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Abstract
We consider a modification to the variational assimilation method, in which a
correction term is added to the model equations. This correction term is determined in
the assimilation procedure and produces a solution that is closer to the observed data
and compensates to some extent for model error. The 1-d shallow water equations are
used to illustrate the variational assimilation method, with and without the correction
term, in the presence of model error.

1 Introduction
1.1 Data assimilation

In meteorological or oceanographic modelling, data assimilation is a means for combining
observational data with a numerical model. The aim of data assimiltion is to produce a
better estimate of the true atmospheric or oceanic state for climate records or to provide
improved initial conditions for a model forecast. It is well known that nonlinear models
such as weather forecast models can be very sensitive to their initial conditions, and so
putting much effort into finding the right initial conditions is justifiable.

Various different methods for data assimilation have been developed over the last few
decades. They range from simple schemes of inserting observed values directly into the
model and smoothing in space, to sophisticated and expensive filtering methods, such as
the Kalman Filter. Two particularly desirable features of a data assimilation scheme are
that it should give a result which is consistent with the model dynamics, and that it should
take into account the relative accuracies of the observed data and of the numerical scheme.

The variational method of data assimilation is attractive because it finds the statistically
most likely solution of the model given the available observations and their error covariances.
Many meteorological centres are currently developing this method for operational use. The
variational assimilation method minimizes some criterion (a cost functional) expressing
the difference between the observations and their corresponding model values, giving the
observations weights inversely proportional to their error covariances. This minimization
is subject to the constraint that the optimal solution must satisfy the model equations
exactly.

The variational assimilation method involves iterating on the model initial conditions
to solve the optimization problem. This iteration process uses the gradient of the cost
functional with respect to the initial conditions. The required gradient can be expressed in
terms of the model’s adjoint equations, and so each iteration involves a run of the model
followed by a run of its adjoint. Once the optimal initial conditions have been found,
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the optimal model state over the entire assmilation period can be found. This process of
iterating to the optimal initial conditions is known as using the initial conditions as the
control variable. Section 2 gives a more detailed mathematical formulation of the variational
assimilation problem.

1.2 Model error

One disadvantage of the variational method is that the solution fits the model equations
exactly, and hence doesn’t allow for the fact that the model is imperfect. The difference
between a forecast model state and the true atmospheric (or oceanic) state is known
as forecast error. Forecast error can be split into two components, one from errors in
the initial conditions, and the second from the way the model evolution misrepresents
the true atmospheric evolution. This second type of error is called model error, and
in general we have little idea of its form (Dee [2]). However, it is possible to identify
particular examples of model error, which might constitute part of the total model error.
Specific examples of model error include misspecification of model forcing terms (such as
topography) or other model parameters, resolution errors, linearisation errors and errors
from the boundary conditions or from problems with the poles. More general errors might
arise from simplification or lack of knowledge of the physics.

In some cases, it might be known that a particular model is prone to a certain type of
error, which it is not easy to correct due to a lack of knowledge of the true behaviour of
the system or because of limited computing resources. In all cases, however, we can expect
there to be a general component of model error which is unspecified and unmodelled.

Other data assimilation schemes, which do not hold the model equations as a
strong constraint, do account for model error. In statistical schemes such as “Optimal
Interpolation”, the solution found depends on the relative accuracies of the observations
and of a previous model forecast. In the Kalman Filter, model error is assumed to take the
form of noise added to the model state at each timestep. The model error is assumed to
be unbiased, independent of the model error at previous timesteps, and independent of the
model state itself. It is realised that these assumptions are not very realistic, and yet it is
hard to do better because little is known about such errors. For the same reasons, it is also
difficult to construct an error covariance matrix for model error. However, the inclusion of
model error in the Kalman Filter does allow the solution to “drift” from the model solution
a certain amount depending on the size of the model error covariances, relative to the size of
the observation error covariances. This motivates what we wish to do with the variational
assimilation method; to slightly weaken the condition that the model equations must hold
exactly, and to allow some drift of the solution towards the observations.

