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1. INTRODUCTION

In recent years there has been much interest and effort aimed at
solving advection-dominated diffusion problems. One of the new
numerical techniques that has been developed to cope with these problems
is the Lagrange-Galerkin method. This method combines the
stability properties of the method of characteristics with the accuracy
and flexibility of a standard finite element procedure (see Benqué et al
(1982), Bercovier & Pironneau (1982), Douglas & Russell (1982), Lesaint
(1977)., Pironneau (1982), Russell (1980), Siili (1988)). In these papers
the unconditional stability and convergence of the Lagrange-Galerkin
method has been demonstrated for a wide class of problems as has its
practical ability.

Much of the analysis in these papers is based upon the assumption
that all the inner products are evaluated exactly, though some study of
the influence of quadrature was carried out by Lesaint (1977) and
Russell (1982). However, Priestley (1986) and Morton, Priestley & Siili
(1988) have shown that many types of quadrature, e.g. Gauss-Legendre,
Gauss-Lobatto, Radau and Newton-Cotes, all lead to only a conditionally
unstable scheme. Gauss-Legendre quadrature fairs particularly badly in
that the instability occurs for small CFL numbers and so cannot be cured
by restriction of the time-step. For the other integration rules a
severe CFL restriction is incurred which is a major qualification of the
unconditional stability of the exactly integrated method. In Priestley
et al (1986,1988) a technique is introduced called area-weighting in
which all integrations are performed exactly by means of approximating
the underlying velocity field. Eastwood & Arter (1986) described a

different technique in which they approximated all integrals (including



the evaluation of the mass matrix) by a compound trapezium rule. This
results in a careful balance between the anti-diffusive nature of the
mass matrix and the smoothing effect of vertex quadrature. However, to
approach the accuracy given by the exactly integrated scheme 6,7 or 8
sub-intervals are required, depending upon the problem, which makes the
scheme extremely slow when a three-dimensional (or even two-dimensional)
problem is being considered.

Meanwhile in meteorological studies the quasi or semi-Lagrangian
schemes were being developed. (See Robert (1981,1982), Bates (1985),
Staniforth and Temperton (1986), Ritchie (1987) and Temperton and
Ritchie (1987) for a flavour of this work.)

In the next section the Lagrange-Galerkin method is derived and the
relationship between this method, the EPIC algorithm of Eastwood & Arter
(1986) and the semi-Lagrangian method referred to above is discussed.

It will be shown that there is room for a great deal of improvement on
the handling of the advective forms in the semi-Lagrangian technique.

In Section 3 the Lagrange-Galerkin method is adapted for use with
spherical harmonics and a test problem is described, results for which
are presented in section 4. Finally in Section 5 a brief summary is

given of the work that has been done and possibilities for future work

are discussed.

2. THE LAGRANGE GALERKIN METHOD

Consider the Cauchy problem for the scalar, linear advection

equation for u(x,t) :

u +a w=0, xeR , t>0 (2.1a)

u(x.0) = u (x) , (2.1b)



where u belongs to Lz(md) and the velocity field a = a(x.t) is

incompressible, i.e.

v.a=0 YV x,t (2.2)
We can define trajectories, X(x,s:;t) , by
X(x.s:s) = x (2.32)
d
I &(x.sit) = a(X(x.sit).t) (2.3b)
which can be rewritten, if desired, as
t
X(e.5:6) = x + | al(xsim).m)ar . (2.4)
s
. . . n+l n . -
Using the obvious notation t =t + At , we denote for simplicity

the terms X(l.tn+

1;tn) and &(g.tn;tn+1) by x and y respectively.
A unique (absolutely continuous) solution to (2.3) can be

guaranteed if it is assumed that a belongs to the space

L*0.T; (W*'®)Y) . The relation

u(X(e.t;t+7), t+7) = u(-,t) (2.5)

then gives the solution to (2.1).

The most direct numerical formulation, actually called the direct

Lagrange-Galerkin method by Morton and Priestley (1986), for an



approximation
() =) Ng (- :
() =) Uey) (2.6)

J

. n . . .
at time ¢t in terms of finite element basis functions ¢j , uses (2.5)

directly to obtain Un+1 satisfying

s = [P (e (2.7)

where <+,+> denotes the L? inmner product over Rd , i.e.

