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1. INTRODUCTION

A recent study [11] has shown that the use of tidal energy to
generate electrical power is economically viable. In evaluating a tidal
power scheme it is important to know that the plant is operating at maximum
efficiency and several studies have been made [11, [71, [12], [18] using
a variety of mathematical models and techniques in order to find the best
operating strategies. One technigque which has proved to be particularly
useful is that of applying the mathematical theory of optimal control.
In previous studies [2], [31, [4], [5], [6] optimal control methods are
applied to the problem of maximising the average power functional subject to
the satisfaction of a system of linear differential equations which model
the fluid dynamics in an estuary. It has been found that this approach is
attractive, since it 1s both computationally feasible and easy to generalise
to take into account such things as ebb or two way generation, non-linear
head-flow relationships at the tidal barrage, and variable estuarine geometries.
The use of linear dynamical equations has, however, restricted investigation
to estuary channels of approximately rectangular cross-section, whereas, in
practice, channels are far from rectangular and are subject to effects
such as the drying out of sand bars. Modelling of such non-linear effects
requires the use of non-linear dynamical equations.

In this report we present the application of optimal control technigues
to the problem of maximising the autput from a tidal power plant where the
estuarine dynamics are described by a non-linear ordinary differential
equation which more realistically models the estuarine flow. As a further
generalisation to previcus studies we introduce a tariff function to weight
the power integral and also allow the turbines to be of variable efficiency,

depending on the head difference.



In the next section the mathematical model of the tidal power scheme
is described and the corresponding optimal control problem is formulated.
The model is analysed and necessary conditions for the solution of the
optimal control problem are given in the following sections. In Section 3
a numerical method for determining the optimal control strategy is developed
and a computational algorithm is given. Results are presented in Section
4 with data approximating that for a scheme using the Severn Estuary.

Conclusions are given in Section 5.



2. THE MATHEMATICAL MODEL

2.1 The Equation of Flow

We assume that the water surface upstream of the tidal barrier
remains horizontal and that the tidal elevation on the seaward side of
the barrier is a known function of time, independent of flows through the
barrier. The fluid dynamics inside the tidal basin are then governed by

the conservation of fluid law given by

S(nln = u1[t3K1P(AH] + o, (£IKRIAH), (2.1)

where n(t) is the water surface elevation above the datum, S(n) is the

horizontal surface area of the water, K K are the total number of turbines
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and sluices respectively, P, R are the head-flow functions for each turbine
and sluice respectively. The head difference AH = f(t) - n(t), where

f(t) dis the tidal elevation above the datum and a0, give the instantaneous

proportion of turbines and sluices respectively in operation. Thus o o

= -

satisfy the inequalities

0 < u1(tJ, az[tJ <1 . (2.2)

Over short intervals of time the tides are approximately periodic,
and so we also assume that +f(t + T) = f(t), where T is the tidal period,

and require that n 1is also periodic satisfying

n(0) = n(T) . (2.3)
The maximum power p available to each turbine is given by
p(t) = pgR(AH)AH

and the electrical energy J derived is given by
J = pltlelaH) ,

where e 1is an efficiency function satisfying



0 2 e(AH) =1

If we introduce a tariff function C(t) z 0 then the average profit

P over a tidal cycle is given by

ek, (T

P e J Clt)a, (£)P(AH) AHe (AH) dt, (2.4)
0

where p 1s the fluid density and g 1is the acceleration due to gravity.

2.2 The Optimal Control Problem

The optimisation problem is then to determine the control functions
a1[tJ, az[t] in order to maximise P given by (2.4) subject to equations
(2.1), (2.3) and constraints (2.2). Admissible controls are assumed to be

measurable on [0,T], [15].

2.3 Analysis of the model

For the optimal control problem to be well-posed it is necessary that
for any admissible non-trivial control function o = [aq,ule, the equation
of motion (2.1) together with periodic candition (2.3), has a unique solution.
In order to show this we impose some conditions on the data f, P, R, S.

