = Ygk,PLAHD) - Bay gk RAH)

2'3

1 = 2 ' - [ '
+ (n101,8) - 6n2(0,t)) (o P1AH + a P (CTARE N
- snler,tdplca,t)gl + 8n2(0,t)u2(0,t) g2

+ sul(1, Al (v

M1,8)) - 8uZ(0,8)A2(0) (v, - v - A2(0,t)])dt

2 3
(30)
where &nl(0,t) = 0, 6u2(1,t) = 0, and A*, u', i = 1,2, satisfy
id ii
b At + g M = o ,
i=1,2, (31)
i ii o id
My ot A AX = pp /h ,
Al(o,t) =0,  u201,t) =0 (32)
AT(x,0) = AT, 1), i (x,0) = ptix,1) (33)
If also
glul(1,t) = g2u2(0,t) , . (34)
g2u2(0,t) + YalkqaP' + koo R') = a, (PTaH « P) (35)
AL(1,t) - A2(0,t) = Yy (36)
then the optimal control o must satisfy
1
5L[g,dg_] = [ (P(AH]AH - y3k1P(AH))6a1 - YSKSR[AHJGQZdt <0 , (37)
0

for all admissible variations &g .
The system (31)-(36) is called the adjoint to system (11)-(14). It can
be demonstrated by an argument analogous to that used in section 2.3 that

the adjoint problem is well-posed and possesses a unique solution for each



-13-

smooth admissible control al(t) # 0 . The energy norm used is given by

1

AL, ul, 02,2172 = o2« gtahizvatya
8 1 0

une~1N

i

and the iteration proceeds by backward integration in time.

We observe that if a(t) 1s any (smooth) admissible control function
and if ni(x,t], ui[x,t], i = 1,2, are the responses to o satisfying
(11)-(14) and Ai[x,tl. ui[x,t] are the adjoint fesponses satisfying
(31)-(36), then the first variation of L with respect to o equals the

first variation of E with respect to a, and we may write
6L(a,8a) = <VE(a),8a> ,

where &a is a (smooth) admissible variation, <.,.>» is the inner product
1
<p.x> = 4)E7(tlgﬁtldt , and the function space gradient

VE(a)(t) = [BE/Baq, 3E/8a2]T is given by

3E/da,y = PIAHDAH - (A2(1,%) - A2(0,8) )k P(aH)
(38)
S - 12
3E/3a, = - (A1(1,£) - A2(0,t))k,R(aH)
For the control o to be optimal, it is necessary, then, that
<VE(a), B-a> <0 (39)

is satisfied for all (smooth) admissible controls B (see also [10]1).

We remark that (38) is necessary but not sufficient to guarantee the
existence of a smooth optimal control. We expect, in fact, that the optimal
control is piecewise continuous, containing a finite number of jump

discontinuities. Such a control may, however, be approximated to any order

of accuracy by a smooth admissible control which satisfies (338) to within
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some tolerance. For a given control, the gradient vector 1s easily
evaluated from (38), and since the admissible controls must all belong to
a closed convex set for any value of t , the inequality (33) is easily
tested. Gradient methods can therefore be ‘applied to determine numerical
solutions of the optimal control problem. The numerical procedure
described in the next section uses such a gradient technigue to generate

a sequence of smooth approximations to the optimal solution of the control

problem (10)-(14).

3. THE NUMERICAL METHOD

The computaticnal method which we use to solve the optimal control
problem consists of a constrained optimization technique for iteratively
determining the control function, together with a numerical procedure for

solving the state and adjoint systems with a given control.

3.1 The Gradient Projection Method

Many efficient optimization techniques are described in the literature
[5], but previous investigation [1] indicates that the Gradient Projection
method is particularly suitable for attacking the optimal tidal power
problem (10)-(14). This method generates a sequence of smooth admissible
approximations gk[t), k=12, ... , to the optimal control ol(t) using
projections onta U_, in the direction of the gradient vector VE[QK)(tJ .

ad

defined by (38), such that E(a") > E(aM), Kk = 0,1,2, ... . Here U_,

is the set of two-dimensional admissible control functions B = [81,82]T with

0 561(t]ﬁ (t) < 1.The iteration is stopped when the measure s(g&) is less

than a given positive tolerance, where s(a) 1is defined by

s(a) = 2 <VE(@), B-oa> (40)
=~ "ad



and then gk

Evaluation of E

systems (11)-(14) and (31)-(386).

