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Abstract

This project investigates the use of upwind fluctuation distribution schemes to solve
the 2D scalar advection equation, mainly concentrating on triangular grids, although
basic quadrilateral grids are also analysed for the purpose of comparison.

Grid adaption is touched upon with the idea of the grid cells’ edges having a prefered
orientation with respect to the flow direction. Runge-Kutta (RK) time-stepping is used
on time-dependent problems causing schemes to approach their steady state orders, and
Flux-Corrected Transport (FCT) is used to produce monotone high order schemes.

Finally, a new scheme, third order accurate in space, is investigated. It is found to
have a preferred grid, and reaches third order accuracy for time-dependent problems when
equipped with third order RK time-stepping. For steady state problems, an FCT-type
algorithm is proposed which switches between the new scheme and a traditional FCT

algorithm to ensure a maximal order monotone scheme.
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1 Introduction

A certain class of cell vertex finite volume schemes was introduced by Roe [1] in the early
1980s, with the aim of solving the 2D scalar advection equation numerically. Consequently
developed further by that author and a number of others - most notably at the Von Karman
Institute for Fluid Dynamics in Belgium - the schemes are now applicable in 3 dimensions,
using systems of equations over many types of cells, working to a high degree of accuracy and
stability, especially for steady state flows.

Known as multidimensional fluctuation distribution schemes (or some variation of ) - whether
they are classified as Finite Difference (FD), Finite Volume (FV), or Finite Element (FE) meth-
ods often depends on ones own perception. For instance, the use of a piecewise linear solution
is the idea underlying FE methods, whilst the terms such as control volumes and monotonic-
ity originate from the FV schemes. How to best describe these schemes is academic, but the
fact that a variety of FD, FV and FE schemes may be written in the form of a fluctuation
distribution scheme offers a medium for comparing and possibly improving various features of
such methods.

For 1D advection, upwind schemes have been developed and proven to be both reliable
and accurate methods, with guaranteed positivity. These Godonov type methods, first intro-
duced in [3], involve the solution being cell-based and solving a Riemann problem at the cell
boundaries. Second order accuracy can be assured when coupled with monotonicity preserving
features such as flux limiting to produce so-called high resolution TVD schemes [4].

Extending into two-dimensions was originally ‘achieved’ by assuming 1D Riemann problems
perpendicular to cell interfaces, and again using Godunov type methods. However, this led to
a considerable loss of accuracy.

The problem of genuine 2D upwinding has been resolved by assuming a continuous piecewise
approximate solution and defining a fluctuation for each cell which can be thought of as the
distance of that cell from equilibrium. The method consequently distributes this fluctuation
(sends a signal in the language of [1]) to the cell nodes in order to move closer to equilibrium.

These upwind fluctuation distribution schemes, solved on a compact stencil, generally pro-
duce second order accurate monotone solutions in the steady state, but only first order for
time-dependent flows. One solution of the latter problem is by reconstructing the FE weight-
ing functions corresponding to the space discretizations to form a consistent mass matrix [5].
In this project one idea is to combine a second order scheme (e.g. Lax Wendroff) with a lower
order scheme (e.g. PSI) to get the benefits of them both. This is done in the form of an
FCT algorithm [6] [7] [8], or the more general fluctuation redistribution method of [9], both
being 2D forms of the TVD flux limiting schemes mentioned earlier. Another idea is to replace

the simple first order Euler time-stepping of a scheme such as PSI with a highér order TVD
‘7
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Runge-Kutta time-step as used in [21], in the hope that the time-step will not dominate the
truncation error, hence leaving the order of accuracy spatially dependent, i.e.” the order at
steady state. Both of these two ideas are met in Chapter 5.

The schemes can be applied on triangles or quadrilaterals, but the majority of the work
carried out in this project will be concentrated on triangular grids with their greater degree of
flexibility. This is introduced in Chapter 2 and represents the most thoroughly researched area
of fluctuation distribution schemes. However it must be pointed out that structured triangular
grids are generally used, although all the methods, and most of the results still apply for any
arbitrary triangulation. The structure of these grids ensures an underlying square grid when
the diagonals are removed, and provides an opportunity to compare schemes, devised in similar
ways, on both types of grids, (Chapter 3).

Such comparisons pave the way for a greater understanding of triangular grids and bring

forward the idea of a basic form of grid adaption. Making the following definition:

Let % be the smallest angle between the advection velocity X, and the diagonal part of the

triangular cell (see Figure 1).

>

Figure 1: The angle 1

If |7 <9 then the flow is in the SAME direction as the diagonals,
|51 > % then the flow is in the OPPOSITE direction to the diagonals.

It is well known that the direction of the diagonals can affect the performance of a scheme, hence
the idea of changing these diagonals to create a grid which enhances a scheme’s performance
is looked at in Chapter 4.

In an attempt to gain further accuracy, in this project a new third order fluctuation dis-
tribution scheme, proposed by Hubbard (private communication) is investigated in Chapter

6. Devised on an extended stencil, the basic scheme suffers from instabilities as well as a low

7
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order of accuracy for time-dependent problems. The idea in this work is to investigate and

attempt to improve the scheme using the framework set out in the preceding chapters.

2 Fluctuation Distribution Schemes on 2D Triangular

Grids

In [1], in an attempt to find a set of ‘rules’ to generate good numerical models of evolutionary

problems found in physics, Roe introduces two basic concepts:

o fluctuation is something detected in the data, indicating that it has not yet reached

equilibrium.
e signal is an action performed on the data so as to bring it closer to equilibrium.

These two, very basic ideas are the basis of the fluctuation distribution methods.

Consider solving the homogeneous advection equation in 2D,

us+ fot+gy, =0  or
u+ AV =0 (1)
on a triangulated domain, using a numerical method.

T
Here A = <%, -g%) , the advection velocity may be:

1. Constant - linear advection.
2. Function of z,y - non-uniform linear advection.

3. Function of u - non-linear conservation law.

Following on from FE methodology, a continuous piecewise linear approximation to the
exact solution is constructed in the plane. The approximate nodal solutions are stored at
the triangles’ vertices. Supposing these nodes have coordinates (z;,y;) the solutions have

representations of the form

u(z,y,t) = Z ui(t)wi(z,y)

where  w;(z;,y;) =1
wi(zi,y;) =0 for ¢ # j
w; is continuous and piecewise linear over the domain.Hence w; is a typical piecewise

linear basis function as met in FEs.
;
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Figure 2: Labelling of a typical triangle

Now, consider an arbitrary triangle in isolation with vertices vy, vq, vs, and corresponding

edges By, By, F3, and normals to these edges 71, fia, fis, (see Figure 2). For any such triangular

¢r = [[ wddy

= —//AX.§udwdy
- ]gAuX.dﬁ )

where A is the boundary of the triangle,

cell, its fluctuation is defined as

i is the scaled inward normal to the boundary.

Since u has been assumed to vary linearly across A, then,
¢r = —SrA.Vu
3
= -2 wki (3)
=1

where St is the area of the triangle,
ki = 1N
Throughout the development of these schemes, special care is paid to maintaining conser-

vation of the solution, i.e.

‘//domainutdmdy: Z //Autdwdy.

allA's

In determining the fluctuation (3), the piecewise linear solution is sufficient in the linear ad-
vection case, with a cell-wise local velocity being used in the non-constant case.

For the non-linear case,



uy + f(u)t + g(U)y =0,

an equivalent linear problem is defined in each cell. One consistent, conservation maintaining
5
linearised advection velocity, A, from [10] and used in this project, is obtained as follows.

For the arbitrary cell in Figure 3,

Figure 3: Labelling for the non-linear advection linearisation.,

>~1)

:<‘3) where g dP—fe  j_9r—9s ()
b up — uUQ UR — Us

where fp,gs,up,us are obtained by linear interpolation along the edges.

The computation of the k;’s in (3) has the added advantage of telling us the direction of
flow through a cell, with:

e k; > 0= E; is an inflow edge.
e k; < 0= F;is an outflow edge.
e k; = 0 = flow is parrallel to E;.

This is used later in devising schemes, and is especially useful in coding schemes with non-
constant flow.

With the fluctuation known, a signal must be sent to the triangles nodes in an attempt to
reduce the fluctuation. This is done by sending the cell’s fluctuation to the nodes of the cell

using distribution coefficients,

ar, - the proportion of ¢7 sent to node .

9
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Figure 4: Flow through a typical triangle

For schemes so far proposed, the fluctuation is distributed to nodes of the cell from which
it came. Hence, we have a scheme which is computationally compact, and so cells may be
considered in isolation with the resulting possibilities of parallel computing and all the efficiency
advantages that brings. Also, in order to maintain conservation at distribution, no fluctuation

should be lost or gained, i.e.