We make the following assumptiohs:

(L) f(t), P(y), R{y) are continuous everywhere

A
=~
”~
8

(ii) P', R' exist everywhere and satisfy 0 ¢ K < P'(y), R'(y) £
where K, K are positive real numbers
(iii) S(y) 4is continuous everywhere and there exists ¢ > 0O, z < o such

that o = S(y) = ¥

Assumptions (1)-(iii) then imply .that for each control o such that

T
[ (a1 + qzldt > 0, there exists a unique continuous solution n(t) satisfying
0

(2.1), (2.3). Conditions (1)-(iii) also imply continuity of the solution

n with respect to the control o 1in the sense that for each pair of non-

trivial controls a, B with corresponding responses n,s N there exists

B »

a constant Mu ¢ o such that



[ng(t) - nd(t]\ My e -all, - (2.5)

T

where Hg_ll,l = [ (mq(t] + u2[t])dt. The proaofs of existence of periodic
0

solutions and continuity property (2.5) are given in appendix 1. Both of

these results are required in the next section where necessary conditions

are derived for the solution of the optimal control problem.

2.4 Necessary Conditions for the Optimal

Necessary conditions for the solution of the optimal control problem
are derived using the Lagrangian formulation of the problem £9l.
This approach also provides a basis for the numerical procedure described
in the next section.

The Lagrangian functional L(a) associated with the optimal control

problem is defined by

)
La) = J Co,P(AH)AHe (AH) + AL-S(n)fi + o K P(AH) + o K RCAH}IdE |

0 (2.8)

where A(t) 1is a Lagrange multiplier known as the adjoint state. For a
to be optimal it is necessary that the first variation 6L(a,8a) of the
functional L 1is non-positive where 6L is linear in 8o = 8 - o and
such that

L(B) - Lla) = 6L(a,6a) + o[B8 - afl, ,

for all admissible non-trivial controls B.
If we assume that the efficiency function ely) 1is also differentiable,

then the first variation of the Lagrangian (2.7) can be written in the form

T
SL (o, 60) Gaq[CP(AHJAHe[AH) + kK1P(AHJ] dt

g (2.7)

-

J
+ IDGQZAKZR(AHJ dt ,



where integration by parts has been used and A(t) has been taken to

satisfy the adjoint problem

. ]
S(mIx = A(a1K1Pf[AHJ + mszRf(AHJ] + Cu1 Y (P{AH)AHe (AH))

(2.8)
AC0) = A(T) ’

Under conditions (i)-(iii) of §2.3, it can be shown that for every
non-trivial admissible control o, problem (2.8) also posesses a unique

continuous solution A(t). If we regard P in (2.4) as a function solely

ogK1

of a0, We therefore have - 6L(a,80) equal to the first variation

of P with respect to o, and we may write

pgKk

<WPla), so> = — 6Llo,80)

where 6o, is an admissible variation, <e,<> 1is the inner product defined by
[

<p,g> = [ p (t)glt) dt
0

and the function space gradient ZFIQ)[t)

_ pgK1
VP(a)(t) = —— C(t)P(AH)AHe(AH) + AK,P(AH)
- I 1 , (2.9)

AKZR(AHJ

where AH = £ - n, n satisfies (2.1),(2.3) and A satisfies (2.8]).

For the control o to be optimal it is necessary, then that

A
e8]

<VP(a), B - a> (2.10)

is satisfied for all admissible controls B. For a given control, the
gradient vector can be computed from (2. 3) and since the values of the controls
10 % belong to a closed interval for any t, the inequality (2.10) is

easily tested. .Gradient methods can therefore be applied to determine numerical



approximations to the optimal control problem. The numerical procedure
described in the next section uses a gradient technique to generate a

sequence of approximations to the solution of the optimal control problem.



3. A NUMERICAL METHOD

The computational method which we use to solve the optimal control
problem consists of a constrained optimisation technique far determining
the control, together with a finite difference method for solving the state

and adjoint problems.