..15_

1s accepted as a "good"” solution to the control problem.

and VE

requlire the solutions of the state and adjoint

technique descrlbed in the next section.

These are computed numerically by a

The complete optimlzation algorithm is given by the following.

Algorithm

Step 1. Choose g?(t] € Ua

Set

Step 2. For

Step 2.

Step 2.
Step 2.

Step 2.

Step 2.
Step 2.

Step 2.

Step 3.

I

Set

ks

g @zo o,
8 ¢ [0,1]
E%: =0, VE": =0 .
= 0,1,2, do
set af*'; = Bl + 6VES) where B

operator onto U (C51, [91).

Solve state system (11)-(14) with o:

ad

Solve adjoint system (31)-(36) with

set EF*

CONTINUE
k+1

oa: = 0O

k+1

E(a” ') using (107,

vE ) using (38),

s using (4,

tol <then go to Step 3.

is the L2 projection

k+1
o]

k+1
e = o ‘

EK then set 6: = 8/2 and go to Step 2.1.

and STOP.

3.2 Numerical Solution of State and Adjoint Systems

The numerical solution of the periodic-boundary

is obtained by a discrete analogue of the iteration

in section 2.3.2.

With discrete initial data given

value problem (11)-(14)
process (23) described

at t =0, and t = At,

the system (11)-(12) is integrated forward by a finite difference method

(using steps of size

At) to aobtain solutions at t

=1 and t = 1 + At .
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The integratlon is then repeated using these solutilons as initial data. The
process 1s continued until the difference between the initial and final
solutions at t = 0 and t =1 is within some given tolerance. The
solution of the periodic adjoint system (31)-(36) is obtained by a similar
iteration using backward integration in time from discrete initial data given
at t =1 and t =1 - At .

The finite difference scheme used to integrate the state and adjoint
systems is a modified version of the Leap-frog mefhod [11]. The difference

approximations to the state system (11)-(12) are given by

1 n-1 n n
T P LR W T ST IS S B S VRPN (41)
i M "3 VitTiv e iy i
n+1 n-1 n n n+1 n-1
(u, - u ) = - v.g.(n, - n. ,) - patlu, +u, )/h, .
j i 383Ny T My-q7 T PARRY, j j
J=12, ... mm1,m*1, ... N-1, (42)
with boundary approximations
N N
ng £, (43)
A" = o kPR + ok,R(AAT (44)
mm 1 21
n
UN = ( ’ [45)
where
=N _ ... Nt n+1 1. N1 n-1
AH = 2[”m—1 N )+z(nm_,l N ) (46)

The difference approximations to the adjoint system (31)-(36) are similarly

given by
bj[xg+1 - x§'1] = - ngj(pg+1 = u?l . 3 =12, ... N-1, (47)
n+1 n n n n+1 n-1)
-l = - v A" =T )+ pat ,
My T T T V4R T Ay T oRAt ey ey /Ry

3 =12, «o. m=1,m+1, ...N-1,  (48)
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with boundary conditions

AO =0 , (49)
N _ Noy My —n Ngy (7N N.y Ny Y =N
g up = o (PTAHDBAT + POARD) + (k,0qP (BH) + ko R' (AR )AL (50)
n
My = o , (51)
where
A" = 3™ o™ Lol L (52)
m m-1 m-1
Here a., o approximate a,(t), a (t) at points t = t oA
e g 2R 4 E0 9% P n’ M5 %
approximate n(x,t), A(x,t) at points x = xj, t = tn, and ug, u?
approximate u(x,t), ul(x,t) at points x = xj_l, t = tn (i.e. the finite
2

difference meshes are staggered in the space dimension).

