THE UNIVERSITY OF READING

On Variational and Least Squares
Methods with Adjustable Nodes

M.J. Baines

Numerical Analysis Report 2/97

DEPARTMENT OF MATHEMATICS



On Variational and Least Squares
Methods with Adjustable Nodes

M.J.Baines

Abstract

In the problem of residual minimisation when the nodes participate in
the variations there are two possible viewpoints in carrying out the varia-
tions. We may either regard the object function as dependent on the space
variables or alternatively regard the object function and the space variables
as independent. The two approaches give similar variational equations in
a particular illustrative example, but in general different results are ob-
tained. The variational equations from the two approaches are compared
and a particular practical advantage of using independent variations in a
discrete norm discussed. An extension to more general discrete variational
principles is given.

1 Introduction

The Ritz approach to the generation of discrete approximations is to use a vari-
ational or least squares formulation and restrict the admissible functions to a
finite dimensional space. Normally the grid plays no part in the variational pro-
cedure but with recent interest in adaptive unstructured grids the question has
been raised as to whether such variational techniques can lead to useful grids.
Early attempts [1],[2] showed up the main difficulties to be the complexity of the
resulting equations and the tangling of the grid. More recently, however, progress
has been made in overcoming these problems and it has been shown that there
are potentially considerable advantages in the approach.

Baines [3] and Tourigny and Baines [4] showed that optimal grids could be de-
termined in this way for the problem of finding best L fits to continuous functions
with variable nodes in one or two dimensions, while Tourigny and Hulsemann [5]
have extended the technique to variational formulations of partial differential
equations with second order derivatives. A feature of these approaches is an
iterative approach to the solution of the nonlinear variational equations which



an optimal property of the steady Moving Finite Element (MFE) equations [7],
foreseen in [1], for self-adjoint linear partial differential equations, and generated
grids with the MFE method used as a (global) iterative solver which similarly
has the property of reducing the variational functional for small enough steps (in
the absence of singularities). These methods use variations in which the solution
depends implicitly on the space variables, implying interrelated variations in both
variables. A unified description which emphasises this point may be found in (8].

By contrast Roe [9], seeking the approximate solution of a simple first or-
der partial differential equation in two dimensions using a discrete least-squares
norm, has carried out variations in which the coefficients of the solution and
space variables are regarded as independent variables. As in the work referred to
above, the nonlinear variational equations are solved (or the least squares norm
minimised) using a local iterative approach which reduces the least-squares norm.
It might be expected that this approach would be a special case of the general
theory in [8], but this turns out not to be the case. In the first part of this report
this point is discussed and reasons given for the discrepancy.

In the second part of the report the special problem treated in [9] is generalised
via the introduction of a specific discrete norm. This is followed by a description
of the steepest descent iterative procedure for reducing the norm in the various
cases and its effect on the crosswind diffusion.

We shall begin with an analysis of the specific problem discussed in [9] which is
to find the best approximate solution and grid for the steady advection equation

aVu=20 (1)

in two dimensions, with constant a and given inflow, using the method of least
squares with piecewise linear approximation on triangles. The next two sections
contrast the analysis in [8] and in [9] and the subsequent section effects a com-
parison.

2 First Approach

Define the functional
T'= / F(x,u, Vu)dQ 2)
0

where u, X are approximated by piecewise linear functions U, X. Then, substitut-
ing U = 3, Uy, for u and X = 37, X;9); for x in (2), where 9, is the piecewise
linear basis function at node ¢ on a triangulation of the region ) it is shown in

[4],[8] that the first variation

oF oF
oF oF ,
—l—/ﬂ 21: {FVU&' + 5(‘1,01 = <ﬁ\7¢,) VU} 6 X, dfD. (3)
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oF oF
+ /T Z {Fvwi + Vi (ﬁ Vz/)) }6Xz-dQ. (3)
Taking F' to be the specific form
1 2
F(x,u,Vu) = E(a.Vu)
in which a is constant, (3) becomes

ST=Y /T (a.VU).(aVe,)8U:dS)