3
ZaTﬂ- = I VT

i=1
Bearing in mind that a node may receive signals from all its adjacent As, and using simple

Euler time-stepping, we get the general fluctuation distribution scheme,
At
utt = ul + — 3 aridr
S 7T
where S; is the area of the median dual cell surrounding node 3.

Note: 7 is a global numbering system. Since ¢7 is only distributed to the nodes of T, oar; =0

if 7 is not on T.

So it is the choice of a’s which defines an individual scheme. Such coefficients are chosen
with the usual considerations of stability, accuracy, simplicity etc. in mind.

We have 3 design criteria which are desirable for any fluctuation distribution scheme to

possess:

1. Continuity - this requires that the distribution coefficients ar; be continuous for changes

in both the advection velocity X, and the solution itself.

2. Positivity(P) - if a scheme is written in the form

10



uM! =3, quf , where ¢; is independent of the data,
then the scheme is positive if ¢; > 0 for all [. This guarantees that a maximum principle
is obleyed, which prohibits the occurrence of new extrema at the next time level, provided

a CFL-like condition is obeyed.

There is a fair amount of ambiguity in describing schemes which do not generate new
extrema. In this project, a scheme which possesses this property will be refered to as

monotone.

3. Linear Preservation(LP) - this requires that when the exact steady state solution is a
linear function of z and y, for any triangulation the scheme preserves this exact solution.
In [14] it is shown that a necessary and sufficient condition for an LP scheme is that
the ar;’s are bounded as ¢7 — 0. LP schemes tend to be very accurate, in fact they
suffer from no cross-wind diffusion and are second order accurate at the steady state [14].

However, if not equipped with positivity, they may suffer from spurious oscillations.

2.1 Upwind schemes

Upwind fluctuation distribution schemes are those which only send contribution to the down-

stream nodes. Using the introduced nomenclature, this can be written as,
ar; = 0 if k,’ <0

This leads to 2 possibilities:

e
(i)

/ (i)
Figure 5: (i) 1 inflow edge, (ii) 2 inflow edges

(i) All the fluctuation is distributed to the single downstream node.

(ii) Fluctuation is shared between the 2 downstream nodes.

11
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Now, it is desired to find schemes which satisfy as many of the design criteria as possible,
although it should be noted that it has been proven in [11] that no linear scheme can be both

positive and linear preserving.

2.1.1 Linear Schemes

These schemes are linear in the sense that the distribution coefficients (a’s) are independent
of the data (ujs). For all such schemes, as stated before, when we have one inflow side then
all the fluctuation is distributed to the downstream node. This strategy is both LP and P
satislying. So what distinguishes the schemes is the splitting of the fluctuation where we have

2 downstream nodes.

The LDA Scheme
The Low-Diffusion Scheme A (LDA) [12] is a straightforward, linear, LP (hence non-positive)

scheme derived from splitting the triangle into 2 parts. Assuming the fluctuation to be uniform

across the triangle, it is split into 2 by the velocity vector passing through the upstream node.

U3

Vg

V2
0

75
Figure 6: X passing through vy, splitting up the triangle.

The respective fluctuations in each triangle is distributed to the downstream nodes (o) in that

triangle. So using the triangle in Figure 6,

a1 = O,
Area/A143
ay = ——
Area/A123
~ AreaA124
% T Areail23’

which, after some working results in



R

ka
Gy = _?\7_1" R
Q3 = = E

Now, a; + a3 + a3 = 1, so conservation is maintained and, due to the LP property, steady

state results show very low cross diffusion, hence the scheme’s name.

The N Scheme

The Narrow (N) scheme [12] is the optimum linear positive scheme for minimising cross-wind

diffusion. It is obtained by adding parameters to create a general scheme and fixing these to
ensure positivity. It is however far nicer explained geometrically, like the previous case. Firstly,
let the advection velocity be expressed in terms of 2 vectors: A2 parallel to F, and A3 parallel
to Fs, such that,

4
l

X = 2+ Az

Figure 7: X and its 2 component parts.
Now, thinking of )\_; as sending some fluctuation to vz, and )\; sending fluctuation to v,.

Using the result,
ki + ks + ks =0,

\

and equation (3), the fluctuation may be written as

X

br = -

I
e

2(U2 - Ul) - ks(us

(X.Trg)(’U,g = ’U,l) =

1)
(A.1i3) (us — 1) N (5)

N | =
N | —

13
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So, thinking of vs receiving fluctuation via Ay, ¢35 say =

¢rs = —é(z\}.n})(uz —uy) — %()\—‘zn_:o,)(u;,w — uy)
== —%(A}.ng)(us — uy)
= _%(X.ng)(ug )

= _kS(US — ’U,l). (6)
Similarly the fluctuation sent by A3 gives
¢1,2 = —ka(uz — uy). (7)

Also, for the purposes of comparison, the actual distribution coefficients as found in [13]

can be written as

¢
ar; = ¢T (8)

where

4

max(0, k;) C
@y = : :

- O A O
Z?:I max(ﬂ‘;,;r.).zmln((), (i — u;)

i=1

2.1.2 Non-linear Schemes

The PSI Scheme

A non-linear scheme combining positivity and linearity preservation and being theoretically?
second order accurate at the steady staté was derived by Struijs [14]. Called the Positive
Streamwise Invariant (PSI) Scheme, its idea is to enforce invariance along streamlines (char-
acteristics). To do this a characteristic must be pictured, going through the upstream node if
there is only one such node, or through the downstream node otherwise.

The thinking now is to devise a scheme such that (see Figure 8)
™ (rons) = u™(rin)

It was later shown in [15] that the PSI scheme could be written as a limited version of

the N-scheme using the MinMod limiter. Looking at the case where we have two downstream

?It has been shown in [13] that the non-linearity causes a real order of accuracy of about 1.65

/
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Figure 8: The position vectors as the characteristic enters and leaves the triangle.

nodes, let the contributions to these nodes be ¢y, ¢, and ¢}, 5 for the N scheme and the PSI

scheme respectively. Then,

¢1 = ¢1— L(¢1, —¢2)
¢ = ¢2 — L(¢2, — 1) (9)
where L(z,y) : 2 — R is the MinMod limiter.

1 : 1,. . .
L(z,y) = 5(1 + sign(zy)); (sign(x) + sign(y) min(|z], [y]) (10)
So, a linear positive scheme has been taken, and a limiter applied to add linearity preservation

at the expense of the linearity of the scheme.

2.2 FE/FV Schemes

Although the following schemes are neither strictly upwind in the sense we used earlier nor
developed with a fluctuation distribution context in mind, they often show an upwind bias and
can be written in the form'of a fluctuation distribution scheme, thus enabling us to compare

with the newer upwind schemes.

The Lax-Wendroff Scheme

This is the unique single step, second order accurate, linear, LP fluctuation distribution
‘7
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scheme [16]. One way of deriving it is by using a finite volume approach, making use of

the Lax-Wendroff ‘trick’ of Taylor series expansions as follows:
L. Take the Taylor Series truncated to second order in time,
1
Un+1 ~u" + Atut + §At2utt.
2. Substitute in the advection equation,
n+1 n 1 2
u" —u" & —At(au, + buy) — §At (aug + buy):. (11)

3. Integrate over a ‘control volume’ - median dual cell, area S, (equivalent to mass-lumping

n FE)

4. Take a compact stencil of the form in Figure 9.

u(z + Az, y + Ay)

u(z + Az, y)

Figure 9: Compact stencil in consideration.

5. Write a linear combination of the above nodal values using unknown coefficients.

i 6. Expand these using Taylor Expansions.

i 7. Equate with (11) to find coefficients of nodes in the scheme to satisfy terms up to second

order spatial accuracy.

This gives a scheme which can be written in fluctuation distribution form, with

1 1 k;
LW = -4 At~
i 3 + 2 ST

where k; = %/\.TZ}

The Central FV Scheme

Taking a Taylor Series truncated to first order accuracy in time, i.e.

16



u™t U 4 Atuy,

and using the same technique as with deriving the LW scheme we gain the Jameson central

FV scheme [17] with

This can also be shown to be identical to the Galerkin FE method whereby the test functions
used in the weak form are the element basis functions w;(z,y) introduced earlier, albeit with
the additional use of mass lumping.

The complete lack of an upwind bias in this technique is reflected in the fact that it is
unstable. Hence, leaving out the dissipative contribution in the derivation of the scheme has
de-stabilized the scheme. Consequently, to recreate a stable scheme, a degree of dissipation

has to be re-added to the scheme.