3.1 The Conditional Gradient Method

Many optimisation techniques are described in the literature fel,
but previous investigation [3] indicates that the Conditional Gradient
method is suitable for application to the tidal power problem when the
dynamics are approximated by an ordinary differential equation model.
This method generates a sequence of pilecewise continuous controls
gﬁ(t], K =1,2,... approximating the optimal control o(t). Since the
set of admissible controls U is closed and convex, there exists a maximal
displacement ﬁﬂ& in the direction of the gradient YFIQK) such that

K
o

+ §gﬁ lies in U. The conditional gradient method generates the

controls g& such that g$+1 = gF + GK §gﬁ where GK € (0,11, and

. =, K+1 = K K+1 s .
such that either P(o ) » Pla) or o satisfies necessary conditions
(2.10). In practice the iteration is terminated when the measure

M[gﬁ] is less than a given positive tolerance, where M(a) is given by

max

M(a) = 8€U

<WP(a), B - a> , (3.1)

and aK is then accepted as a good solution to the optimal control problem.

The solutions of the state problem (2.1), (2.3) and adjoint problem (2.8)
are approximated at each step of the method by the trapezoidal rule (141,
the state equation being integrated forward in time and the adjoint equation
being integrated in the reverse time direction.

The numerical optimisation algorithm, is obtained by replacing all

integrations in the following algorithm by the corresponding discrete approx-

imation.



Algorithm
0 0
Step 0 : Choose o € U ( (t) £ 0)
Choose 6 € (0,11
E(a ) 1= O
K =0
Step 1 : Solve problem (2.1), (2.3) for n
with o = Q,_K
Step 2 : Solve problem (2.8) for )\ with g = QF and with
n from step 1.
- Kk .
Step 3 : Evaluate P(g ) using (2.4)
=k = k-1 .
Step 4 : If Pla ) < Pla ) then @ := ¢6 where
¢ € (0,1)
Step & : Evaluate 15(_%"] using (2.9)
k k
Step 6 : Evaluate g, M(a ) where
= S, K
Mk = <P, 8 - o> = PR <P g - o
Step 7 : If M(gﬁ) < tol, then STOP.
Step 8 : R O L P
Step 9 : Go to Step 1.

Details of the numerical integration schemes are given in Appendix IL.

3.2 Ebb Generation Schemes

So far it has been assumed that we are modelling generation schemes
which provide power on both the flood and the ebb tide. Schemes suggested
for the Severn Estuary have mainly been those generating only on the ebb

tide [11].
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To model such schemes we take P(y) =0 for y 2 0. In order to
analyse the system in this case it is necessary to relax condition (ii) of §2.3.
If we make instead the natural assumption that P(3) = R(0) = 0 and that
az[tJ Z 0, so that some sluicing takes place during the cycle, then
existence of unigue periodic solutions to (2.1) and continuity condition
(2.5) still hold. It is also noted that for ebb schemes, the control
uqtt] has no effect during periods of positive head difference and for

convenience we set uqtt] to zero during such periods.



= RIS

4. RESULTS

Numerical results are described for a problem which approximates
the Severn estuary, where the non-linearities model both the effects
of drying out of sand banks and the variation of turbine efficiency with
head difference. We give two examples. The first uses a tidal period of
about 12 hours and a constant tariff function. The second example uses
the half lunar cycle as the tidal period, where the tides have changing

amplitude from day to day.

4.1 Half Day tides

We take the following data as an approximation to a Severn estuary

scheme:
S(n) = 4.6 x 10% + 2.6 x 107q m? ;
P(y) = [290 (1 + tanh(10(y - 1.7)) y 2 0,
-P (-y) y < 0;
R(y) = 216 v2gly| segnly)
ely) = [gly) gly) z 0,
0 gly) < 0, where

gly) = 0.14 + 0.68 tanh (0.7(]y| - 1.7));

C(t) 1.0;
T = 44600 s;

f(t) = FU cgs{2nt/T), K1 = 140, K2 = 1860

where FD is the tidal amplitude in metres. It is noted that although
ely) 1is not differentiable at the zeros of gl(y), these zeros lie in

the interval where P(y) is effectively also zero, and hence we can ignore
the lack of differentiability of e at these two points. The same comment
applies to P{y) which has a small jump discontinuity at y = 0. From

a mathematical point of view we can always replace P, e by smooth

approximations as accurate as reguired; from a computational point of view

we may leave P, e as defined.
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The spring and neap tidal amplitudes are taken to be FO = 5.2m