<rg> = [ fosodr
d

R
To derive (2.7) we have used the Galerkin method applied to an
integrated form of (2.5). This is the same approach as that used by
Bercovier & Pironneau (1982), Douglas & Russell (1982) and Pironneau
(1982), for example.

A second, alternative, formulation was introduced by Benqué et al
(1982), which is referred to here as the weak Lagrange-Galerkin method.
It introduces new test functions ¢i(°.t) , which are not only different
from the basis functions ¢ but depend on time. Multiplying (2.1) by

this test function and integrating in space and time we get
<u_+a-vu,y, >dt =0 . (2.8a)

Integrating by parts in both space and time, we obtain



<Cu(e-, t+At) ¢i(-,t+At) > =< u(+,t) , y.(*.t) >

i

t+At

= J Cu,d g, + ve(ay;) >dt .
t
(2.8b)

Using the incompressibility condition, (2.2), g_-(gwi) can be rewritten
as a-°v wi so that this last term vanishes if the test functions

satisfy
¢i(x£-.t;t+7) , t+T) = ¢i(-.t) . (2.8c)

In order to solve (2.8c) a final condition is imposed on ¢i by

setting
¢i(°.t+At) = ¢i(-) F (2.8d)

Substituting the finite element approximation (2.6) into (2.8b) and

using (2.8c) and (2.8d) gives

CUMg > - JU“(&) v (x.£7) dx
or, equivalently,
g s = [P ) ax (2.9)

Although (2.9) and (2.7) look very similar, and indeed are, we
shall later use only the weak Lagrange-Galerkin method. This is
preferred for a number of reasons. Firstly (2.9) ensures conservation
even when the integral is approximated. This is not the case with the

direct method. Furthermore the weak method deals more naturally with



source and boundary terms which will appear in integral form in (2.8b).

The EPIC algorithm is just a very specific approximation of the
direct Lagrange-Galerkin method. Priestley (1986), Siili (1987), Morton,
Priestley & Siili (1988) have shown that both the weak and direct
versions are conditionally unstable for large classes of quadrature
rules that integrate quadratics exactly when linear or quadratic basis
functions are used. The EPIC algorithm works by using a compound
trapezium rule to evaluate both the right-hand side integral and the
mass-matrix. If the full mass-matrix were used the scheme would again
become unstable but the use of the same compound trapezium rule on the
left-hand side introduces just the right amount of mass-lumping to
stabilize the scheme. As the number of sub-intervals is increased the
amount of lumping is reduced. Conversely, if no sub-intervals are used,
i.e. a vertex quadrature is used, then the mass-matrix becomes the
identity matrix and we obtain the semi-Lagrangian method.

Perhaps the fact that the semi- or quasi-Lagrangian method performs
so well is a tribute to the potential of the method, first described by
Courant, Isaacson and Rees (1952). However, much better results can be
obtained by the use of a Lagrange-Galerkin method. As a demonstration
of the good properties of this method a Fourier analysis of both the
semi-Lagrangian and exactly integrated Lagrange-Galerkin methods has
been performed. Figure 1 shows, for various values of the CFL number
v , the square of the absolute value of the amplification factor,

IN|? . against sin®(8/2) .

It is clear that much less damping occurs for all modes and CFL
numbers for the Lagrange-Gakerkin method than for the semi-Lagrangian
method. It should be noted that both schemes are unconditionally
stable, i.e. Ihlz <1 . Of course this lack of damping is only a part

of the story. We also need to consider the speed at which the modes are



propagated. If a mode were being propagated at entirely the wrong speed
it would be better for that mode to be severely damped.