The values of the

system parameters are given by bj - b1[xj + 1), Aj = Al(xj_l + 1),
2
h, = hl(x, , +1) for j<m and b, = b2(x,), A, = A2(x, ,), h, = h2(x, ,)
J J-z J J J J-z J J-z
for j zm, gj =gl for j<m, gj =g2 for j>m, and £ - f[tn]
The difference mesh is shown in Figure 3 and is defined such that Xg = ° 1,
xj = -1 + ij1 for j < m, xj = (j-m+ %]sz for j = m and XN—% = 1
The tidal barrier is positioned at x = xm_l =0 . In the time direction,
2

tn =nAt , no= 0,1, » where At 1is chosen such that

at < MNAE /A g A%},
1, J JJ 1

and the parameter Vj

is defined by vj 2At/Ax1 for Jj < m and

v 2At/Ax2 for j2m.

J

The difference schemes (41)-(46) and (47)-(52) are completely explicit

except at the barrier, where the approximations (41) and (47) together with

the boundary conditions (44) and (50) give two sets of simultaneous equations
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for the unknown values of n and X at the points xm_1 and xm on the
new time level. The equations for n are non-linear and are conveniently
solved using Newton's method, while the equations for A are linear and
are solved directly.

The discretizations of the state and adjoint equations are specially
formulated to ensure the stability of the numerical integration procedures.
Stability for all values of the parameters vj up to the Courant-Friedrichs-
Lewy limit of vj < VE;7R;EE- is established by cénsidering discrete
"energy” norms analogous to the continuous norms defined in section; 2.3
and 2.4. Convergence of the iterative processes for determining the
periodic solutions of the state and adjoint equations is similarly proved
for the discrete problem with the same parameter values. A detailed
analysis of the stability and convergence of the numerical procedures is
given in [1].

The optimization algorithm of section 3.1 can also be shown to converge
for some sequence of parameters 6 [5], [1] . We remark, however, that as
only discretized solutions of the state and adjoint variables are determined,
in practice a discrete analogue of the optimization aigorithm is actually

used. Details of the discrete algorithm are discussed in £1].

3.3 Treatment of Ebb Generation Schemes

Schemes in which power generation is allowed only during ebb tide flow
are also described by the model problem (10)-(14). It is assumed naturally
that P(0)} = R(0) = 0, and the function P describing the discharge through

a turbine for an ebb generation scheme therefore has the property that

Ply) =0 ) Vy=20;

that is, power generation takes place only when the head-difference is

negative. In this case P(y) is not strictly monotonic increasing, and
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it 1s necessary to establish the convergence of the 1lterations for periodic
solutions of the state and adjoint equatlons. If we re-examine the argument
of section 2.3.2, we see that for the inequality in (28) to stand, it is
sufficient for the inequality to hold in one or other of (27), and therefore
convergence is obtained provided aZ(tJ Z 0, that is, provided sluicing
always takes place during some time interval in the tidal cycle.

A second theoretical problem arises in the ebb generation schemes if
P(y) dis not sufficiently smooth at y = 0 . In this case P'(y) may be
undefined for y = 0 . It is expected, however, that the head-difference
is zero only at isolated points in time, and therefore P'(y) is, at worst,
discontinuous at such points. Smooth solutions to the adjoint system
(31)-(36) are not then guaranteed to exist, but P(y) may be replaced by
a smooth approximation which is as close to P as required for accurate
numerical solutions.

We note also that, in ebb generation schemes, during periods when
P(y) =0 , the control function a1(t] has no effect, and in practice,
therefore, during periods when the head difference is positive the control

a1[t] is set to zero for convenience.

4. RESULTS

Numerical results are first described for the case of a rectangular
channel of uniform depth. The data is chpsen to allow direct comparison
with results reported in [2] and [3]. Then a second test'problem which

approximately models the Severn estuary is discussed.

4.1 Rectangular Channel

We examine first the case of a rectangular channel of uniform depth

described by the following data:
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b=1.510%m

h =15.0m

A = bh m?

-1
p = 0.0025 ms
T = 43200.0 s

.= 8 =510%m

1 2
K1 = 140
K2 = 160

P(y) = 321.0 y

R(y) = 1406.0 y

flt) F0 cos(2n/T)

The turbine and sluice discharges are here linear functions of head-difference.
For the case of ebb generation only the turbine flow function P 1is simply
set to zero whenever the head difference is positive.