In Section 2 we firstly give a mathematical overview of variational assimilation, using
the model initial conditions as the control variable. We then discuss the use of a correction
to the model equations to account for model error, and follow Derber’s method (3] of using
a constant correction term instead of the initial conditions as the control variable. Section 3
describes the experiments carried out in an idealized situation to compare the performance
of the two different control variables in the presence of different types of forecast error.
Section 4 sumarises the results and Section 5 gives conclusions.
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2 Variational Assimilation

In variational assimilation, the objective is to find that solution of the model which is
as close as possible to the observations, taking into account the statistical likelihood of
the observations. This is done by minimizing a cost functional expressing the difference
between the observations and their model counterparts, with weighting matrices containing
the error covariances of the different observations.

If the available observations (over the assimilation time period) are not sufficient
to determine the optimal model state uniquely, it may be necessary to include in the
cost functional the condition that the initial model state should also be close to some
“background” initial state, maybe from a previous model forecast. Indeed, incorporating
information from a previous forecast is usually desirable, and in this case weighting matrices
can be chosen to satisfy Bayesian criteria for the most likely state given the likelihood of
the observations and of the previous model forecast.

2.1 Mathematical formulation
We introduce a generalized nonlinear model

(1) X1 = B (xp, ug),

where x; € IR™ represents the model state at time t, ur € IR™ represents model inputs at
time tj, (which might be model parameters or external forcing terms), and f), represents the
nonlinear evolution of the state from time t; to time ¢;11. The variational data assimilation
problem may be written

ProBLEM 1. Minimize

1 BT 13 —1 = T-1 At
(2) J = E(Xo—xo) By'(x0—x¢) + Y (h (%) — y;)" O; (h(xj)—Yj)—Q“
J=0

subject to (1), where x93 is a background initial state and By is its error covariance matriz,

y; € IR? is a vector of observations at time t;, and h is a function which interpolates
to the observation positions and transforms to observed variables. The matriz O; contains
error covariances of the observational errors and the errors in the transformation h at time
t;.

We can reduce this constrained minimization problem to an unconstrained problem
using Lagrange multipliers. Finding a minimum of 7 subject to (1) is equivalent to finding
a saddle point of the Lagrangian functional £, where

N-1
£ = L oto-x8) B3 (xo-xd)+ 3 () 35)7 07 (h(x)-v) 5
7=0

(3)
and the X\; are Lagrange multipliers.

This still represents a huge optimization problem, and we seek to solve it iteratively.
However, instead of iterating on the model state x; for the whole time interval [to, tn], we
iterate to the optimal initial condition. This makes sense since once the model equations
and input uy have been specified, the choice of initial condition uniquely determines the
model state for the interval [to,ty]. This technique is known as “reducing the control
variable”, and was introduced by LeDimet and Talagrand [5]. In this case the control
variable is the initial condition.

+)\J-T_|_1 (%5415 (x5, u5)),
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To iterate to the optimal initial condition (using a minimization package), we need an
expression of the gradient of £ with respect to the initial condition, denoted here by Vx, L.
This is given in the relationship

(4) 0L =< Vx, L, 6% >,

where 6L is the first variation of £, éx¢ is a perturbation in xg and < .,. > is the relevant
inner product (here the L, inner product in R™).

We now take the first variation of £ and enforce that the following adjoint equations
hold

(5) Ax = FL (%, up) A1 — HY O (h(xz) — yr)At,
with
(6) >‘N . 0)

where the matrix Fy is the Jacobian of f; with respect to x; and the matrix Hy is the
Jacobian of h with respect to x;. The Lagrange multipliers Ag are also called adjoint
variables in this context. Then the expression for the first variation reduces to

(7) 6£ = {Bal(XO - Xg) - }\o}T(SXO,

from which we see that
(8) VoL = By (%0 — x8) — Ao.