SUPG Schemes
Streamline-Upwind-Petrov-Galerkin (SUPG) FE methods [18] aim to stabilize the above method

by re-introducing the dissipation in the test function w;,

w; :wi—l—'rl)\.Vwizwi-i-TlS—, (12)
i

where  wj; is the standard Galerkin test function,

71 1s a positive parameter.

Not surprisingly, depending on choice of 71, the LW scheme can be recovered via this
technique (letting 7y = %At). Again, using mass-lumping, this can be written as a fluctuation

distribution scheme with distribution coeflicients,

1 k;
ar; =5+

3 Tlg.
Thus, we have regained an element of upwinding from the second term which has the possible
effect of stabilizing the scheme (depending on the choice of 7).
Hughes [18] has further improved the method by adding a non-linear discontinuity capturing
term in the test function, 1,
W; = Wi + 12| Ve,

where X || is a projection of the advection velocity,

17



Ty 1s a parameter.

Johnson’s approach [19] was also to add this discontinuity capturing ter, but this time
to the initial equation (1) itself, using an artificial viscosity (AV) term, &2. So the modified

equation to be solved is

u+ X.Vu = ﬁ(kﬁu) (13)
Taking
1 A.Vu
= AN\
2 |Vu|+ Vz

gives distribution coefficients

wre Lyt Lo (DUl

14
3 ST 2 [/\VUlST ( )

where (k)| = % |

Returning to Hughes’ method, he uses parameters

1 Ax 1 Az
T = = Ny Ty = ———.
2 || 2 1Al

One way of looking at the accuracy of a scheme is by assuming any errors in the scheme are

equivalent to exactly solving a perturbed equation - the Equivalent Equation.

The Equivalent Equation is the differential equation that a numerical scheme actually solves,

rather than one that it purports to solve [9].

This can be found using an approach like that of [9] whereby the concept of a distribution
point is used.

This equivalent equation can be shown to be (13), hence Johnson’s and Hughes’ methods
both produce the same monotone fluctuation distribution scheme with distribution coefficients

(14), at least when solving the pure advection equation with constant velocity.

2.3 Numerical Results

The performacne of the schemes presented in this chapter is demonstrated on 4 test problems,

chosen to investigate various essential aspects of such schemes. The solutions are computed over
7
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a regular triangular grid with equi-distant nodal spacings of h=1/32 in both spatial directions.
Unless otherwise stated the grid used will be of the type A below, although the other two are

used to compare performance.

Grid Type A

Grid Type B Grid Type C

Figure 10: The grids used in this section

Firstly, a time-dependent periodical problem is investigated with the linear advection of a
double sine curve. By allowing the problem to run for one time-period, the numerical accuracy
of the schemes is investigated. In the next two problems, the schemes are left until the steady
state is reached and their respective efficiencies in modelling discontinuities is analysed in the
cases of firstly constant, then rotational advection. Finally, shock capturing properties are
studied by means of a non-linear advection equation, coupled with boundary conditions which

ensure the formation of a shock.

Constant Linear Advection

The first test case involves the advection of the double sine wave,

u = sin(2nz)sin(2ry) (15)

with velocity A = (1,2)7 over the domain (z,y) € [0,1]x[0, 1]. Periodic boundary conditions
are applied such that at t=1.0 the solution should have returned to its initial position.
Figure 11 shows the results of using five schemes with the CFL number of 0.72, comparing
the solutions at t=1.0. The following observations can be made from figure 11"
.
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CFL=0.716 | CFL=0.358
Scheme Ly | Ling Ly | Ling
LDA 0.83 | 0.85 ([ 0.70 | 0.73

LW 1.99 | 2.00 || 1.99 | 2.00
SUPG | 0.69 [ 0.73 | 0.98 | 0.00
PSI 0.76 | 0.81 | 0.64| 0.71
N 0.78 | 0.82 | 0.66 | 0.72

Table 1: Numerical orders of accuracy in double sine-wave advection case.

1. LW seems to preserve the solution best, despite a slight phase lag.
2. The other 4 schemes appear to have the curves merging together.

3. Streamwise diffusion seems to be the problem in these 4 schemes, most notably in the

SUPG scheme.

4. This diffusion is symmetric in both directions in all but the PSI scheme, which appears

to have more diffusion in the upstream direction.

L, Error Lm‘ Error

-05)

LOG(error)
1

LOG(error)
1

M . : P L f ; : | : i ) i A i i A i
2 21 2 19 18 -7 16 15 14 -13 12 32 21 2 -18 18 -7 -16 15 14 -13  -12
LOG(dx) LOG(dx)

Figure 12: Graph of respective errors on Grid A

Figure 12 and Table 1 show the results of a numerical accuracy study by refining the grid,
keeping the CFL number constant, and studying the norm of the error vector.
Not surprisingly from the visual results LW is the most accurate, reaching second order

accuracy for this problem, as predicted by the theory. The other schemes achieve accuracy of
‘7
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order between 0.5 and 1.0. One surprising result is that lowering the CFL number does not
necessarily lower the accuracy as would be expected from the theory (especially in the linear
case). This disagrees with numerical evidence in [5] which agrees with our initial thinking,
but uses more complicated Crank-Nicolson time-stepping. So decreasing time-steps could only
decrease error for some methods of discretising u;.

Also worthy of note is the closeness of the orders of accuracy of the PSI and N schemes,

mmplying that the MinMod limiter of the PSI scheme has minimal effect in this problem.

Grid Type A Grid Type B

Grid Type C

;
o) |

)

Figure 13: Advection of the double sine wave using the LDA scheme and different grids.

Figure 13 shows the results of using different grids on one scheme. From this the effect of
the grid type is very noticeable. More specifically, when the triangles are pointing in the same
direction as the velocity the scheme appears to suffer from streamwise diffusion (in the LDA
case at least). This problem is solved by using triangles facing the other way, which is partially
done in the Grid B case, and fully in Grid C. l

7
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LOG(srror)

L| Error Lh“ Error
il T T T | -0 e " e
o Gl G far
x ards % Gidp /,f'//£
i € s
4 Gl _gafl + G = -
-
-05 . -
—na /
-1 o
— T —j}
" A § /
& 2}
-15}
—1Af
—1E} /
-2}
»r —1at s
2 y ' \ n \ s \ N ! * 3 : . ) . ; 2
28 24 -2 19 18 17 -16 -5 14 13 -2 -22 -21 -2 -8  -18 17 -6 -15 -14 13 12
LOG(dx) LOG(dx)

Figure 14: Errors for the advecting double sine-wave on Grid A.

Grid || Ly | Lings
A 0.83 | 0.85
B 0.83 | 0.94
C 1.00 | 1.13

Table 2: Numerical orders of accuracy in double sine-wave advection case.
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Figure 14 and Table 2 shows the results of a numerical accuracy study by refining the
3 grids using the LDA scheme. The numerical orders of accuracy match up with the visual
evidence, i.e. for this particular problem the Type C grid is the most effective in modelling

the solution.

Constant Linear Advection of a Discontinuous Solution

The second problem models a contact discontinuity with a discontinuous profile moving with
speed X = (sink, cosE)T, in the domain (z,y) € [0,1])x[0,1]. The initial conditions are:

u(0,y) = 1 for 0<y <1,

u(z,y) = 0 for 0<z<l, 0<y<l, (16)

with inflow boundary conditions:

u(0,y) = 1 for 0<y <1,
u(z,0) = 0 for 0<z<l.

Fig 15 shows the steady state solutions of six schemes described earlier with a CFL number

of 0.32.

Circular Advection of a Discontinuous Solution

The third problem models a square waves convection around the origin with velocity X =

(y,—z)T, in the domain (z,y) € [—1,1]x[0,1]. The initial conditions are:

u(z,0) = 1 for —0.65 <z < —0.35,
u(z,y) = 0  elsewhere, (17)

u(z,0) = 1 for —0.65 <z < —-0.35,
u(z,0) = 0 for —1<z<-065 -—035<z<0,
u(z,1) = 0 for 0<z<1,

0,y) = 0

for 0<y <1,

Figure 16 shows the steady state solutions of five schemes described earlier with a maximum
CFL number of 0.45.

The following observations on discontinuity capturing can be made on the basis of the last

L

two examples:
-
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Figure 15: Linear advection of a discontinuity.
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Figure 16: Circular advection of a discontinuity.
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1. The N-scheme, being the only non-LP scheme on show, shows significantly more cross-

wind diffusion than the other LP schemes.