Now consider solutions to the differential equation

u +au = 0 . (2.10)

of the form

u(x,t) = ei(wt—fx) 3 (2.11)

For every real wave number § we assume that there is a
corresponding real value of the frequency o such that (2.11) is a
solution of (2.10). The relation o = w(f) is called the dispersion

relation for the differential equation. The phase speed is then

c(§) = w(§)/¢ (2.12)
and the group velocity

dw(€
c(§) = —:‘i’é—)- . (2.13)

For the linear advection equation (2.10) we find, substituting in

(2.11), that

c(E) = C(E) = a . (2.14)
When using a numerical scheme (2.11) is replaced by

U? _ ei(mnAt—fij) _ (2.15)
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Substituting (2.15) into the difference equation produced by the

semi-Lagrangian method (or, equivalently, the method of characteristics)

produces

arcsinFE%% sin(fo)]
(AJS_L(E) H At ’ (216)

Dividing by § then produces the phase speed, cs_L(E) for the
semi-Lagrangian method. This is more enlightening when it is expanded

as a Taylor series to produce
o (E) = a+ & (a0t - abx®)E® + O(E*) . (2.17)

Performing a similar calculation with the Lagrange-Galerkin method

produces the dispersion relation

. [art(a®At3cos(FAx)- a2At? + 3Ax2)sin(§Ax)J
arcsin S Lo

b°(2 + cos(Ex))
“s-L(E) = e

and again expanding cL_G(E) as a Taylor series we get
=2 = ALt - 252p¢2 Y ®y . 2.18
¢ glf) =a 355 (3a’At BAx%a®At® + 2M0x*)EY + O(E°) ( )

Comparing (2.18) and (2.17) we see that the Lagrange-Galerkin method
produces a phase speed two orders of magnitude more accurate.

It is therefore seen that the Lagrange-Galerkin scheme not only
produces much less damping of waves but also transports them with a much

more accurate speed. This comparison is, perhaps, a little unfair on
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the semi-Lagrangian method because its practitioners generally prefer a
cubic-interpolation which produces much better results than with the
linear interpolation. However, if we used cubic elements in the

Lagrange-Galerkin approach similar results would follow.

3. SPECTRAL LAGRANGE-GALERKIN

3.1 The Implementation

It has been shown that the Lagrange-Galerkin method with linear
elements is a much more attractive proposition than the semi-Lagrangian
method, even though the latter has already proved its worth in the
meteorological literature.

However, the application of the Lagrange-Galerkin method is not a
straightforward matter due to the conditional instability introduced by
quadrature, see Priestley (1986), Morton, Priestley & Siili (1988).
Quadrature is needed in all but the most trivial cases. The EPIC
algorithm of Eastwood & Arter (1986) performs a stable quadrature but is
expensive. Priestley et al (1986,1988) proposed a different technique
that was stable and efficient on rectangular elements but again becomes
expensive if a distorted rectangular mesh or a triangular mesh is
required.

The analysis of Priestley (1986) restricted itself to the
traditional finite element basis functions of piecewise linear,
piecewise quadratic etc.. However, Siili (1988b) noted that if global
basis functions were used, as in spectral methods, then the method would
again become stable. This was later formalized in Siili and Ware (1988)
where it is shown that, for an n mode approximation, the only condition
placed upon the compound trapezium rule used as a quadrature is that at

least n+l points are used.
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A further benefit of using orthogonal polynomials is the fact that,

given suitable normalization factors

1 if m=n

Jsm(x)sn(x)dx = {
0 0 if m#n

which means that the mass matrix reduces to the identity matrix
resulting in a major saving in computer time for the method.
The co-ordinate system that is used in the meteorological content

used is normally (A,n) where p = sin 6 . Here A 1is the longitude

and 6 1is the latitude with

and

The appropriate orthogonal basis functions are

imA
Yoa(eN) = B (e

where Pm n(u) denotes the associated Legendre function of the first

’

kind given by

(2n+1)(n-m)1 1% (1- 2)m/2 qnrm
(1) = [ ] L

(n+m)! ol dun+m

2_ n
- (n*-1)" .

The basis functions satisfy the orthogonality relation

1 2 x il for (m',n') = (m,n)
4r J J Ym n Ym' n' dpdA =
o ' ' 0 for (m'.n') # (m,n) .



=gl =
Here we have used Y  to denote the complex conjugate of Y
Denoting the radius of the earth by a we expand any function

on the surface of the globe in terms of these spherical harmonics as

M [m[+]
WmAt) = a? ) ) Vo () Y ) (3.1)
m=-M n= |m]

(Here J may be a function of m and defines the type of truncation to

be made. In rhomboidal truncation J =M , whilst with triangular

truncation J =M - |m| .