We now have everything we need to iterate to the optimal initial condition. From a guess
of the initial condition, we run the model forwards and hence calculate the (h(xx) — y&)
terms. Using these we run the adjoint equations backwards to find Ag, and so evaluate the
gradient of the Lagrangian with respect to the initial condition. The gradient can be used
in a minimization algorithm to improve the guess of the initial condition, from which the
iteration can be repeated.

Each iteration towards the optimal initial condition involves a run of the model and
a backwards run of its adjoint, and hence is potentially expensive. However, it is still
an attractive method for the data assimilation problem, and the cost can be reduced by
carrying out the iteration on a coarser grid, or by using a simplified model.

The adjoint equations involve the transpose of the Jacobian of the model equations and
are forced by the difference between the observations and their model equivalent values.
It is also possible to find the adjoint of a model directly from its computer code, using
techniques described in [1], for example. This avoids the need to explicitly work out the
adjoint of the model’s discrete equations, but for a large meteorological or oceanographic
model (which might involve 10® or 107 unknowns), it is still a huge task. For this reason
there is much interest in automating the process using computational differentiation.

2.2 Using a correction term to account for model error

Our aim is to compensate for model error in variational assimilation by adding a correction
term to the model equations. The model (1) now becomes

9) Xpt1 = B (xXp, ug) + e,

where e is a correction term representing model error at time t;. This time we take the
“background” for e; to be zero, and the covariance matrix for the model error to be Q.
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The variational assimilation problem is now modified to
PRrROBLEM 2. Minimize

- b\T1p—1 L e e B g T -1 At
J = 5(x0=%g)" Bg (x0—%0)+5 Y efQ7'e;At+ )Y +(h(xj)-y;)" OF (h(x)-yi) 5

(10)
subject to (9).

The solution to this minimization problem is the statistically most likely solution of the
model (9) given the covariances of the observation error, the initial condition background
error and the model error. It can be shown that for a linear model, the solution to this
problem at time tp is equal to the solution of the Kalman Filter at time ¢y, [8].

Instead of using just x¢ as the control variable as in Section 2.1, the minimization
now involves using X and each of the e as control variables. To make this approach
more practical, it is necessary to reduce the control variables e also, by forming some
deterministic relationship between the e;. A general “model” for the evolution of the
model error e might take the form

(11) €k+1 = Bk(Xk, Uk, k).

Now that we have assumed that there is a deterministic model for the e, the model
error no longer has a similar role to the role it has in the Kalman Filter, and the two
methods no longer give an equivalent solution at time ¢n. We could now write our model
as the augmented system of equations

(12) Xp1 = fu(Xp,up) +ex
(13) €rt1 = 8r(Xg, Ug,€x),

and use the augmented initial vector (x3,el)? as the control variable in variational
assimilation.

As mentioned earlier, we have in general little idea of the nature of model error, and to
proceed at all must make some big simplification about its form. The simplest approach
is to assume that the model error is constant on the assimilation interval [tg,tn]. This
approach to variational assimilation involving model error was introduced by Derber [3],
who used a constant correction term instead of the initial condition as the control variable
in his “variational continuous assimilation” method. In this case, the evolution of model
error is given by

(14) Er =€,

where ¢ is the quantity to be determined, a control variable.

So the variational assimilation problem is now to minimize (10) subject to (9) and (14),
using the augmented vector (x,eT)? as a control variable. Since the equation (14) is
in this case trivial, it is not necessary to introduce extra adjoint equations. If L is the
Lagrangian associated with (9) and (10), then the gradient of £ with respect to X is as
given in (8). The gradient of L with respect to € can be expressed in terms of the same
adjoint variables

(15) VelL=Q7'e— > An,
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and the gradient of the “augmented” control variable (x3,e7)7 is (Vyx, LT, VeLT)T.

The method of using both the initial condition and the correction term e as control
variables is now a straight forward modification of the method described in Section 2.1.
However, the minimization algorithm must now be carried out on a vector of dimension 2n,
a large increase in the amount of work and memory required of the computing resources.