3 / { (a.VU)?Vy; — (a.VU)(a.Vd)i)VU} 5X,dQ (4)

where T; is the union of triangles abutting node 7.
Since a.VU is constant in each triangle we may write (3) as

6I =33 5r(a.VU)(a.Ve),)6U

+ZZ{ Sr(a. VUV, - 52(a.VU)@ V) VU } X, (5)

where St is the area of triangle T;.
Now in each such triangle

1 opposite side length),
height; 2S5t
so that
257V, = n,, 257 (a.Vi;) = an; (6)

where n; is the inward normal to the side of the triangle T; opposite node i scaled
so that its magnitude is the length of that side (see fig.1). Hence (5) becomes

T EZ( (a.VU)(a.n,)(8U; — VU.6X;) + la.VU)r"ni.éXi) (7)

n

and the variational equations are V¢

; %(a.VU).(a-ni) =0 (8)
and 1 1
> {Z(a.vu)zm _ E(a.VU)(a.ni)VU} ~ 0. (9)



3 Second Approach
Alternatively, consider Z in the discrete form

7= %(a.VU)2dQ - % 3 $r(a VU (10)

which follows since a.VU is constant in each triangle.
Let the corners of each triangle be labelled 1,2,3 anticlockwise (see fig.1) and
denote by >’ the sums over these corners. Then in each triangle

VU = (-Z’Ul(yz—ys) ¥ Ui (Xs — X3) )
Y Xi(Ye - Ys) -3 Yi(Xp — X3)

- (E’ Yg(UQ'—U:;) ———ZIXI(DT:Z—-U':;)) (11)

25 ! 2Sp
where

=3 Z’Xl(Yg Y;) = ——Z’YI(X2 X3) (12)
from which it follows that

1
a. VU = ZS;: Z,(U2 - U3) (aY1 - le) (13)

where a = (a, b)7.
Define now the so-called ’fluctuation’

22 (Uy—Us) (aY; — bX;) = —‘Z Ui(Yy—Ys3) —_Z U(X,—X3) (14)
so that
a.VU = ﬁ (15)
St

Since a.VU is constant in each triangle we then have from (10)

2 Z ST a VU Z (16)

and the first variation of (16) is

207 d¢T 207 dor ¢_’-2rdST .
ZZ { Sy au, it (s—de- S%dX«-> '5X’}

= ZZ 2¢T (—%a )/2 Y3) - %b(XQ - Xg)) 6U.,;
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using (11) and (12).
Thus the variational equations are

> —12-(a.VU)(a.n¢) =0 (18)

T;

as in (8), and

: S —un (0 + 191, =
5 (- ()- 18-

or
1 1 -
Z {-—(a.VU)zn.i — =(a.VU)(t;.VU) ( b)} =0 (19)
7 4 2 a
where, in each triangle 7; the convention is that node ¢ counts as node 1 and

t; is the vector from node 2 to node 3, corresponding to the side of the triangle
opposite node 1 (see fig.1 and [8]).

4 Comparison of the two Approaches

The variational equations (8) and (18) are the same in both approaches. On
the other hand, comparing (9) and (19) we see that they differ in the second
terms, which are in the (distinct) directions of VU and (—b,a)” respectively.
These directions coincide only when a.VU = 0 (which is satisfied by the exact
solution). Moreover, the ratio of the magnitudes of the second terms in (9) and
(19) is

(am,)VU
(.VU)(=b,a)
_ |a]|Ini] cos 8|VU|

[6: VU] cos ¢|(—b, a)|

where @ is the angle between a and n; and ¢ is the angle between t; and VU.
Since |a| = |(—b, a)| and |n;| = |t;| this ratio reduces to

(20)

cos @

= (21)
Since n; is perpendicular to t;, if also a.VU = 0 so that VU is perpendicular
to a, this ratio is unity. We see therefore that the coefficients of (a.VU) in the
second terms in (9) and (19) coincide when a.VU = 0 (i.e. when U satisfies the
exact eqaution).