and F0 = 2.65m respectively, and the results are computed with 800 time
0

steps, taking the initial controls as o, = 0.1, o, = 0. Table 1
illustrates the convergence of the iteration method for a spring tide.
Table 2 gives the results of the same calculation for 100% efficient
turbines (e(y) = 1). Table 3 shows the best average power obtained at
springs and neaps, using firstly 100% efficient turbines and then the variable
efficiency machines. It is noted that in the case of 100% efficient turbines,
the two-way scheme is always superior to the ebb scheme, whereas for the
variable efficiency machines the situation is reversed. This is rather
a surprising result since we would expect a two way scheme to be at least as
effective as an ebb scheme for our model. It is found, however, in the case
of the variable efficiency model, that if the two way scheme is run with the
best ebb scheme controls, then the algorithm terminates without updating the
controls. We conclude that for the variable efficiency model, the ebb scheme 1s
the best and that the control strategy computed by the algorithm for the
two way scheme 1s only a local maximum.

Figures 1a,b, 2a,b give the main flow parameters for the best
computed ebb and two way schemes respectively, calculated using the variable
efficiency model with a spring tide cycle. It is seen from Figure Zb
that almost all of the power from the two way scheme is being generated on
the flood tide so that our algorithm has sought out a one way scheme, but
one generating in the wrong direction! For comparison, Figures 3a,b, 4a,b,

give the main flow parameters for the best computed ebb and two way schemes

respectively, using 100% efficient machines with a spring tide cycle.
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4.2 Half lunar cycles

The second example we examine is a Severn estuary model, where
the average profit functional (2.4) is calculated over a 14 day Spring-Neap-Spring
cycle. We take the variable efficiency turbine model, as before, operating

in ebb generating mode. The tidal elevation f(t) 1s given by

f(t) = (2.685 cos? L%gl + 2.25]005{54 E%} ,

where T is the half lunar period, and, for the purposes of comparison,
we take two tariff functions C(t). The first tariff function is based

on winter rate electricity prices as follows

0030 - 0730 1.37p unit
Weekdays 0730 - 2000 B8.05p/unit
2000 - 0030 2.43p/unit
Weekends 2.43p/unit

The second tariff function ig: C(t) = 1, so that we are merely seeking

to maximise average power rather than revenue. Table 4 gives the best

computed values of the profit functional/revenue for the two cost functionals,
assuming the high spring tide is at 7.00 a.m. on a Sunday. As expected it

is seen that the effect of maximising the revenue is to reduce the average
power slightly. 1In this example a 2% increase in revenue is achieved by -
rescheduling the power output, which decreases in average value by only

0.8%. Figures 5a,b, Ba,b show the main flow parameters for the winter

tariff and constant tariff models respectively. If we examine the instantaneous
power curve in 5b for the winter rate model we see that the high tariff periods
are in phase with the best generating times for the Spring-Neap period given

by the power curve in 6b. 0On the second half of the cycle from Neap to Spring
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we see that the power is generated both during high tariff periods

and low tariff periods due te the changed phase of the tides at this part

of the cycle. The power output at low tariff periods has been depressed

in order to increase output during the high tariff periods. It is noted

that our example is not perhaps the best to illustrate this point and that

at certain times of the year the phase of the tides will be such that an optimal
average power strategy will be producing a lot of energy at low tariff

periods. Under these conditions we conclude that an optimal revenue policy

will reschedule power production to give a higher profit.
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5. CONCLUSIONS

In this report we examine a non-linear ordinary differential equation
model of a tidal power generation scheme and, using the theory of optimal
control, develop techniques for determining the maximum revenue derivable
from the scheme. The model incorporates the non-linear effects due to non-
rectangular estuarine geometry, and also due to flow through turbines
and sluices. Further additions to previous models allow for variation of
turbine efficiency with head difference and the inclusion of a tariff function
to weight the power integral.

The optimal profit problem is formulated as a constrained optimal
control problem and necessary conditions for the optimum are given.

A conditional gradient algorithm is described for determining the optimal
control strategy and numerical results are presented.

The results indicate that when turbine efficiency drops off
rapidly as head decreases then an ebb generating scheme performs better
than a two way scheme. It is also seen that over a half lunar cycle we can
improve the revenue from a tidal power scheme by rescheduling generation
over high tariff periods. This rescheduling produces a decrease in
total energy output; this decrease is, however, only marginal.