Other simple forms of correction term can be derived, in which (14) is modified to

(16) Er = SkE,

where the sy are predetermined values used to give the correction term greater influence at
certain parts of the assimilation period (see [3] for examples). Alternatively, the function gy
could represent piecewise constant model error, or model error with a spectral form, giving
less restriction on the form of model error, but at the cost of increasing the dimension of
the control variable. For these different forms of correction term, the process for finding the
gradients would be unchanged, and the expression for the gradients would be a modification
of (15).

In this study, we compare the variational assimilation method using different control
variables; the initial condition, a constant correction term, and both together. This is
carried out in an idealized situation in which model error is introduced artificially, as
described in the next section.

3 Experimental set-up

The finite difference model used here is a nonlinear 1-d shallow water equation model
including rotation and topography terms. It was introduced by Parrett and Cullen [7], who
showed it to be suitable for simulating hydraulic jumps. Lorenc also used this model with
variational assimilation [6].

The minimization procedure used is the M1QN3 code from the MODULOPT library
of INRIA, a limited memory quasi-Newton method [4].

3.1 Introduction of model error

In this case, we suppose that the “true” model state is defined from a model run with
particular initial conditions, topography and model parameters, and observations are taken
from these true values. We then suppose that we have an imperfect version of the model or
wrong initial conditions, and use the observations in a data assimilation algorithm to try
to generate a model state closer to the true state.

In this case, there is an observation for each model variable, and so there is no need
for a background term in the initial conditions, and this is omitted in this study. We also
do not include observation errors, and the covariance matrices O; and Q are equal to the
identity matrix. Although an operational data assimilation scheme would have to account
for observation error statistics, the aim here is simply to investigate the effects of particular
types of forecast error using the different control variables.

For two different types of introduced model error, data assimilation is carried out using
the constant correction term, initial condition or both as control variables. When using just
the initial condition as the control variable, the correction term is fixed at zero, and when
just the correction term is used as the control variable, the initial condition is assumed to
be known. In operational data assimilation, of course, model error does not just involve
misspecification of model parameters or forcing, but this gives some way of testing the
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initial conditions 50 timesteps 100 timesteps
20
10
0 S
-10
0 0.5 1

True solution

Fic. 1. The “true” solution. Solid line: depth*gravity;, Dashed line: u-field of velocity; Dotted
line: v-field of velocity. The heavy dotled line in the first plot shows topography.

different control variables with particular types of model error. This gives some insight into
how an operational data assimilation scheme might cope with model error.

3.2 The experiments

The model was run with 100 grid points for 100 or 200 timesteps, and periodic boundary
conditions were used. For the true run, the initial values of the u- and v-components of
velocity were set to zero, and the initial water depth was 1m over the whole domain. The
bottom topography was flat with a “mountain” of height 0.5m in the middle of the domain
(see Figure 1).

The following situations were examined using the initial condition, the correction term,
and then both together as control variables.

Experiment (a) Perfect model, wrong initial conditions. The initial water depth is
taken to be 1.5m instead of 1m. The initial u- and v-fields are unaltered.

Experiment (b) Omission of topography. In this case, the topography is unspecified,
and so the initial water height is constant throughout the domain, and hence no
motion is initiated in the subsequent model run.

Experiment (c¢) Omission of rotation. Without the Coriolis forcing, the v-component
of velocity remaines zero throughout the model run.

4 Results

Figure 1 shows the “true” solution of the model over 100 timesteps, for the u- and v-
components of velocity in ms™!, and for ¢, water depth times gravity in m?s~2. Figures 2,
3 and 4 show the errors in these flelds for experiments (a), (b) and (c) respectively, for
a model run without assimilation, and for model runs using the initial condition and the
correction term as control variables.