The difference between the variational equations (9) and (19) originates in the
two contrasting approaches. In the first more general approach U is dependent
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on X when carrying out the variations, but in the second approach the U; and
X are treated as independent variables. In the former case the VU term in (9)
arises naturally from Lagrangian variations of the form

Du = 0u + Vu.Dx, (22)

while in the latter case the (—b,a)” term in (19) arises from differentiating the
fluctuation ¢ in the discrete norm (16) with respect to the (independent) vari-
ables X; (Vi).

It turns out that there is some practical advantage in taking the second ap-
proach. We therefore develop an extension of (10) to more general variational
problems.

5 A General Discrete Variational Principle

Consider again the variational problem

U, X

min/ F(x,u, Vu)dQ (23)
Q

where u ~ U, and x ~ X are piecewise linear in each triangle. If U is made
to depend on X in carrying out the minimisation the first variation is as in (3).
However, by replacing (23) with a discrete norm we may treat the coefficients of
U and X independently, as in section 3, and obtain a generalisation of the second
approach above.

We therefore introduce the discrete variational problem
1 3
min Z —ST Z F(Xj, Uj, VU)dQ, (24)
UX 37 o

where j runs over the corners of the triangle T, as if F' were projected into the
space of piecewise linear functions in each triangle and exactly integrated in (23).
(Note that a similar discrete form was originally used by Euler in his approach
to the continuous case in one dimension [10].)

The discrete functional is

3

=y %ST Y F(X,,U;, VU) (25)

J=1

(cf. (10)). Using the same notation as before, the first variation of I (in which
U; and X; = (X, Y;) are varied independently) is

il oF [ oF \ oVU
1= 15,195 . 5U,
;;issT{a(JfZ(aw)j an} b

=1



2 OF

+§i:§j { (Y2 — JZ;(F)J- + %STﬁ_Xi t3 il (a(gU) (2%(02 - U3)>

_é(;@ A (VU.;; (38V—FU>,-) } 5X;

wplieemgn g (), ()
+%(X2 — X3) (VU. ; (%) ) } 8Y; (26)

using both (11) and (12), where again in each triangle node ¢ counts as node 1
in the numbering convention used. Hence the variational equations at each node

1 are
oF S oF ovU
; St {BU +Z (EVU),'. oU; } =0 (27)

together with the vector equation

1 & 1, OF 1 S.( aF 9F\"
;{_g;(F)jm+§ST8X 6 (Us — Ua) ;(—E,E)J
1 oF
. e " 28
G(VUZ(BVU>>I”} / (28)
From the variations in (3) we should compare equation (27) with
/ 1/)+8 Vip, 0 dQ =0 (29)
Q ovU’
(of which it is an obvious discretisation), and (28) with
oF oF
/ {Fvw, a5 ( oV ) }dﬂ ~0 (30)

where the connection is far less straightforward, the discrepancy arising from the
approach as well as the use of the discrete variational principle.
In the particular case when F' = 1(a.Vu)? equation (27) reduces to

2% (a.n;) (2.VU) =0 (31)

T;



as in (8),(18) while equation (28) becomes

) {—i(a.vu)%i = %(a.VU)(t,—.VU) (gb) + %(a.VU)zni}

T

= Z{ a.VU)’n; — %(a.VU)(t,-.VU) (;b)} =0, (32)
in (19).

In the important special case F' = 1 | Vu|® + f(x)u, which corresponds to u
satisfying Poisson’s equation —V?u = f(x) the variational equations at node i
are

Z{ Srf(X)i + = (VU) }=0 (33)

T;
plus
1 2 o 1. U\ _
%j { 1 IVUP i+ 282U — 5(4:V0) (U,,. )} = 0. (34)
6 Steepest Descent Algorithms

A feature of the analysis in [9] is the solution of the variational equations (18)
and (19) by a method of steepest descent of the form

U=~ 5 (an) @ V0)6r (35)
K= —Y {i(a.VU)2n¢- - %(a.VU)(t,-.VU) (;b> } §o (36)

where 67 and 6 are (sufficiently small) relaxation factors.