We conclude that the application of optimal control techniques to the
tidal power problem where the flow equations are non-linear is quite feasible
and is an attractive method for systematically computing flow control
policies, even in complicated situations where we are seeking to maximise

some weighted integral of the power output.
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APPENDIX I

ANALYSIS OF STATE EQUATIONS

We sketch here some theoretical results on the existence of periodic
solutions to the state problem (2.1), (2.3) and the continuity of such
solutions with respect to the control. These results are required in
establishing the existence of the gradient ZF (2.9). For convenience

we briefly restate the problem and the assumptions made in §2.

Problem 1 : Find a continuous and differentiable function n(t) such
that
Slnln = u1(tJK1P(f-n] + uz[tJKZR[F-n] (A1)
n(0) = n(T) 7 (A2)
where

(i) a,(t], az[tJ are measurable on [0,T] and satisfy

1
0

A
s

(1) f(t) dis continuous on [0,T], P(y), R(y) are continuous
everywhere.

(iii) Pf, R' exist everywhere and satisfy 0 < K £ P'(y), R'(y) S K <o,

(iv) S(y) dis continuous everywhere and satisfies

0 < 02 Sy} 2 Z (¢

Proposition 1 ¢ For each o such that

T
Jo mqttl + a2[t]dt > 0,

there is a unique continuous solution n(t) to Problem 1.

Proof : We introduce a new volume variable w(t) defined by
n
w = W(n) = I Sly) dy ., {A3)
0

so that equation (A1) becomes
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W= KPOF -~ W (W)Y + g KoR(E = W (W) (A4)
11 2 W2 !

where W 1is a one-to-one function and W_1[ } is its inverse. Conditions
(i)-{iv) then guarantee the existence of a unique continuous solution w(t)
to the initial value problem (A4) with w(0) = Wy for every Wy € R [15]1.

If now wqtt], wz[tl represent two solutions of (A4), corresponding to

two different initial conditions then {A4) implies

. . -1 T )
(wq—wz)[w1—w2J = aqKq[P[F—W [w1]] P(+-W (WZJJ][W,l wz]

. uZKZ[R(f—W_1[w1J] i R[F—wﬁq[wzll](wq—wz) . (A5)

By using the mean value theorem, conditions (iii), (iv) and noting that

—— , equation (A5) gives the inequality

|
2

|
£
-~
A

glw, - w2]2 (a1 +0.), where

1 2

K min [Kq,KZJ

q = CS S R SRS S SIS »

)

and hence, by applying Growall's Lemma [13], we arrive at the inequality

t
—qf o, +0, dt
0 1 72

lwqttJ - w2(t)| < e lw, (0) - wy(0)] . (AB)

If the mapping G : R + R 1is defined by

Gu = V

where w(0) = u € R , w(t) satisfies (A4) and w(T) =V € R, then
inequality (A6) implies that G is a contraction on R [10] and, therefore,
that there is a unique fixed point V* € R such that GV* = V*. This
implies that there is a unigque initial value w(0) = V* such that w(t)
satisfies the periodic initial value problem of (A4) with w(0) = V* = w(TJ,
and since there is a one-one mapping between w and n wvia (A3), this

completes the proof.
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We now prove the inequality (2.5), which shows that the solution to
(A1), (A2) depends continuously on the control o . This requires two
intermediate results, namely the continuity of the corresponding initial

value problem with respect to the control, and inequality (AGJ). We first

prove a lemma.