4.1 Wrong initial conditions

The results from experiment (a) (Figure 2) illustrate how using the initial condition as
the control variable can exactly reconstruct the true initial condtions when there is no
model error and when there are sufficient observations with no error. The results also show
that using the correction term as the control variable to some extent compensates for the
effect that errors in the initial conditions have on the subsequent model run. The largest
improvement to the results in this case is in the middle of the assimilation period. When
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initial conditions 50 timesteps 100 timesteps
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Solution without assimilation
initial conditions 50 timesteps 100 timesteps
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0 0 0
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0 0.5 1 0 0.5 1 0 0.5 1
Using the initial condition as the control variable
initial conditions 50 timesteps 100 timesteps
5 5 5
(1) e 0l= = A — 0 P e e TN A i
-5 -5 -5 J——/\ﬁ
0 0.5 1 0 0.5 1 0 0.5 1

Using the correction term as the control variable

Fic. 2. Ezperiment (a). Error fields before assimilation, and after using the two different
control variables. Solid line: depth*gravity; Dashed line: u-field of velocity; Dotted line: v-field of
velocity.

data assimilation is used operationally to produce improved initial conditions for the next
forecast, accurate results at the end of the current assimilation period are more desirable.
Additional weighting in the cost functional could be chosen to force the results to be closer
to the true solution at this time. When both control variables were used together, the same
results were achieved as when the initial condition only was used as the control variable,
as desired. A much larger number of iterations of the minimization algorithm were needed,
however, in this case.

4.2 Model error

The results from experiments (b) and (c¢) show that using the initial condition as the control
variable reduces the errors at the middle and at the end of the assimilation period, and
so compensates for the effects of model error at these times. Hence, the optimal initial
condition is not equal to the initial condition of the true model solution, but compensates
for the effects of model error to give a solution which is overall closer to the true solution.

In experiment (b), both the correction term and the initial condition correct very
effectively for the errors in the velocity fields, but the correction term makes a better
correction of the water depth (Figure 3), and so is the more effective control variable in
this case. In experiment (c) both control variables produce a similar reduction in error in
the latter part of the assimilation period (Figure 4).

When the assimilation period was extended to 200 timesteps, using the correction term
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initial conditions 50 timesteps 100 timesteps
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Using the correction term as the control variable

Fic. 3. Ezperiment (b). Error fields before assimilation, and after using the two different
control variables. Solid line: depth*gravity;, Dashed line: u-field of velocity, Dotted line: v-field of
velocily.

as the control variable gave less improvement than in the 100 timestep run. In experiment
(b) the results were still better than when the initial condition was used as the control
variable, but in experiment (c) they were slightly worse. This illustrates a limitation
of the correction term technique: the longer the assimilation period, the less effective a
constant correction term is likely to be, since it represents an “average” correction over
this time. However, the 100 timestep run was long enough for the effects of model error to
propagate all the way across the domain, and so it is significant that the correction term
compensates for model error on this time scale. It is also worth noting that the model error
in experiments (b) and (c) involves the true solution in each case, and this is not constant
in time.

Using both control variables together further reduced the errors slightly, but again, this
took a large number of iterations of the minimization algorithm.

5 Conclusion

The techniques of variational data assimilation involving adjoint equations can easily be
modified to use a correction term as the control variable instead of, or as well as, the
initial condition. The correction term provides a way to compensate for model error and
the results from this study show that in an idealized situation, using a constant correction
term as the control variable over a significant though limited time period can successfully
compensate for model error. Further work is being carried out to investigate other forms
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initial conditions 50 timesteps 100 timesteps
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Solution without assimilation
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Using the correction term as the control variable

Fic. 4. FEzperiment (c). Error fields before assimilation, and after using the two different
control variables. Solid line: depth*gravity;, Dashed line: u-field of velocity;, Dotled line: v-field of
velocity.

of correction term to improve the technique. It is also noteworthy that using the initial
condition as the control variable can also reduce the effect of model error in assimilation.
Using both control variables together has theorectical advantages, but in this study required
many more iterations of the minimization algorithm.
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