The coefficients ¢m L can be obtained from the inverse transform

formula

1

J \p(u.?\.t)Y: _dudh . (3.2)
1

v (6 = = Tﬂ
o

4mra?

Since VY(u,A,t) must be real wm a must satisfy

m
Yo = (°1) L
which is implied by the use of the relation
m
P—m.n = (-1) Pm.n .
That describes the horizontal discretization and it remains to look

at the vertical discretization. In order to achieve compatability with

current meteorological codes a finite difference approach has been used
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in the vertical. In essence this means that a two-dimensional problem
is solved on each horizontal layer. A cubic interpolation is performed
between layers when necessary. Another way of looking at the use of
finite differences in the vertical to regard it as arising from the use
of cubic finite elements in the vertical together with vertex quadrature
- a procedure that we have already castigated! For the time being
though we will persevere with this approach but in the final section
alternatives will be discussed.

The other major difficulty with the vertical direction is the
nature of the co-ordinates in that direction. Owing to difficulties
caused by orography the straightforward =z = height co-ordinate is not
used.

Following Simmons & Burridge (1981) the vertical co-ordinate, 7 ,

is a monotonic function of pressure p and is dependent on the surface

pressure p_

n = h(p‘po) p

where h(O.pO) =0 and h(po.po) = 1 . Here we shall use the hybrid

vertical co-ordinates defined by

Mes |

-
po k+%

T]k‘l'% =

The values of A,B and p, are tabulated in the Appendix.

The weak Lagrange-Galerkin method is now

vertical
levels or 1 M |m|+]
_ 1 2 2
Upe o (£8E) _E — J J a?(z) ) U oo T (A
n=0 & (z") o -1 m=-M n= |m
o (Z,R) dp dn . (3.3)

m| Ini
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In (3.3) (ﬁlx,n') denotes the transported position of a particle that
was at (u,A,m) . Of course 7' has to take on integer values and so
by Um. n'.n' = 1 we implicitly assume that a cubic interpolation nas

already been performed.

Another snag with the vertical co-ordinate is the fact that in the
scheme we require a®(z) . Theoretically z can be recovered from
known information but this is by no means a straightforward procedure
and we would rather avoid such a calculation if possible. Fortunately,
because of the large radius of the earth (approximately 6400km) and
because of the relatively thin nature of the atmosphere (approximately

20km), a®(z) ~ a®(z') and so we can replace (3.3) by

vertical
levels 2r 1 M |m|+J
i
Um',n'.n'(t+At) = ZF'E J J E E Um'.n'.nYm.n(u’h}

n=0 0 -1 m=-M n=|m|

»* > =
3.4
Yoo oo (X)) dudn . (3.4)

3.2 The Test Problem

Before embarking on the real problem of interest, that of the
distribution of a passive chemical agent in the atmosphere (which will
be described in a later report), a rather simpler problem is attempted
here for which there is an analytic solution. This involves the
rotation of a cone around a sphere under a constant velocity field and
follows the paper of Ritchie (1987), from which the equations in this
section have been reproduced for convenience.

Using longitude-latitude, (A,8), coordinates the two-dimensional

advection equation can be written as

aF u aF

dF
6t+acoseﬁ+ 38 =

y 3.5
g lgg = © (3.5)
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where a is the radius of the earth, u is the zonal wind comporent
and v 1is the meridional wind component.

If we consider rotation with a constant angular velicity o =zbout
an axis passing through the centre of the earth and through some roint
P' on the earth's surface with coordinates (AO.OO) in the (A.6)
system, we can define another coordinate system (A',6') that has the
point P' as its north pole. Various useful identities that can be

derived from spherical trigonometry relating the two coordinate systems

are

sin 8' = sin 6 sin 60 + cos 6 cos GO cos(k—ho) (3.6a)
sin 8 = sin 8' sin 90 - cos B' cos 60 cos A’ (3.6b)
cos 6' sin A\' = cos 6 sin()—ko) P (3.6c)

In the (A',8') system we require

an _
dt
30"

e 0 .