Lemma 1
For any two solutions Wy, W, of (A4) satisfying
- e e B
Wy = u1K1P[f W [w1]J + uzKZR(f W [wq]J ’ w1[DJ = Wy (A7)
. e e _
W, = 81K1P[F W (Wz]) + BZKZR(F W [Wz]], w2[OJ =Wy o (A8)

where o, E are non-trivial admissible controls, there exists a constant

L < such that

(t
ls J o - 8| dt (A9)
0

IA

lw, (£) = w, ()]
where we denote |g] - |u

|

Proof : Subtracting (A8) from (A7), integrating from 0O to t, and using

the mean value theorem for a scalar function of two variables,
(
lw, (£) - wy(t)] s L J lw, (s) - wy(s)| + o - B ds (A10)
where

_ max
telo,11

K1|P[F—W—1[VJJ|, K2|R[f—w_1[v]] , o, o [,

and v(t) 1is a function intermediate between wqtt), wztt]. Application of
Gronwall's lemma to (A10) then gives inequality (AS), completing the proof of

Lemma 1.
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4 Wy of (A4) satisfying
-1 -1

a1K1P[f W (wq]) + uZKZR(f W [w1]]. wq(D]

Proposition 2 : For any two (periodic) solutions w

1l
I

W

’ wq[TJ

E -
1

& il =l
= 31K1P[f - W [WZ)J + BZKZR[F - W [wZJJ, w2(0) WZ(T)

2

where o , B are non-trivial admissible controls, there exists a constant

C < o such that
o

wolt) - w(t) £ C g - all, (A11)

Proof : Let z(t) be the unique solution to the initial value problem

2= K POF - W (2)) + K ROF - Wz,

z(0) = WZ[U] »

then

lw, (£) - w,y ()] = lw,(£) - z(8)] + |z(t) - wy (£ ] (A12)
From inequality (AB) we have t

-qJO |lalds

lw,(£) = 22| s [w,(0) - wy(0)] e (A13)

for some g » 0, and from Lemma 1 we have
|z(t) - wztt]| smM|8 - alh (A14)

for some M ¢ o . Then putting t =T din (A12) and using (A13), (A14) gives
T

-q flﬁlds

lw, (0) - w2[0]| <se 0 lw,(0) = w03 + mie - all, (A15)

and hence

M
/I _ B_q “9”1

W, () = wy(£)] < e -all,

M

= H OLH If we use (A3]) then
1 - e g 1

which proves proposition 2 with Cu =



_2[:]_

&

(t)] = 7%—“8 - ocH1 where w, = W(n ), w

’ = Win,J,

we also have lnu[t] -0 2 8

B

and hence inequality (2.5) is proved.
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APPENDIX IT

NUMERICAL SOLUTION OF STATE AND ADJOINT EQUATIONS

The numerical solution of periodic initial value prablem (2.1), (2.3)
is obtained by discretisation of (2.1) using the trapezoidal method, followed
by repeated numerical integration of the equation over the interval [0,T]
until the initial value g and the final value Y differ by less than
some small tolerance. This process converges to the unique periodic
solution of the difference equation, which satisfies a contraction property
analogous to that satisfied by the diffsrential equation (see inequality
(AB)). Numerical solution of the adjoint problem (2.8) is obtained by
the same method, but with the integration being performed in the reverse
time direction.

The difference approximation to the state problem (2.1), (2.3]) is

given by
n n, n n n+1 n+1 n+1
0 B At a1K1P[AHJ +a2K2R[AH ) o, K1P[AH ]+a2K2R[AH )
n | = TT a + ‘n+1 .
S(n’) Stn )
n = 0111---; N—1 » (Bq)
where NAt =T, nn is the approximation to n(nAt], ool approximate

1%
a,(ndt), a,(ndt) and AH™ = #7 - n" with f7 = f(nAt). At each time step
+

the non-linear algebraic equation (B1) is solved for nn L using simple

iteration [10], which is convergent provided
— At
K = max {K1,K2} < 2

The adjoint problem (2.8) is similarly approximated by the difference scheme

n-1 ' n-1 n-1 1 n-1 n 1 n,y, R ' Ny N
xn i An_1 ) AE [91 K1Pl[AH J+a2 KZR_[AH ]]An_1+[d1K1P_(AH ]+a2K2R>(AH NA
2 .
st Y s(n™
t - -
N Bi Pyl . " 1@? 1 ai (Ply)elyly) e (B2)
y y=AH" y y=AH"
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Table 1

HO, OF MESH INTERUALS H = aoan

HO, OF ITERATIOHS = a0

TIRAL PERIOD = 44600,0000 (SECS)
NUMBER OF TURBINES = 140,

HUMBER OF SLUYCES = 160,

TIDAL AMLITUDE = S.20 (METRED

i 15 THE ITERATION HUMBER

THETHA I8 THE GRADIENT STEP

P 15 THE AUVERAGE POWER (GW)