2. The 3 non-positive scemes (LDA, LW, SUPG) all suffer from spurious oscillations around
the discontinuity, with LW appearing to suffer the worse, followed by LDA then SUPG.

3. The artifical viscosity introduced in the SUPG+AV case has the affect of creating a
monotone scheme (no over or undershoots) but increases cross-wind diffusion of the

discontinuity.

4. In all cases the discontinuities spread out in the cross-wind direction. As all characteris-
tics are parallel to the discontinuities nothing can counteract the above affect [N.B. the

difference with shocks in test case 4].

5. PSI appears to be the best scheme, capturing the discontinuities both sharply and

smoothly.

Non-linear Advection with Discontinuous Solution

The final test case looks at a non-linear Burgers’-type equation,

aof
Ut+ (5&)$+Uy:0

over the domain (z,y) € [0, 1]x[0,1].
Using the linearisation (4) gives a local cell velocity X = (@,1)T where @ is an average of
the u-values at the cell vertices.

The initial conditions are u = 1.5 — 2z throughout the domain, with boundary conditions

u(z,0) = 1.5—2z for 0<z<1,
'u(O,y) = 1.5 for 0<y <1,
u(l,y) = —0.5 for 0<y<1.

This ensures the generation of an oblique shock as shown in the analytic solution depicted in
Figure 17.

Figure 18 shows the steady state solutions of 5 schemes with a maximum (theoretical)
CFL number of 0.58, whereas Figure 19 shows in more detail the efficiency of the schemes at
modelling the shock by taking a cut through the solution at y = 0.75.

Looking at the results, the following observations can be made:

1. In the lower part of the domain before the shock is formed, all schemes produce good
straight lines, including the N-scheme. The latter is a result of the solution being ap-

proximately linear here and the regular grid.
Ny
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Figure 17: The analytic solution for the non-linear equation.

2. The shock is most sharply captured by the LP schemes.

3. Looking carefully at the shock, the actual grid cells can be identified. For the LP schemcs
the shock appears to have cell-width of 2.

4. Any cross-wind diffusion does not increase with distance from the shock’s origin. This
is due to the fact that a shock has converging characteristics, thus cancelling out any
numerical cross-diffusion. This ‘self-sharpening mechanism’ of shocks [21] is not the same
for contact discontinuities where the characteristics are parallel to it. [c.f.:- behaviour of

the discontinuity in the last case].

3 Fluctuation Distribution Schemes on 2D Quadrilat-
eral Grids

As mentioned earlier, fluctuation distribution schemes on triangular grids have been widely
investigated and are believed to have reached a level of maturity. Obviously, they have received
the greater attention due to their greater geometric flexibility in solving real-life problems.
However, it has been noticed in [22] that quadrilateral grids produce more accurate solutions,
more economically in areas such as stretched layers.

This has been the inspiration behind extending the fluctuation distribution schemes onto
quadrilateral grids. Using approaches as with the triangle cases, equivalent schemes have been
devised. The schemes to be reviewed apply for all quadrilaterals, as the previous section did
for all triangles. However, the numerical results presented are derived using square cells.

As can be seen, this leads to a scheme producing nodal approximations at the same positions

as using a triangular mesh. This gives us a medium in which to compare the performance of
7
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Figure 18: Schemes effectivity at shock capturing.
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Figure 19: A cross-section through the oblique shock at y=0.75.
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Figure 20: A square cell as used in this section.

the schemes and investigate the claim of Struijs and Deconinck,

‘Freedom to cut the squares along either diagonal greatly enhances

the performance of the schemes.’ [23]

Take an arbitrary quadrilateral, Q, in isolation, with vertices vy, ..., vy, edges F, ..., F4 and
scaled normals to the edges ni, ..., n4, labelled, as in Figure 21.

As before, the cell’s fluctuation is defined by

o= }g _uX.di

Once more, if u is assumed to vary linearly across the cell, then using the trapezium rule yields
1 1
$q = 5(761 + ka)(uy — uz) + §(k1 + k) (ug — uy) - (18)
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Ry, }

Figure 21: Labelling of a typical quadrilateral.

where k; = %X.ﬁ,-

Note, the extra rigidity bought about using the quadrilateral cells leads to natural compar-
isons being made with FE and bi-linear basis functions. This is further emphasised with the
bilinear fluctuation distribution scheme [2].

The concepts of fluctuation distribution and conservation naturally move onto the new
cells, as does the flow direction’s relation to the kis. However, the concept of upwinding is not
as obvious as before, as shall be seen.

The schemes have form
At
u?+1 - u? —+ ? Z aT,i¢T
tQ

and we desire the previously defined criteria of Continuity, Positivity and Linear Preservation.

3.1 Upwind Schemes

Upwind fluctuation distribution schemes only send fluctuation to downstream nodes. So, for
downstream nodes ¢,

agq =0

Take the quadrilateral in Figure 21. Now, v and v are the upstream and downstream nodes

respectively. However, the classification of v, and vy is less clear and is scheme dependent.

3.1.1 Linear Schemes

In this category there are two important positive schemes and one linearity preserving one.
The first is the fluctuation distribution version of the simple first order dimensionally-split

upwind scheme (the DS Scheme). The second is the quadrilateral version of the N scheme, the

L
7
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Figure 22: Flow into a quadrilateral.
optimal NQ Scheme. Finally there is the LDQ scheme, a second order accurate version of the

LDA Scheme on quadrilaterals.

The DS Scheme

The positive first order DS Scheme uses the advection velocity approximated in the grid di-

rections. It is a three target scheme, selecting the downstream nodes depending on the signs
of ky = X.ﬁA and kg = X.ﬁB (see Table 3). Where 7is = %(ﬁl —1i3) and fig = %(fi‘; — 7iy) can

be geometrically represented (see Figure 23). For the first case in Table 3, the distribution

Vq V3

V1 (%]

Figure 23: The geometric interpretation of 774 and 7.

coeflicients are
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Target
ka > 0,k > 0 || vo,v3,v3
ks > 0,kp <0 || v1,v3,04
ks <0,kg 20 || v1,v2,v3
kqa <0,kp <0 | v1,v2,v4

Table 3: Target nodes for the DS Scheme.

1+,
O€2¢ = —)\. B(U1 . 'U,z),
2
1o, 1o
azp = EA.nA(uz —ug) + 5)\.713(114 — ug),
1o,
asp = 5)\. aur — ug),

(19)

with the other cases obtained by simple cyclic permutations of the vertices.

The NQ Scheme

The NQ scheme [22] is the optimal first order scheme with respect to minimising cross-wind

diffusion and so is the quadrilateral equivalent to the N-scheme. In fact numerical evidencein [2]
shows the NQ scheme to outperform the DS scheme by a factor of 93 in terms of computational
cost. It retains the exact advection direction unlike the DS scheme, and produces a two target
scheme, dependent on the signs of X.(fil +7g) = k1 + ko and X(ﬁl + 74) = k1 + k4, as in Table
4.

—(n1 + ng) —(n1 + n4)

ny + nq ny + ng

Figure 24: The directions used to define up/downstream nodes.
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Target
ky 4+ ko <0,k + k4 <0 V1, U2
-k1+/€2§0,k1+k420 Vg, V3
ky+ky > 0k1+ ks >0 | 03,04
ki + ko > 0,k + k4 <0 V4, U1

Table 4: Target nodes for the NQ Scheme.

Note:_the distribution coefficients ensure that when the advection velocity is aligned with the
diagonals 77y + fly or 7y + 714 the scheme becomes one-target.

Taking the case where the targets are v3 and vy, the distribution coefficients are,

arp = g =0,

az¢ = {ki +min(0, kz) + min(0, kq)}(uz — us) + {max(0, ks) — min(0, ko) }(uy — ug),

oy = {ky + min(0, ky) + min(0, kq)}(u1 — ug) + {max(0, k2) — min(0, k) } (ug — uy).
(20)

The other cases can be obtained with a cyclic permutation of the vertices. This is again a

positive scheme but not LP.

The LDQ Scheme
The Low-Diffusion on Quadrilaterals Scheme (LDQ) is a linear, LP scheme, developed by
Powell and Van Leer [24] using an area approach equivalent to that of the LDA scheme. Like

the NQ scheme it is a two target scheme and selects these targets in the same way, although

this is done automatically by the distribution coefficients,

. max{0, —X.(f; + 7i4)} . max{0, —X.(f; + 72)}
1 = N — — v - — ? 2 = v — g v — — ?
A(7ix + 7ia)| + [ Xy + 713))] A (fly + ia)| + A (7 + 735))
max{0, X.(7 + #14)} max{0, X.(f1 + 2)}
oz = Q4 =

IX.(7y 4 7a)] + [X(Ry + 752)| IX.(Ry 4 )| + IX(Ry + 752)|

(21)

Again, this scheme reduces to having a single target under the conditions above.
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3.1.2 Non-linear Schemes

Schemes such as the PSI scheme in the previous chapter are motivated by Sidilkover’s obser-
vation (see [12]) that LP schemes can be obtained from P schemes with the use of a limiter.