This can be achieved by defining

u = aw[cos 6 sin 90 = cos(A—ko) sin 6 cos Bo] (3.7a)

<
n

- = 3.7b
aw sin (A ko) cos 90 ) ( )

Using the relations

u=acos 0 o
- dt
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and

ae
dt

we return to velocities in the (A,B8) system. In the present case we

use a (A,un) system where p = sin 6 , so that the velocity is

du _ a8
Tl cos 6 It -

In the (A',8') system (3.5) becomes

agr’ agF'
Eﬁ' wa. 0 (38)

which has the solution
F'(N',8',t) = f'(N'- 0t,0') (3.9)

where f' 1is calculated from the initial conditions in the (A',6")

system. Using the equations (3.6) we can derive

sin(A—Ao)

[ —1
A (A.0) st {[sin 90 cos(h—ho) - cos Gotanﬁ]}

8'(N.8) = sin_l{sin 8 sin 60 + cos 6 cos 60 cos(k—ho)}

and so, from an initial profile f'(A',8') 1in the (A',8') coordinate

system, the exact solution in the (A,8) system is given by

F(A.8.t) = £'(A'(N,8) - 0t , 8'(\.6)) . (3.10)
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The initial data chosen was
2. 202

£(\.8) = 100e T T /L (3.11)
where L? 1is just a positive constant and

2 _ _ 2 _ 2

r©< = (A AF) + (6 GF) . (3.12)
(AF.GF) are the chosen coordinates for the centre of the Gaussian hill.

A significant problem with Lagrangian methods on spheres is that of

the accurate calculation of the trajectories at the two poles. Using

straightline approximations in (A,u) space, i.e.

A+ AtA

rl >
1l

p.+At]..1

leads to very poor results, particularly near the poles. Straightline
trajectories are quite good in Cartesian geometries and so, following

Ritchie (1987) the procedure for calculating trajectories is performed

in the iterative manner,

= t 3.13
Ieep = Dple +Atn ) (. 1)
where g 1is the starting point and r is the latest prediction for

Deel

the end point of the trajectory. If g lies on the earth’s surface,

i.e. |g| = a , then when solving in Cartesian space the factor bk

must be introduced in order to ensure that Ir

-kl =a Vk .
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If the longitude and latitude of the grid point g are given dy

(xi.aj) the Cartesian coordiantes of g are given by

XG = cos Ai cos Gj
Y. = sin A, cos 0,

G i J
ZG = sin Gj .

Given that L = (xk.ek) we can find the normalized velocities

u, = u(kk.ek.t)/a
vy = V(Ak,ek,t)/a

and then the normalized Cartesian velocity components are

Kk = Gk sin Ak - ;k cos Ak sin Gk
uk cos Ak - vk sin Ak sin Gk

e
f

o
=
t

N ~

Zk = v, cos Gk ;
The required value of bk can now be written as

= {1 + At (x2 + Yz zk) 2At(X Xo + Y Yo+ Zk Z,)}

Equation (3.13) then becomes

bk(XG + AtX

Ker1

Yk+1

el

")

by (Yg + Bt¥))

by (Zg + 8t2)) .
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The iteration is finally completed by calculating

A . = tan L(Y

k1 k+1 K1)

Sin—l(ZKﬂ)
Heel = Zgan

D
]

k+1

4. RESULTS

4.1. The 2-D Rotating Cone Problem

We now choose the following parameters to be:-

(AO.GO) = (w,m/4)
(AF.GF) = (w,- nm/4)
L =172
w =3.6E -6 .

This value of w implies that a complete rotation will occur in
approximately 20 days. The initial data is shown in Figure 2. The
surface plots of the solution are not particularly illuminating and so

the results are just presented in tabular form.
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First a few comments about the results. The minimum and maximum
values are really superfluous and it is the error we should really look
at. However, it is natural to look at such obvious indicators of
accuracy as extreme values, and indeed for quantities such as humidity
negative values are meaningless and values greater than 100%., caused by
overshoot, can lead to unwarranted predictions of precipitation. It is
desirable, therefore, to have a method that can advect data with minimal
overshoot and undershoot. The initial data is taken pointwise which
means that at time zero the minimum is O and the maximum, because it
does not fall on a grid point, is not 100 but 97.45. This can be
misleading because, if a projection of the initial data onto spectral
space is done, then the minimum and maximum become — 0.8 and 95 . More
importantly the error is calculated as 0.817. These figures should be
borne in mind when looking at the tables. These projection errors are
for the T21 spectral model (triangular truncation with 21 modes) and
will obviously be reduced as the resolution of the model is increased.