E 15 THE WEIGHTED AUERAMGE FOWER (GWD

MAKCDED 15 THE MAax lst ORDER CORRECTION

BEDEKDL I8 THE RATE OF CHAHMGE QF E WITH RESPECT
TQ THE HURBER OF TURBINES (HMW-TURBIHED

DEDKZ IS THE RATE OF CHAMGE OF E WITH RESFECT

TQ THE HUMBER OF SLUICES (MW SLUICED

X THETA A 1T E MK cDE> LEDKL (MW DERK2 <MD
1 400000 . 183398 . 183398 1.881668 1.311849 00000
Z > 400000 L 7E2904 L Pa2904 1, 027240 4. 469?49 -, 383718
3 - A400000 1.1329943 1. 1299432 641123 6, 13132 -, 72998
4 400000 1.440385 1. 4403286 LA4F207 V. ’9u991 -, 343261
3 400000 1. 5560526 1.566526 ,a°448u 7, 633584 -, 4385323
3] - 400000 l,rguSHS ). vanans » 21518 8. 293428 L 290939
7 400000 1.752123 ), FHR2123 - 127 qéq . 309947 L018689
& - 400000 1.8411&9 1.841109 117253 &, 675 F66 L TOFRLG
9 - 400000 1, 827562 1.827562 , QHIE00 g8,60342 L 288605

10 200000 1.88332331 1. 8853331 052479 8..A|318 L H8a%E9
11 - 200000 1.8476325 1,847639 » 039665 8.664132 , 400890
1z . 100000 1.8%3580 1, 8%53%80 034738 8. &74560 457RI9
13 - 100000 1.858172 1.858172 030710 8. 675028 .4q49°’
14 L 1a0ana 1.851808 1.861808 L0274086 8.679015 L EIVRAG
13 . lagonn 1.884911 1.864911 0249132 8.672003 - 53834519
1% . 100000 1.867278 1.867278 Q23296 8.684313 LH13239
17 - 100000 1.871829 1.871829 .D23728 8., 689947 L PRG3R
ig » 100000 1.826891 1.866891 024870 8, 718908 » 518400
19 . 050000 1.8713e1 1 8?1381 L018782 g8.71117v8 L B9R634
20 - 030000 1.872381 1.872346 L017788 §.711239 . 608375
EBR-GENERATION SCHEME

I THETA FooGW2 (= MAKTDES DERKL (HWD DERKZ <MW
1 - 400000 058134 L0581 34 I[2A09 L 306472 - Qoanan
2 400000 L BE44Z 9 . 624428 1;1?u036 3.87178) .12214?
3 400000 1.12258 1. 122561 . TE040 f. 417939 - 2486
4 - A0N000 1.45 3488 ). 453488 L 31EFOV 7.918096 CERBTLEG
] » 400000 1. 67002) 1.670021 3342305 g, 887080 > 845688
i 400000 1,809381 1.809961 - 213786 9.42144) 1. 150937
7 400000 1.899554 1,899564 - 1358166 9, FR1LE40 1,428146
G -400000 1 IG6RE3 1.3562453 L084475% 0 10, 037382 1.648918
9 400000 L ILGT L. 9R1571 LOE2427 0 10, 173289 1,.79v239