Mirroring the PSI derivation the MinMod function is used producing the NDS and NNQ

schemes from the DS and NQ schemes respectively.

The NNQ Scheme

The non-linear, P, LP, NNQ scheme is obtained by supposing the two downstream nodes as

defined for the NQ scheme receive contributions ¢7,¢3,

¢1 = ¢1— L(1, —¢2)
¢; . ¢2_L(¢27'—¢1)

where ¢, = contribution to node 1 from NQ scheme,
$2 = contribution to node 2 from NQ scheme,

L is the MinMod limiter (10).

3.2 The Lax-Wendroff Scheme

Using a stencil of the form of Figure 25, and the same approach as before the second order,

e o @
e ¢y ¢
@ ® ®

Figure 25: Stencil on quadrilaterals.

linear, LP, Finite Volume LW scheme is derived [25]. In fluctuation distribution form, it has

coefficients
]- 5tc v — — 1 6tc o — —
Q = 5{1 — Vc-[/\(nl —|— n4)]}, Qg = 5{1 . 76[)\(”1 + n?)]})
1 ote =, o i 6te v =
az = 5{1 + Vc[)"(nl + 7iq)l}, ag = 5{1 + 70[)‘-(”1 w ng)]},

(22)
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where

8t 1 i
Ve o X 4 7))+ [N (L + 7o)

Again, lacking in positivity, oscillations look to be a problem, especially near discontinuities.

3.3 Numerical Results

The performances of these new schemes are examined and compared to those of the triangle-
based schemes on two of the test cases introduced in the previous section. The solutions are
computed over a regular square grid with nodal spacing h=1/32 in both spatial directions.
Firstly the time-dependent periodical linear advection of the double sine wave is investigated,

followed by a look at contact discontinuities with the circular advection of the square wave.

Grid S

Figure 26: The grid used for the quadrilateral schemes.

Constant Linear Advection

The first case is the advection of the double sine wave (15). Figure 27 shows three of the
quadrilateral schemes being compared to the equivalent schemes on triangles at t=1.0 for
CFL=0.72. In the LDA case, where it has already been shown that Grid C produces superior
results, this grid is used, whilst Grid A is used for the PSI and LW schemes. The performance
of the NQ and DS schemes are investigated further in the next chapter, although mention of
them is made in this section. Table 5 shows the numerical orders of accuracy of these five new

schemes for this problem. From the given results the following observations can be made:

e The LDQ scheme suffers from streamwise diffusion and produces very similar visual
results and order of accuracy as the LDA scheme on Grid A. The LDA scheme on Grid
C as mentioned before, virtually eliminates this diffusion and holds the problems shape

very effectively.
.
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Figure 27: Advection of the double sine wave.

o The NQ scheme gives identical errors, hence an identical solution to the N scheme on

Grid A. This is further investigated in the next chapter.

e The NNQ and PSI scheme on Grid A produce very similar results to each other, and
relatively close to the N scheme on Grid A. In the last chapter it was said that the
problem limiter was not used extensively in this problem, explaining the closeness of the

results to their repective underlying schemes.

e As well as the customary phase lag, the LW on squares suffers from the curves diffusing
into each other, and its inferior order of accuracy points to the triangular based solution

being considerably better.
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Scheme || Ly || Linyg
LDQ 0.83 || 0.85

LW 1.11 || 1.14
DS 0.73 | 0.75
NQ 0.78 | 0.82

NNQ 0.76 || 0.82

Table 5: Numerical orders of accuracy in the double sine advection case.

Circular Advection of a Discontinuous Solution

The second problem is the rotation of a square wave about the origin (17). Figure 28 shows
the five square based schemes steady state solutions with a maximum CFL number of 0.45.

Comparing the results with them of Figure (11) the following observations can be made:

o The NQ scheme (surprisingly maybe) is less diffusive than the N scheme, which in turn
is less diffusive than the DS scheme. In fact, the N scheme seems to produce a solution
which is ‘between’ the NQ and DS scheme.

e The LDQ and LW scheme both produce the expected oscillations near the discontinuities.

e The NNQ scheme is the most effective scheme seen so far on this problem, mapping the

discontinuous part sharply and maintaining the smoothness of the rest of the solution.

So, does the above support Struijs and Deconinck’s claim [24]. On the basis of the first
problem the LDA and LW (triangles) schemes are superior, and the others relatively similar.
When the velocity is non-constant (Problem 2), then the triangular grid based schemes start

to develop problems. The next chapter attempts to look into these problems.
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Exact Solution LDQ

Figure 28: Advection of the double sine wave on Grid S.

4 Grid Adaption

One recoignised, and widely used way of improving numerical solutions to a problem is not
to choose a better scheme, but rather to change the grid on which the scheme is working.
Whether this be to create an initial grid appropriate to the problem and keep with it, or to
alter the grid at every time-step as is often the case in the non-linear case, giving a solution
dependent grid.

All schemes possess preferred grids and it would be the job of the analyst to search for its
theoretical ‘optimal’ grid and construct a grid as close to this as possible. This can be achieved
by either adding more nodes, altering the positioning/connectivity of the nodes already present,
or some combination of the two.

In Chapter 2 a very simple example of mesh adaption was met. The nodes are neither

7
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moved nor their numbers altered, but a simple change in connectivity to position the diagonals
pointing the other way led to a considerable improvement in the performance of the LDA
scheme. In this chapter, a similar phenomena is discovered concerning the N scheme via
comparison with the NQ and DS schemes. It is seen how such a result paves the way for more

extensive and complicated grid adaption.

4.1 Grid Adaption

The two main areas of adaptive mesh techniques are [26]:

o Grid Movement - a purely node movement technique, whereby the numbers of nodes stay

fixed, but move around the grid.

e Grid Refinement - extra nodes are added to create a finer mesh in areas where the
solution gradient is high e.g. discontinuities, shocks. Conversely nodes may be removed

from areas of constant or slowly varying solutions.

Typically, some approximate technique is used to monitor the error, and the above techniques
are employed in an attempt to reduce it. Obviously, the adapted grids are method-dependent,
but usually result in grids with nodes clustered around shocks and discontinuities, not surpris-
ingly so. But also, it can be seen that the cells themselves re-align themselves in an orientation

dependent on the flow direction.

4.2 The N Scheme on a Quadrilateral Grid

The work in Appendix A is motivated by an observation of Roe [23]. It is shown that using the
N Scheme on structured triangles with diagonals in the same direction as the advection yields
a scheme equivalent to the NQ Scheme on the underlying quadrilateral grid. Likewise, using
the N Scheme on triangles with diagonals in the opposite direction to the flow is equivalent to
carrying out the DS Scheme on the underlying grid.

Looking at truncation error, the DQ Scheme has leading term

%bin@cos@lﬂ sin 8] + | cos 0]}, (23)
compared to that of the N} Scheme,

%| sin 0 cos 0] {| sin 6 — cos 0]}, (24)

which is, on average, four times smaller than (23).
It seems perfectly reasonable and sensible to thus select or adapt a grid dependent on the

problem, hence maximising the scheme’s potential.
‘7
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It should be noted that since the limiting for the PSI scheme and the NNQ scheme occur
with respect to different cells, the equivalence of the underlying schemes is not preserved for
the limited versions. This explains the slight differences in their performances in the sine wave
problem. For the rotating square wave, when z is positive, the velocity is travelling in the
opposite direction to the diagonals, explaining the poor performance of the N scheme and

subsequently the PSI scheme.

4.3 Improving Grids for Linear Advection

It is presumed that the 6 above is an angle between the flow direction and the grid lines®. So,
if grid lines could be orientated to point in the flow direction these leading terms would also
vanish, thus giving the schemes an order of two. It is highly likely that all such coefficients
in the truncation error possess the factor |sin @ cos 0|, and hence such a grid alignment would
result in perfect advection of the solution. This suspicion is confirmed by advecting the sine
wave with X = (0,1)7, and X = (1,0)7.

A similar phenomena can be observed for triangles. Applying a grid movement technique
on a scheme suggested by Roe resulted in perfect advection for a grid in which each triangle
had an edge alligned with the advection direction [27]. A scheme presented by Baines, Leary
and Hubbard [28] possesses an optimal grid with cells aligned with the discontinuities and
shocks of the problem.