The errors given are in the discrete 82 norm. The continuous L2 norm

is defined as

2r 1 14
||error||2 = L%; J J (exact solution - approx. solution)2 dA du] .
o -1

(4.1)
The discrete 22 norm is the same except that the integrals in
(4.1) are replaced by quadratures.
There are three sources of error in the Lagrange-Galerkin method.
First there is a projection error in the exactly integrated method.

Secondly, in practical problems where we have to use quadrature there is
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the added error because we are only performing the projection
approximately. Thirdly, there will be errors in the calculation ¢f the
trajectories. Given the spectral model there is not much we can do
about the first source of error. The quadrature is something that we
can control as is the calculation of the trajectories. One way, then,
of reducing the error in the calculation of the trajectories is to
reduce the time-step. However, this then means that we will do more
projections and so increase this source of error. From the tables,
though, we see that the trajectory error dominates the projection error.
Table 1 gives values for the trajectories calculated as straight-lines

in (A,u) space and Table 2 gives the results from calculating the paths

in Cartesian space.

Ngmber of Minimum Maximum 22 error

time-steps
40 -0.9259 72.45 5.740
48 -0.8806 75.68 4.835
60 -0.8418 78.95 3.946
80 -0.8093 82.25 3.081
96 -0.8017 83.89 2.664
120 -0.7949 85.47 2.271
160 -0.8103 86.89 1.921
192 -0.8261 87.47 1.779
240 -0.8468 87.88 1.679

Table 1: Trajectories calculated in (A,u) space.
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Ngmber of Minimum Maximum 22 error
time-steps
40 ~0.6616 57.44 9.405
48 -0.6742 63.04 7.926
60 -0.6523 68.88 6.385 |
80 ~0.6775 74.64 4.800 |
96 -0.6948 77.54 4.155 |
120 -0.7358 80.37 3.451
160 ~0.7863 83.05 2.797
192 -0.8139 84.27 2.500
940 ~0.8403 85.32 2.240

Table 2: Trajectories calculated in Cartesian space

We see that neither approach suffers from undershoot to any
significant degree and, although both suffer from some degradation of
the peak, we see that if the time-steps are small enough the peak is
maintained very well. Both methods have a pleasing reduction in
82 error but again these figures are better when we solve for the
trajectories in spherical space rather than Cartesian space. The
results using Cartesian space perform particularly badly when very large
time-steps are used. It should be noted, though, that the solving of
the trajectories in Cartesian space is particularly recommended for the
problems caused by the poles. In this problem the cone did not traverse
either pole.

We now consider the effect on the solution caused by crossing a

pole. All parameters are the same except that we choose

(7\F,9F) = (TT, O) .
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This ensures that the cone will pass directly over the North Zole
after half a revolution. It is worth pointing out that any undue
under/overshoot is not a result of instability but is just due to errors
incurred in travelling over the pole. The initial projection errors
result in a minimum of -0.0255, a maximum of 95.347 and an 22 error
of 0.0589. The initial data can be seen in Figure 3. Tables 3 and 4

correspond to Tables 1 and 2 for the new initial data.

Ngmber of Minimum Maximum 82 error

time-steps
40 -84.65 219.8 51.72
48 -89.59 239.2 54.84
60 -82.84 246.9 53.54
80 -53.22 226.9 44 .36
96 -36.24 210.7 38.49
120 -29.09 194.5 33.02
160 -19.92 167.8 24.43
192 -15.41 153.6 19.86
240 -11.26 139.3 15.35

Table 3: Trajectories calculated in (A,n) space.

Ngmber of Minimum Maximum 82 error
time-steps
40 -1.18 147.6 31.08
48 -6.17 137.2 26.49
60 -4.87 118.2 20.79
80 -2.99 96.60 16.02
96 -0.92 94.72 13.91
120 -0.73 100.4 10.66
160 -1.32 97.73 10.21
192 -1.76 106.6 7.37
240 -1.45 105.6 6.01

Table 4: Trajectories calculated in Cartesian Space.
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We see here, with some satisfaction, that calculating the
trajectories in Cartesian space has performed much better than
calculating them directly in the spherical geometry. Although both sets
of results are converging, at no point do the results in Table 3 become
adequate. Tables 3 and 4 reinforce the comments made earlier about the
need for the accurate calculation of the trajectories.