For the two-way generation scheme the results of the optimization
procedure are presented in Table 1, illustrating the convergence of the
iteration method. The best average power output obtained is 0.195 GW/FS s
and for the corresponding control strategy the main parameters : tidal
elevation f(t), water elevation n(O—,ti and n(0+,tJ at either side of
the barrier, discharge q1[t], q2[t) and instantaneous power, as functions
of normalized time t ; water elevation n(x,t) and flow velocity u(x,t)
in the outer estuary and the basin at time levels t = 0.0, 0.2, 0.4, 0.6, 0.8;
and the controls a1(t], az(t] and gradients 3E/3a1, 8E/3a2, as functions of
normalized time, are shown in Figures 4, 5 and 6 for a unit amplitude tide.

It may be observed that there is a considerable distortion in the water
elsvation n(O—,t) at the barrier in comparison with the tidal function
f(t) imposed at the seaward boundary of the channel. Thils indicates the

significant effect of the flow across the barrier on the head difference.
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The corresponding results for the ebb-generation scheme are given 1n
Table 2 and Figures 7, 8 and 9. The best computed average power for the
ebb scheme is 0.191 GW/FS , and 1s very close to the best average power
for the two-way generation scheme. It should be noted that, whereas the
flow velocity through the turbines is restricted to be negative, there is
no such restriction on the sluice flow and that the positive only sluice
flow is a direct result of maximizing the average power functional.

If it is assumed that the tidal elevation is imposed directly on the
seaward side of the barrier, unperturbed by flow, then the best average
power output for the two-way and ebb generation schemes is given in [2] as
0.254 GW/FE and 0.203 GW/FS » respectively. It can be seen that when this
assumption is removed, the two-way and ebb generation outputs are much
closer to each other, but that the predicted average output for the more

realistic case is considerably reduced in comparison with the simpler model.

4.2 Severn Estuary Model

The second example we examine is an approximate model of the Severn
estuary. In this case the channel is of variable cross section and depth,
and the head-flow relationships for each device are non-linear. The
solutions depend non-linearly on the tidal amplitude, and a repreéentative

value of 5m. 1is taken. The model is described by the following data:

bl(x) = 3.00(1 - x/2) 10% m

bZ(x) = 1.5(1 -~ 0.8x) 104 m
hl(x) = 3001 - x/2) m \ x ¢ [0,1]1 ,

h2(x) = 15(1 - 0.8x) m

Ai(x] = hltbei(xJ m .
P(y) = 800.0 tanh(0.55y) ,
R(y) = 2000.0 tanh(0.55y) ,

flt)

1

5 cos(27t/T) m ,

with p, T, 2 12, k1, k2 as in the firat example.

1!
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The results of the numerical algorithm at each iteratlon are shown in
Tables 3 and 4, for the two-way andebb generation schemes, respectively.
The best computed average power outputs for the two schemes are 3.5 GW and
3.0 GW, respectively, with a 5 m. tidal amplitude. 1In comparison with the
linear example, the difference between the outputs of the schemes is now
much greater. The main parameters arelshown in Figures 10, 11 and 12 for
the two-way scheme and in Figures 13, 14 and 15 for the ebb scheme. It may
be observed that the time intervals over which each device operates during
a tidal cycle are much longer than in the linear head-flow example. This

reflects the fact that the maximum discharge of turbines and sluices is

1 3.1

restricted by the head flow functions P and R to 800 mas_ and 2000 m’s”

per device, respectively.

5. CONCLUSIONS
In this report we examine a general model of a tidal power generation
scheme and develop an optimal control technique for determining the maximum
average energy output of the scheme. The model incorporates the dynamics
in the full estuary, including the outer estuary and the inner basin, and
does not require the assumption that the elevation on the seaward side of
the barrier is unperturbed by the flow across the barrier. The linear
channel flow equations are used, and the estuary is allowed to be of variable
depth and have variable cross-sectional area. Non-linear head-flow properties
are permitted. The technique for maximizing the energy output is an
extension of methods previously developed for simpler dynamic models [1] [2].
The power generation problem is formulated using optimal control theory
and necessary conditions for the optimum are given. It is shown that the
system equations and the associated adjoint equations are mathematically
well-posed, and a numerical scheme for computing solutions is given. A

gradient projection algorithm is described for determining the optimal
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control strategy, and numerical results are presented.