For the N scheme the previous section tells us that a grid of type D (Figure 30) is preferable
to a grid of type A. It is highly likely that the grid may be further improved by allowing cells
to align with the discontinuity, i.e. where the scheme may have problems. Further evidence of
this is given in [29] where an Fquidistribution Algorithm is used to generate an optimal grid

with respect to error, for the PSI scheme on the rotating square wave problem (See Figure 29).

4.4 Numerical Results

Numerical evidence of the effect of swapping diagonals is shown with the help of a new type of
grid (see Figure 30), especially formulated for the problem of circular rotation. Two problems
are chosen in order to see the respective diffusions caused by this and grids already met, for the
same schemes. Firstly the linear advection of the sine wave is used, followed by the introduction

of a new test problem - the circular rotation of a cone.

3Roe does not mention its origin, but subsequent work and consultation with Prof. Mike Baines makes this

the most likely option.
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Figure 29: The optimal grid for the PSI scheme and rotating cone (Hubbard)

Constant Linear Advection

The first test case is the advection of the sine wave (15). Figure 31 shows the equivalence of
the NQ and DS schemes to the N scheme for diagonals in the same and opposite direction
to the flow respectively, on such structured grids. Using this equivalence, the results from
Table 5 show that the N scheme’s order of accuracy is approximately 0.05 greater on grid A.
Looking at the plots, it can be seen how diffusion takes place in the direction of the diagonals.

Stream-wise for grid A and cross-wise for grid C.

Circular Advection

The second test case models the rotation of a cone 360° about the origin with velocity X =
(ry,—7z)T, in the domain (z,y) € [~1,1]x[0,1]. The initial conditions are:
u(r) = cos®2mr for  r <0.25,

u(r) = 0 elsewhere, (25)

where r? = (z40.5)2+y?. In asimilar manner to the sine curve, after t=2.0 the solution should
have completely rotated and be back in its initial position. So the results can be compared

to the initial solution (see Figure 32). Due to stability problems on Grid A the problem was
‘7
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Grid D

Figure 30: Grid constructed for circular advection.

carried out at a low CFL number, maximum 0.23. Figures 33 and 34 show the solution after
one rotation using the N scheme on Grids A and D. The contour plots show extra diffusion
on Grid A, especially in the streamwise direction, whilst the side-on plot shows the peak of
the cone has decreased far more on Grid A. Remembering that the N scheme is more effective
when the characteristics are in the same directions as the diagonals, this can be explained by
the fact this is always true for Grid D but only true in the upper left and lower right quadrants
for Grid A, i.e. a grid to fit the problem has been created.

5 Scheme Improvements

In the preceding chapters, it has been seen that the higher order schemes such as SUPG and
LW suffer from non-monotonic solutions, generating spurious oscillations, most notably in the
vicinity of discontinuities. In fact, it is well known that linear schemes cannot be both second
order and positive (Godunov’s theorem).

In one-dimension, the term Total Variation Diminishing (TVD) was introduced by Harten [20]
as a sufficient condition for a scheme to impose monotonicity. TVD can be achieved with the
use of either Flux or Slope Limiting schemes. The former family of scheme (used as post-
processors) involves the creation, then modification of the solution, and amongst them is the
Flux-Corrected Transport (FCT) Scheme proposed by Boris and Book [6], [7] in one-dimension.

Generalised into two-dimensions by Zalesak [8], it is a two-staged algorithm involving the
use of a higher order non-monotone scheme combined with a monotone lower order scheme to
create as higher order scheme as possible which does not create new extrema.

Another problem with the fluctuation distribution schemes is that of accuracy in time.
For the schemes first devised in a fluctuation distribution format, e.g. LDA, N; simple Euler

‘7
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N Scheme on Grid C

Figure 31: Advection of the sine curve.

time-stepping is employed. First order accurate in time, this has no effect on the steady state
problems where artificial ‘psuedo’ time-stepping is employed. However, when time-dependent
problems like the advecting sine-curve or rotating cone are investigated this limits the overall
accuracy of the scheme. Those schemes with other origins such as LW and SUPG gain higher
order time accuracy by having the distribution coefficients as functions of the time-step, AT.

The FCT algorithm attempts to do this by resorting to the higher order LW scheme when-
ever possible, and Marz [5] succeeds to some degree by taking a Petrov-Galerkin type, FE
approach, creating a consistent mass matrix. In this project an attempt is made to improve
time accuracy by replacing the Euler time-stepping with the TVD Runge-Kutta (RK) time
discretisation used by Shu and Osher [21] in the hope that the overall order of accuracy is no

longer time-step dependent, and thus reaches an order close to that of a steady-state problem.
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Figure 32: The initial solution for the rotating cone problem.

5.1 The FCT Algorithm

The FCT algorithm involves using a combination of a higher order non-monotone scheme
(typically LW) and a lower order monotone scheme (typically PSI) in such a manner that the
higher order method is used to the greatest extent possible without producing new extrema at
the next time-level. Consequently, this results in the higher order scheme dominating in smooth
regions and the lower order scheme being favoured for a locally rapidly altering solution.

Using notation from [9], the scheme can be written as:

1. For each triangle, j:

(a) Compute the Lower Order Element Contributions to nodes i (LEC?) for the PSI

scheme.

(b) Compute the Higher Order Element Contributions to nodes i (HEC!) for the LW

scheme.

(c) Compute the Antidiffusive Element Conributions (AEC!), given by,
AEC = HEC - LEC.

2. Transport Step - for each node, ::
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Figure 33: Contour plots of the solutions after one rotation.

e Compute a lower order update
uf =ur 4+ Y LECI.
JEA
3. Limiting Step - for each A:
¢ Limit the Anti-Diffusive contributions such that,
AEC! = B/AEC! : 0<p <1
4. Corrector Step:
e Compute the final solution,
uftt = uf + jeun, AECE.

The limiting procedure required to find the $7’s in Step 3 is described in [8]. In the
Fluctuation Redistribution Algorithm of [9] this is taken one stage further by using individual
triangle/node limiters 37. However, with this more flexible approach, extra care must be taken

to ensure conservation, which is automatially ensured with the FCT approach.

5.2 Runge-Kutta Time-Stepping

Improving the order of accuracy of fluctuation distribution schemes has been attempted with

some success in papers such as [5], where the PSI scheme has been seen to almost double in
z
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Figure 34: A side on plot of the solutions after one rotation.

accuracy for the advecting double sine wave case on Grid A [9]. Also Jameson manages to
stabilise his central FV scheme with the use of RK time-stepping [17].

The following method is taken from work done in [21] to improve the time accuracy of
the essentially non-oscillatory (ENO) slope-limiting TVD scheme. Previously ENO had used
Euler time-stepping which is assumed to be TVD [21]. This is then replaced by an r-th order
accurate RK time discretisation with coefficients chosen to ensure TVD, where r is the order

of the spatial operator. It can be written as

i—1
u(i) = Z Ot,'ku(k) + ,BikATL(u(k))

k=0

1=1,..,7

where, u(® = u", u() = u™*, and L(u) is the scheme’s spatial operator.

Now the coefficients for the methods are

Order || oy B

2 1 1
33 |03

3 il 1
SHIE
505003

and so, the idea is to use RK time-stepping in the fluctuation distribution methods. Hence
7
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the above scheme can be used, with

L(u) = SLZ CYT,,'¢T.
o wil

5.3 Numerical Results

The effectiveness of these two improvements is tried out on two of the test problems. Firstly, the
advecting sine-wave is investigated, then the rotating square wave, to gauge the performance

of these techniques a on selection of schemes.

Constant Linear Advection

The first case is the advection of the double sine-wave (15). TFigure 35 shows the results
after t=1.0 of using the FCT and Fluctuation Redistribution Algorithms with the PSI and
LW schemes, against those of their underlying schemes. The test is done on a grid type A
with CFL number 0.72. Both the FCT and Fluctuation Redistribution schemes give solutions
very similar to the LW scheme, implying there is little need to resort to the lower order PSI
scheme. This is further emphasized with the numerical orders of accuracy for this problem,
giving Ly orders of 1.99 for both schemes, and L;,s orders of 2.01 and 1.25 for the Fluctuation
Redistribution and FCT Schemes, respectively. In fact looking at the actual errors, they are all
very similar, most notably between the LW and Fluctuation Redistribution Schemes. However,
the greater accuracy of the latter scheme over FCT does come at the price of a posible loss of
conservation.