An upwind version of (35) may also be devised in which the term a.n; is
replaced by maz (0,a.n;) but at the expense of losing the monotonicity principle.
The latter method is very close to the LDA multidimensional upwind method.

A significant aspect of (36) is that 6X; is made up of two contributions, one
a vector in the direction (—b, a)” and the other a weighted average of normals n;
(the former at right angles to the characteristic direction).

An important relevant property of piecewise linear approximation on triangles
is as follows. When a side of a triangle aligns with the characteristic direction,
with the end nodes of the side taking the same U value, then because the gradient
of U is perpendicular to that side the residual a.VU in the triangle vanishes so
that the contribution to the norm from the triangle is automatically minimised.

The order of the operations in the steepest descent method is not prescribed
nor is the size of the relaxation factors. In one particular scenario, however, an
apparently optimal choice may be devised. Suppose that in the initial distribution
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the value of U is zero everywhere except at inflow points so that the residual 18
also zero everywhere except on elements adjacent to the inflow. Then one step
of (35) will spread the inflow values into the interior, favouring the characteristic
direction but including some crosswind diffusion, resulting in non-zero residuals
in all cells adjacent to the inflow. Suppose also that this is followed by a step
of (36) in which the movement of the nodes has a component perpendicular to
the characteristic direction which reduces the residual. The effect is to drive the
smaller residuals which border the main flow arising from the crosswind diffusion
towards zero, effectively annihilating such diffusion. Repeating these two steps
will eventually drive the inflow disturbance in the characteristic direction, at each
stage minimising the crosswind diffusion. In this way the characteristicdirectional
properties are respected, which makes the procedure particularly suitable for
hyperbolic problems. The discussion is borne out by the demonstration in fig.2
in which the characteristics are circles and there is just one non-zero inflow pomnt
in the middle of the left half of the base. Note the 'buffer zone’ (two circular
strips) between the non-zero characteristic and its neighbours, outside which
there is effectively no diffusion.

A comparable steepest descent method for the first approach would be (35)
followed by

6Xi= -3 {i(a.VU)Zm - %(a.VU) (a.m)VU} 50. (37)
T

The point to notice here is that in (37) the second term is not in the direction
(=b,a)T but is a weighted average of gradients VU. This makes it less suitable
as a streamwise method, at least in the mode described in the previous para-
graph, since initially the gradients are unlikely to have the coherence possessed
by (—b,a)” in the previous approach.

In the general case (2) the steepest descent steps are given by

OF oF
§U; = — /Q {@% n a—v_ﬁ'wl} 6T (38)
and OF oF
while in the discrete general case (24) they are
1, Jor & [(OF )\ oVU
= = 50 25l 2 | 4
§U, ;BST{BUi+;(3VU>j i }6T (40)
and
6%, = - L (net L 2l - Lw ALy )
T T R TRYTEX 6 0 Y A\ U, aU: ),
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5 (5 () ) oo (ay

Once again there is a difference between the grid update steps in the two ap-
proaches, most significantly in the terms proportional to VU in (39) and those

proportional to (—gTFy, gTFm) in (41).

7 Conclusions

We have seen that in carrying out residual minimisation with variable nodes the
general theory in [8] does not reduce to the special case studied in [9]. The
principal reason is that in the general theory the solution U is dependent on
the grid description X and varies as the grid adjusts in a Lagrangian manner,
while in the discrete approach of [9] the nodal coordinates U; and X; are varied
independently. The distinction between the two approaches is complicated by
the fact that in the special problem considered in [9] the continuous and discrete
variational principles are identical.

The discrete norm has been extended to general variational principles and the
corresponding variational equations obtained. A steepest descent strategy has
been described either as an optimisation procedure for the variational principle
or as an iterative procedure for solving the variational equations. A geometrical
interpretation is given which throws light on the optimal ordering in the steepest
descent method to give a solution with minimal crosswind diffusion.
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