The results
perturbations to
reduction in the
the full estuary

We conclude

indicate that barrier flows do indeed cause slgnificant
the head difference curve, and that there is a significant
estimate of the average power output when the dynamics in
are taken into account.

that the optimal control approach to the tidal power problem

is a feasible and attractive method for systematically computing flow

control policies, even for quite complicated dynamical models. The predicted

maximum average power output is significantly affected by the accuracy of

the model, and to obtain realistic output estimates further studies are

required, using refined models with more accurate data.
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LQ0BO0O0
LO08O00
LO0BO0O0
«Q0BO00
LQ0BO0O0
«Q0BO00
cQORO00
L008000
008000

(WD
030482
e LHIOBO
184063
« LB7YE]
+ 188994
+ 120002
10UV 3
1920829
o 19102
 1L9LOYE

GUP CGRATICE DY o B

cQAT70N
LO1H198
s QOEAY 2
QO2A0
L0021 44
Q014628
L001164
000672
+Q00EPY
+Q00HSY
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Table 3

VARTABLE DEPTH PRODLEM
SOLUTION BY PROJECTED GRADIENTS

NUMRER OF SPACE INTERVALS,N1 = 32
NUMBER OF SPACE INTERVALS,N2 = 44
NUMBER CF TIME INTERVALS = 995
NUMBER COF X-INTERVALS/PRINT= 1
NUMBER OF T-INTERVALS/PRINT=199
NUMBER OF ITERATIONS =15
LENGTH OF DUTER ESTUAPRY = SON00.0METRES
LENGTH OF ESTUARY RASIN = 50000.C METRES
FRICTION PARAMETER P = LO0Z2S5000METRES/SEC
TIODAL PERIOD = 42200.0SECONDS
NUMRER OF TURIINCS = 140.000CC
NUMRER OF SLUICES = 160.000GC

TIDAL AMPLITUDE ‘ = 5.0030G METRES

2-WAY GENERATION SCHEME

1 THETA E (GW) SUP(GRAD(E) . 3-4)
1 .000500 1.21593R 1.426960
2 . 000500 3.331076 272452
3 .000500 3.489467 0864657
4 .000506 3.525224 037201
5 .0C0N509 3.537445 .020659
6 .000500 2.544273 .011558
7 000500 3.543251 .005125
3 . 000500 3.550937 . 003280
9 .000590 3,552108 .002325
10 .000500 3.5527°7 .002275
11 .000500 3.553240 .001395
12 .000500 2.552408% .00159¢6
13 .000500 3.5538%7% .001353
14 . 000500 3.554087 .001156



VAREASLE OEPTH PROBLEM
SOLUTION RY PRNOJECTED GRADI

NUM3ER
NUMZER
NUMBER
NUMSER
NUMSER
NUMEBER
LENGTH
LENGTH

TIDAL

OF
OF
OF
OF
oFf
OFf
OF
0OFf

SPACE INTERVALS,NI
SPACE INTERVALS,N2
INTERVALS

TI“E

Table 4

ENTS

32
44
= 995

X=INTERVALS/PRINT= 1
T-INTERVALS/PRINT=199
ITERATIONS

OUTER

ESTUARY

ESTUARY BASIN
FRICTION PARAMETER P

PERIOD
NUMDER OF TURIINES
NUM3IER OF SLUICES
TIDAL AMPLITUDS

ESS-GENERATION

—
[ e IS N o W T O I N R ]

- =h
ny =
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SCHE™E

THETA
. 003500
=003500
. 000500
000500
.0C0500
.000500
000500
. 0005030
- 000500
0300500
«.C005GCG
0605046
2000500
.000500

=15

oo

5C0C0.0METRES
500C0.0 MCZTRES
.002500CETRES/SEC
(3200.0SECONDS
140,
1606.000C
5.C000

00006

E (GW)
«596114
2.2035671
2.605025
2.202540
2.5869578
ca933793
2.951333
2.963297
2.970649
2776210
2.980205
2.9827729
2.%846109

METRES

SUP(GRAD(EY . .2-4)

1.273453
«431645
s 124912
.103520
054719
.034379
.025733
0126739
«015620
012412
.013013
.J03197
005224
05941
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