The problem was also tried using RK2 and RK3 time-stepping on the PSI and LDQ schemes.
The results for refining the grid were practically identical for both RK2 and RK3, implying that
it seems a waste to employ a time-stepping method of order greater than the spatial operator.
The results for the grid refinement are shown in Figure 36. The numerical order of accuracy,
is the asymptotic gradient with respect to Log(dz). Before, the curve had levelled out quickly,
but in this case it is continuing to steepen despite considerable refinement. All that can be
concluded from this graph is that, by observing the general trend, the order of accuracy is at
least that of the most refined gradient 0.90 and 0.88 in the PSI case and 0.86 and 0.89 in the
LDQ case for Ly and L;,; orders respectively. The hope would be that as Log(dz) — —oo
that the gradients would approach 1.65 for PSI and 2.00 for LDQ, their steady state orders
of accuracy. However, whether this happens or not, the RK2 time-stepping has still brought

about an increase in accuracy over the Euler time-stepping.

Circular Advection of a Discontinuous Solution

The second problem is the square wave being rotated about the origin (17). Fiéure 37 shows
‘7
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Figure 35: The advecting sine curve at t=1.0

the performance of the FCT and Fluctuation Redistribution Algorithms compared to their
underlying schemes on Grid A with maximum CFL=0.45. As expected they model the dis-
continuity very sharply, nearly as well as LW, but do not suffer from the spurious oscillations
which plague the LW solution. For the Fluctuation Redistribution case the solution does not

seem to model the discontinuity quite as well, possible due to a lack of conservation.

6 A New Scheme

This chapter looks at a new, third order spatially accurate scheme which will simply be called
the 3rd Order Scheme in this project. Derived in a similar way to the LW scheme it has been
proposed by Hubbard (private communication). The scheme has been shown by the proposer

to be unconditionally Fourier unstable, hence some of the techniques and ideas’introduced in

~
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Figure 36: Numerical orders of accuracy using RK2 time-stepping on Grid A.

this project are used in an attempt to improve the scheme.

6.1 The Scheme .
The idea behind Hubbard’s new scheme is to take a Taylor Series, truncated to first order in

time,
u"t w4+ Aty

as with Jameson’s central scheme [17], and derive a scherne using the steps as for the LW
scheme (see Section 2.2), but with two differences:
e In Step 4 the stencil used incorporates nodes on the next band of triangles out (see Figure
38).
¢ In Step 7 the coefficients are found to satisfy spatial accuracy up to order 3.
So the scheme uses a less compact stencil similar to those used by the slope limiting al-

gorithms like ENO. This loss of compactness inevitably leads to longer computer run-time as

well as a requirement for more storage.
Simple calculus shows that only ten degrees of freedom are needed to make the scheme third

order accurate in space, whilst there are thirteen points in the stencil. Hence the proposer has
a great deal more flexibility than Jameson and consequently refined his stencil to give it a

more upwind nature. He accomplished this by getting rid of the furthest downstream nodes
(see Figure 39). '
‘7
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Figure 37: The rotating square wave at steady state.

The resultant scheme may be written in fluctuation distribution form, where the fluctuation

is distributed to the nodes of neighbouring cells, as well as its own, as follows:

(I) If there is 1 inflow edge, then

o of = s where i are upstream vertices of T.

e of =1 where i is the downstream vertex of T.

o ol = —% where i are vertices of opposite outflow edges.
e of =0 where i is the vertex opposite inflow edge.

(II) If there are 2 inflow edges, then

e of = 2 where i are downstream vertices of T.
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Figure 38: Extended stencil on a Type A grid.
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Figure 39: The refined upwind stencil on a Type A grid.
o af = ——% where i is the vertex opposite the outflow edge.

]

e of =0 for all other vertices.

In both cases

hence the scheme is conservative.

Carrying out a standard Fourier stability test on the scheme shows that it is impossible
to guarantee stability, and hence the solution may blow up. In an attempt to stabilise the
method, 2 separate methods have been tried. Firstly the FCT algorithm is used to prevent the
solution from growing, and secondly, the simple Euler time-stepping is replaced with a TVD

RK3 approximation to the time derivative.

52



£\

Figure 40: Distribution under the new scheme.

6.2 Grid Type

For the methods previously met, it has been shown that the orientation of the triangles di-
agonals can significantly affect the performance of the scheme. Having diagonals in the same
direction as the flow will lead to streamwise diffusion and cross-wind diffusion for the diagonals
facing the other way.

All schemes have natural diffusion in some direction. It is a case of weighing this up with
the grid induced diffusion to produce the optimal combination. For the LDA Scheme, shown to
have only streamwise diffusion, the grid was chosen which produced mainly cross-wind diffusion
(Chapter 2). For the N Scheme, naturally producing both types of diffusion the grid producing
mainly streamwise diffusion was preferred (Chapter 4). Will there be a similar dependence on

grid type for this new method? The two stencils are shown in Figure 41.

Diagonals in same direction as flow. Diagonals in opposite direction to flow.

Figure 41: Stencils for positive flow.

As before, it is obvious that the first stencil will produce streamwise and the second cross-

wind diffusion. Section 6.4 tries to find the preferred grid for the advection of the double
7
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sine-wave.

6.3 Scheme Improvements

In Chapter 5, two methods of scheme refinement were met: the FCT Algorithm to suppress
non-linear instabilities, and RK time-stepping to improve accuracy in time. It is to be seen if

any of these are effective in stabilising the new scheme.

6.3.1 The FCT Algorithm

In the preceding chapter, the PST Scheme was used to stabilize the LW Scheme with use of an
anti-diffusive term in the FCT Algorithm. Retaining the use of the PSI Scheme, the method

may be modified to encorporate the 3rd Order Scheme. So in the language of Section 5.1,
AEC! = TEC! — LEC!

where TEC! are the 3rd order method contributions to node i from cell j, and continuing as
before gives the TVD FCT3 Algorithm.

The reality of the FCT Algorithm is that in areas of low solution gradient, the 2nd order
LW Scheme is used without creating new extrema. The new scheme is third order accurate
in space, and hence will reach third order accuracy for steady state problems. So, for such
problems it makes sense to take the cells which do not create extrema for the LW Scheme and

add as much of the 3rd Order Scheme as possible via a further limiting and corrector step.

The FCT3ex Algorithm

1. Carry out the FCT Algorithm giving solution uf¢7.
2. For all A’ss.t. B =1,
(a) Compute High-Order Corrector Element Contributions such that,
CEC! = TEC! - HEC!.
(b) Limit the CEC! contributions such that no further extrema are met,
CECl =~ CEC! , 0<+<1.
3. Update solution
o ultl= UFCT + Cjeuanpi=t CECL.

This method, as it distributes all the fluctuation, remains conservative. The details of how

to obtain the limiters 4/ may be found in Appendix B.
'y
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Grid Ll me
A 1.25 | 1.19
C 1.62 | 1.63

Table 6: Numerical orders of accuracy for the 3rd Order Method.

Note: Since the 3rd Order Scheme is only first order accurate in time, its order of accuracy
for time-dependent problems is probably below that of the LW Scheme (see Section 6.4). So,
using the above on such a problem would result in increasing, then decreasing the accuracy.

Therefore, the above will only be effective on steady-state problems.

6.3.2 RK3 Time-stepping

In order to create overall third order accuracy, an approximate time-derivative of at least order
three should be used. In Chapter 5 it was seen that there is little point using a time-step of
greater order than that of the spatial operator, so the RK3 method introduced in Section 5.2

is used.

6.4 Numerical Results

The effectiveness of the new scheme and its derivations was tried out on 2 test problems, firstly

the advecting sine-wave, then the linear advection of a discontinuous solution.

Constant Linear Advection

The first problem is the case of the advecting double sine wave (15). Figure 42 shows the
performance of the 3rd Order Scheme on Grids A and C, after t=1.0. The lower CFL number
of 0.36 is required to prevent the solution completely blowing up, but even at this CFL number,
the peaks have increased by around 75% (see Figure 43). Both grids lead to a ‘stretching’ of
the solution in the cross-wind direction. Table 6 shows the numerical orders of accuracy for
this problem, and implies that this method prefers a triangulation with the diagonals pointing
in the opposite direction to the flow.