i0 - 400000 Q.Ulaem. 2.013633 L032354 10, 1693703 1, 66794

11 400000 2.027291 2,027291 LO019756 10, 234621 1.977432



2-uwnY GEMERATION SCHEME

1 1% THE ITERATIOHN NUMBER

THETA 1% THE GRADIEWT STEF

P 18 THE AVERMGE FOWER (GUWD

E 1§ THE WEIGHTED AVERAGE POWER LGWD

Mk {DES 1% THE Ma¥ 1st ORDER CORRECTION

DEDK1 1% THE RATE UF CHANGE OF E WITH RESPFECT

TO THE NUMBER OF TUREIHES (MW/TURBIHED
DEDRKZ 18 THE RATE OF CHARGE OF E WITH RESFECT
TO THE HUMBER 0OF SLUICES  (MW/SLUTCED
I THETRH F (GW> E MAKCDED DEDKL (MWD DEDRE2 (il
1 - 400000 LR49025 - 249025 2. 349504 1.780490 S ale]sjatalal
2 » 400000 1,2256064 1.22%5664 1.5271286 &, 167264 » 182180
3 400000 1.831946 1.831948 . 234587 L1, 377437 » 231899
4 - A00000 2,209484 2,209484 587486 13, 254940 L G98246
] - 400000 2.,446988 2.446988 , 367424 14.4272561 L 871570
& 400000 2, 595406 2.59%406 L229000  15.220180 1,1578V3
v 400000 2,688383 2,688385 . 142328 1%, 863140 1.,302731
8 . 400000 2. 745038 2.745038 , 0948746 16, 279548 1, 666556
9 L 400000 2. 776578 2, 770578 072892 16, 205564 1,5982623
1Q - 400000 2,794578 2.794978 JDEENTY 16, TI7ER4 1., 837976
11 » 400000 2.801237 2.801237 > 054909 16,468902 1. 7a52287
12 - 400000 2.811848 Z.811846 036294 16, 726167 1.830217
13 - 400000 2.821885 2,821860 LJU23174 16, 562490 1, 854919
14 400000 2. 829470 2,829470 L015429  16,813442 1.93172%
1% - 400000 2.834721 Z.834721 LO09638 16, 791676 1.944783
3 & - 400000 2.838543 2.838%543 ,Q0R228 16, 7606@4 1. 87P81G
17 . 400000 2.840172 2.840172 ,008925 16, 91529 2. 117155
148 - 400000 2,839202 2. 839202 014004 1-,01.06q 2,07828%5
19 » 200000 2.840330 2,840330 LO05189 16, 794%46 1.317712
20 » 200000 2.841310 2.841310 ,QU4055 16, 854792 1,994095
21 . 200000 2.842085 2.84208%5 002407 16.864815 1, 993767
a2 » 200000 2.8427325 2.842725 Q02802  16.883719 anoav
EBE-GENERATION SCHEME

I THETH F CGWo E MAKCDE? DEDKY (MWD DERKE (MW
1 - 400000 . 085903 L 085983 1.947723 . 453425 > 0Q000
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3 400000 1.434981 1.43498] L 961660 7.398434 LBO0R11
4 - 400000 1.829611 1.8294611) » BRFTVI4 8.8341M. - 8E5828
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' Spring tidal amplitude=5.2 m

' Neap tidal amplitude=2.65m

t Ekb Twa way

: 100% efficient turbimnes : Springs ¢ 2,55 2.84

s Heaps : N.95 1.18

$ Ebk Two way

: Variable efficiency msc ¢ Springs @ 2.03 1.88

: Neaps t 0.61 Q.50
Table 3.

! Spring-Heap-Spring cycle . H

Average power

Total revenue awver a 143
CEhD :

day periad <F M 2

Tt Cito=1 : 1.30 : 15.5 d
f £ based on @ 2 H
¢t Winter : 1.29 : 15.8 4
P tariff. z : :

Table 4.

-

e -~ o



Maln flow parameters Ebb scheme.
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Main flow parameters
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Main flow parameters 2-way schenme.
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Main flow parameters
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Main flow parameters Ebb scheme.
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Main flow parameters
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Main flow parameters 2-way schenme.
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Main flow parameters
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Main flow parameters Ebb scheme.
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Main flow parameters

?.nﬂlﬂan ' dE/da?2 (GW)

]w .v il T v vwv

é%.lPMHHHHNHHHHHHH\MHI

%’EO[HHUHHHUHHHIH\HHH\HJHHUHHHJUHH: -

mﬂﬂﬂnﬂnnnnnnnnnnnnnnﬂﬂﬂﬂﬂﬂf Slutce flow (1000me+3/s)

o
~100 | 0. 0.2 0.3 0.4 0.5 ltl_é 0.7 0.8 0.9 Lo
-200 |
300 |
400

MMMMMMWMMMW\MM o
L




Main flow parameters Ebb scheme.
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