We now consider the effects of improving the solution of the
trajectories. A Runge-Kutta technique might be more efficient but for
the sake of simplicity a compound Euler method was used to give the
results in Table 5. All trajectories are calculated in Cartesian space

and the problem is the same as for that to which Tables 3 and 4 refer.

Number of Minimum Maximum 22 error

time-steps
40 -0.617 85.64 5.135
48 -2.142 77.39 7.969
60 -0.885 79.52 5.362
80 -1.4925 83.65 4.765
S6 -1.462 94,29 3.430
120 -1.308 95.27 2.115
160 -0.979 93.76 1.594
192 -0.792 92.85 1.375
240 -0.599 91.78 1.202

Table 5: Accurate Cartesian Trajectories.

Here we see much more satisfactory results. There is a steady
convergence, aside from the first result, although all the results give
adequate answers. With a more accurate trajectory solver one might well

hope that the 12hr. time-stepping would give results comparable to the

2 hour time-stepping.
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The one question remaining is the size of the error that is made
due to using an approximate projection, i.e. using quadrature of the
integrals. In the periodic direction, for stability, we need only -o
use a maximum of M+l quadrature points. We have been using (3M+1)
i.e. 64, points. This is needed in the spectral model to deal with
aliasing errors caused by non-linear terms. This is not a problem for
us with this equation and so we can reduce the order of our quadrature.
In Table 6 we present results obtained by using just 32 points in the

periodic direction. Everthing else is the same as for the results in

Table 5.

Number of Minimum Maximum 82 error

time-steps
40 -1.09 85.8 3.76
48 -3.26 81.44 8.68
60 ~1.93 75.47 6.35
80 -2.05 77.84 5.59
96 -2.22 93.11 3.23
120 -1.36 93.07 2.13
160 -1.41 91.83 1.76
192 -1.41 91.15 1.62
240 -1.41 90.39 1.51

Table 6: Reduced order quadrature. (32 x 32)

Comparing these figures with those in Table 5 we see that there is
not a great deal of difference. The errors in Table 5 are uniformly
lower, with the exception of the first, but one might well ask if this

marginal decrease in error was justified by a doubling of computer time.
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5. CONCLUSIONS

W¥e have shown that the spectral Lagrange-Galerkin method is a very
formidable scheme for solving a&vection dominated problems on a sphere
even on the extremely coarse meshes used here and is, arguably, a
considerable improvement over the semi-Lagrangian method currently being
used.

There is a considerable amount of further work to be done. The
question of producing accurate, cheap, approximations to the
trajectories needs to be resolved. It is hoped that soon this method
will be tried on a full 3-D model of the atmosphere to predict the
advection of a passive pollutant.

We mentioned earlier the mismatch between the representations in
the horizontal and the vertical, spectral and finite difference. Since
the code produced needs to be compatable with the current numerical
weather prediction models this situation is likely to have to continue.
However, a more pleasing approach would be to use a spectral method in

the vertical also, see Machenhauer and Daley (1972).
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APPENDIX
Parameters of 19-level hybrid vertical co-ordinate system.

p, are given in Pascals.

k Ak+% Bk+%

0 0.0 0.0

1 0.2E+4 0.0

2 0.4E+4 0.0

3 0.604611E+4 0.338993E-3
4 0.826793E+4 0.335719E-2
5 0. 106095E+5 0.130700E-1
6 0.128511E+5 0.340771E-1
7 0. 146985R+5 0.706498E-1
8 0.1586611E+5 0.125917

9 0.161162E+5 0.201195

10 0. 153569E+5 0.295520

11 0.136215E+5 0.405409

12 0.111016E+5 0.524932

13 0.812714E+4 0.646108

14 0.512514E+4 0.759698

15 0.254987E+4 0.856438

16 0.783195E+3 0.928747

17 0.0 0.972985

18 0.0 0.992281

19 0.0 1.0

P, = 0.101325E+6

a4
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