Figure 43 shows a cross-section through the sine-wave at y = 0.25 and t=1.0, for the basic
3rd Order and FCT3 Schemes. The analytic solution should be a standard sine-wave with
max/min of +1/-1. As said before, the 3rd Order Scheme has caused the peaks to grow and
troughs fall. The result of the FCT3 Algorithm is to ‘squash’ the solution into its analytic
boundaries, leaving an inaccurate looking solution. In fact, the FCT3 Algorithm has order of
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Grid C, CFL=0.36
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Figure 42: The Third Order Scheme on the advecting sine curve at t=1.0

Ly Ling
3.01 || 3.03

Table 7: Numerical orders of accuracy for the 3rd Order Scheme using RK3 on Grid A.

accuracy of less than one for this problem. Figure 44 shows far more pleasing results, from
applying RK3 time-stepping on Grid A at CFL=0.72. The visual results show a stable solution

with little distortion or diffusion. Grid refinement shows the third order accuracy has been

reached (Table 7).

Constant Linear Advection of a Discontinuous Solution

The second problem is the mapping of a discontinous solution (16). Figure 45 shows the
steady state solution on Grid A for CFL=0.32. RK3 time-stepping appears to have little or no
effect here. This is of no surprise because this was only introduced to increase time accuracy
in time-dependent problems. The FCT3 Algorithm effectively gets rid of oscillations around
the discontinuity, but still creates a good deal of diffusion. The most effective results, as
would be expected were produced by the FCT3ex Algorithm, mapping a sharp and monotone
discontinuity. Further evidence of FCT3ex’s effectiveness is given in Figure 46, where a cross-
7
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Figure 43: Cross-section of the solutions at y=0.25 at t=1.0

section through the discontinuity is shown at y = 0.75. This performance is what would be

expected for a steady state problem.

6.5 Discussion and Further Work

The basic 3rd Order Scheme appears to have three main problems: its greater computational
cost due to its extended stencil, its instabilities and its first order accuracy in time. In this
chapter an attempt has been made to solve the latter two.

Applying the FCT Algorithm had problems where the entire solution was increasing/ de-
creasing (e.g double sine-wave case), but was very effective for the case of dampening oscil-
lations around the discontinuity - the use for which it was originally intended. Indeed, in a
time-dependent problem such as the sine-wave case, the LW Scheme has vastly superior order
of accuracy (approximately 2 vs 1.25), so for such problems it would make no sense to use
FCT3 instead of FCT. However, for steady state problems it is now the 3rd Order Scheme
which has greater accuracy, implying that FCT3 may be more effective. But not necessarily
so: if the instabilities of the scheme imply it can only be used infrequenly, the order of the
overall algorithm would approach that of the PSI Scheme. For such steady problems, FCT3ex
should achieve the highest order because it aims to improve on that of FCT.

Some further work would be to discover how much of an improvement this really is, and
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Figure 44: The Third Order Scheme using RK3 on the advecting sine curve at t=1.0

whether it be worth the extra limiting and corrector step. Other further work on FCT'3ex may
be to investigate the grid effects. We know the PSI and 3rd Order Schemes prefer different
grid types, and LW shows very little favouritism. So what would FCT3ex prefer? More than
likely this would be problem dependent, i.e. how much the algorithm depends on each of the
constituent schemes for that case.

RK3 time-stepping produces excellent results for the time-dependent problems investigated
in this project, producing third order accurate, stable solutions. However, the time-stepping
means three times as much work per step than the LW Scheme for instance. Is the extra
expense worth it in terms of the actual improvements in error over LW?

There is also scope for modifying the 3rd Order Scheme itself. The scheme doesn’t obey
the design criterion of continuity, with the coeflicients jumping as the velocity passes over cell
egdes. This is because they are dependent on in/outflow edges, and not X itself. The only
other scheme met in this project with a similar characteristic was Jameson’s central scheme,
which again needed RK time-stepping for stability. One source of experimentation would be
to vary the coefficients inside and/or outside the cell in an LDA /PSI type way. Indeed, initial
attempts at varying the coeflicients inside the cells in an area/LDA-type way has shown some
promise. Also it may be worth looking at the initial derivation of the scheme in a search for
stability. Possibly a Taylor Series truncated to a higher order in time could be used, second
order, or even third order creating a truely third order, one step scheme, equivalent to that of

‘7
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Figure 45: The discontinuous solution on Grid A

the second order LW Scheme. In fact using this technique is one way of looking at LW coming
out of Jameson’s scheme. However, inevitably far more nodes will be required to satisfy such

accuracy leading to a far larger stencil and greater expense.

7 Conclusions

Many triangular based fluctuation distribution schemes, with an upwind bias, have been pro-
posed over the last 15 years, with the most universally acclaimed being mentioned in Chapter
2. Their similarities with FV and FE methods have also been widely explored and have pro-
vided a basis for the evolution of more complex and accurate methods. It must be stressed
that although only scalar advection is investigated in this project, the motivation behind such
schemes is their applicability to systems of conservation laws derived from physical modelling
e.g. Shallow Water Equations.

Solving over quadrilateral grids is an area of increasing interest, having a large influence
over an admittedly small area. In the context of the project they stimulate a study into basic
grid adaption and whet the appetite for nodal grid movement algorithms.

The investigations of the new 3rd Order Scheme was always going to be interesting as well
as challenging, the problem in general being that the instabilities were of a far more global

nature than the occasional oscillations of the linear LP schemes. FCTS3, althétfgh stabilising
7
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Figure 46: Cross-section through the discontinuity at y=0.75

the time-dependent problem, distorted it immeasurably. However, for the simpler, steady state
problem, the results, and more so those of the FCT3ex Algorithm, were far more pleasing.
Most satisfaction however was brought about with the addition of the RK time-stepping,

bringing about genuine third order accuracy for time-dependent problems.
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A Equivalence of the N, NQ and DS Schemes

The object of the appendix is to show an equivalence between the N Scheme on structured
triangles and the NQ and DS Schemes on the underlying square mesh, depending on the
direction of the diagonals.

Suppose first, that X = (a,b)T, where 0 < a < b, Az = Ay = [, and that the node us is
being updated.

A.1 Square grid

e
L @ ®
Uz Usg Ug
A B
® ® ®
Uy Us Ug
C D
® @ @
U1 Ug Us

Figure 47: The stencil for the square grid.

ugt!t = %( ontributions from A,C and D)
At 1o L+ (1 12 (0 I EAYE
=S gw (2 ( ) Ug — 5) —{_5)\(0) (’U,4—U5)+ —2—)\<I) (Uz —U5) + 5)\(()) (U4-—’U,5))
o Al a\ (1
I () e
= AT( (g — us) + b(uy — ua))
(26)
NQ Scheme :
n+1 n At g -
Uy = uj + | contributions from C and D

>41

(e Qe

e g 20 (ol (O}, 1
= T\ \2t ) T2
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At
= ug + o (a(ul —uy) + b(ug — us))

>1

() () )

At

= Wt <(b—a)(u2—u5)+a(u1—u5)>

A.2 Triangular grid

Taking the triangulation Grid Type A, whereby the diagonals are in the same direction as the

flow,

N Scheme :

n+1
Us

g gy

V1 Vg

Figure 48: Grid Type A.

ug + = (contributions from D, E and F)

S
At 1 1 )| 1 1
uyp + m( — Eal(u5 —ug) + §GIU1 — §l(a — b)ugy — §bIU5 - §l(b —a)(us — uz))

ug + # (a(ul — uz) + blug — u5)>
(28)

Next, taking the triangulation Grid Type C, whereby the diagonals are in the opposite direction

to the flow,

N Scheme :

n+1
Ug

= up + % (contributions from D, E and A)
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Figure 49: Grid Type C.

LAl 1 1 1 1
= Ujg -}- lX_l(§bZU2 e '2—(0 -|- b)lU5 =+ ialu4 s —2—bl(U5 bt ’U,g) - Eal(us = U4))

_ ow #(a(m — 1s) + blus — u5))
(29)

So, (27) and (28), as well as (26) and (29) are equivalent. Hence it has been shown that on
structured triangles, when the diagonals are in the same direction as the flow then N Scheme
is equivalent to the NQ Scheme on the underlying quare grid. Whilst using the N Scheme with

the diagonals facing the opposite way to the flow gives the DS Scheme on the squares.

B Derivation of the Limiters

The object of this appendix is to show how to obtain the limiters 4 for the FCT3ex Algorithm
introduced in 6.3.1. The work follows the ideas of [7] and [9].

max

1. Let ™" be the local max/min of u as used in the original FCT Algorithm (see one of

the avove two papers for details).

max F
2. Define SE = Yien, pi=1 min(0,CECY)
+ min _, FOT
R Ut — g

)

3. Let
: RE . + -
T _ min(1, Zk) ST >0, 57 <0
0 if S; =0

4. If 7 =1, then,
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(a)
; T+ i CEC! >0
T =
T7 ifCEC! <0
(h) S min;—q2,3(%])
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