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Abstract. This is a preliminary report on the application
of the boundary integral method to steady compressible flow
past a body. Such problems are typical of many for which
boundary integral methods would seem to be advanEageous but
for which a simple fundamental solution (corresponding to
iog R for potential problems in two dimensions) is not
reaaily available. Various approaches to obtaining funda-
mental solutions of the eguations are considered, as well
as methods of approximating the field integral which will
remain if these cannot be found. Some simple nQ$erical

experiments are reported which help to identify the most

promising approaches to be adopted in future work.
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1 General Description of Problem

1.1 Introduction

When fluid flow past a body, such as an aerofoil, is being considered,
the values of the pressure, velocity etc. are seldom required some distance
away from the body. Indeed it often happens that such values are required
only on the body, and then when feasible a boundary integral method is
well known to be best suited for their evaluation. Since this method
involves only an integral around the boundary it effectively reduces the
problem by one dimension, and this may give a substantial saving on com-

putational time.

Moreover, if we apply a field method to such problems, some technique
has to be devised to cope with the infinite domain. Although the boundary
integral method produces an integral at infinity this can be dealt with
very easily whereas field methods need to employ special techniques such
as 1) a simple truncation of the domain, ii) infinite elements or an
infinite sequence of elements, iii) use of an asymptotic form of the
solution far away from the body or 1iv) use of an inversion mapping pro-

cedure like that of Garabedian and Kern [1971], or Sells [1968].

Most field methods, too, have more difficulty in applying the boundary
conditions than the boundary integral method. In recent years various
boundary-fitted coordinate systems (e.g. Thames et al. [1977]) have been
used to produce a system in which the boundary conditions can be more
easily applied, but even this approach requires more computational work
than just a discretization of the body, which is all that is needed in

the boundary integral method.

With these advantages of the boundary integral method in mind, we

shall be considering in this report how to extend its application from
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incompressible flows where it is well established to two dimensional
compressible flow. Our objective is to consider possible ways of
obtaining a simple fundamental solution, to indicate the difficulties
which arise and to propose some ideas on how these difficulties might
be overcome. Our prime aim is to explore the situation when compressi-
bility is not only too important to be completely ignored, but also
when the Prandtl-Glauert equation, which has been successfully used

by Hunt [1980], is inadequate.

1.2 The Boundary Integral Method

If we consider steady, irrotational, two-dimensional subsonic motion,

then the equation of continuity is
v . (pVd) =0, (1.1a)

where p 1s the density and ¢ the velocity potential. The density

is obtained from Bernoulli's equation
dp = - gpdq , (1.1b)

where p is the pressure and q the speed. For incquressible flow
the equation of continuity reduces to V2¢ = 0 and the boundary integral

technique is readily applicable.

For two suitably chosen functions ¢ and ¢ the divergence

theorem gives

f (YW2¢ - ¢v29)dQ = I (¢ g—‘r‘" - %—:i) . (1.2)
D C

where D 1is a domain bounded by the union of closed curves C and 3/3n



is the inward normal derivative. The approach being adopted here is
described in many texts (see, for example, Garabedian [1864]). Let

$ = - log R, where R = |x - &| (£ being a fixed point), so that
v2y = 0 provided R# 0. If R=0 isa point in D then surround
it by a circle of radius € , apply (1.2) to the punctured domain

and consider the limit as € - 0 . Now take ¢ to be the perturbation
velocity potential of an incompressible fluid; then V2¢ = 0 gives

3

23¢{§) = J (log R . %%— - ¢ sﬁ-log Rlds . £ e D. (1.3)
C

If ¢ is on C , then by a similar method one obtains the boundary

—

integral equation

- % = 42
m$(£) [ (log R Y ) 5 log Rlds . E eC. (1.4)
C

From the integral equation (1.4) the value of ¢ can be obtained
everywhere on C if 23¢/9n 1s specified on each point of C : then
¢ 1is given throughout D by (1.3). Equation (1.4) cannot be solved
analytically in general and so some form of approximation has to be

used. One of the standard approaches for dealing with it is given by

Jaswon and Symm [1977] and is described below.

For incompressible flow past a body, D is now the infinite domain
exterior to the body. Equation (1.2) is then applied in some annular
region bounded by the body and some outer boundary which is allowed
to go to infinity. Taking ¢ to be the perturbation velocity potential,

which tends to zero as R tends to infinity, causes the contribution

from the outer boundary to vanish. Then C 1is the body surface on which
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9¢/on is known. Now discretise the boundary into elements and

approximate ¢ by ¢ and 23¢/3n by an)‘ where 9@, @tn) are

constant in each element with the values supposed to be those at the
mid points of the element. Let the body consist of N elements and

denote an element by Cj , where j =1, ..., N, and the corresponding

values of 9, Q(n] by ¢.,

J
from (1.4) by taking & as the mid point of each element.

QEn) Then the following system is obtained

i (n) h
e, = Z 2 [ log R, ds - z ¢J[ 3~ log Ry ds
J=1 C J=1 C
J J
i =1, 2, «ass N (1.5)
2 = - 2 B 2 . R
Here Ri {(x Ei) + (y ni] , with (gi. niJ being the fixed

point positioned at the centre of the element Ci, and ds = ds(x, y)
These integrals can be approximated by a suitable approximating techniqgue,
e.g. Simpson's rule using the end points and mid-points of each element,
except for the element containing the point (Ei, ni] . For this we

use the divergence theorem which gives the identity

a = -
f 5 log Ri = T W g
C

Thus for the singular integral in the second sum we have

9
I EE'IOg Ri ds .

8 e -_—

f o log Ri ds = s )
c
173

C

W N2

J
i — ]
Now consider the first sum in (1.5). For its singular component the
corresponding element is taken as two straight lines (FIG 1) and then

use is made of the fact that



T log |s| . ds .= h(log h - 1),
0

to give the approximation

A [ A A A
log R; ds = R,(log Ry = 1) + R, ,(log Ry p = 1),
C

A A
with Ri' Ri+1 as shown in FIG 1.

In this way we obtain from (1.5) a system of equations for @

in the form

A® = b,

where A 1is a full, non-singular matrix and the known vector b derives

from the integral involving the Q(n]'s ;

% 1is the solution vector
of the o's . Several variants of this basic method are possible but

this is sufficient for our present purpose.

1.3 Compressible Flow Equations

Whilst it is acceptable to assume that the density does not change
for low subsonic motion we cannot make this assumption at higher speeds.
For example, Serrin [1959] points out that if the maximum local mach
number i§ 0.3 then the density variation is 5% . Thus for higher
speeds some account of variation in density is required. Combining

(1.1a) and (1.1b) gives the non-linear full potential equation
2 - 2 - 2 - g2 =
(c u )¢xx 2uv¢xy + (c Y ]¢yy 0,

where u, v are the velocity components in the x and y directions

and ¢ is the local speed of sound.
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Another'form of this eguation which may be useful is that given

by Von Mises [1958]

820 _ (w2 - 4y 329
37 = (M 1]@ » (1.86)

where M is the local mach number, d/9s is differentiation in the
direction of the flow and 9/39n is differentiation in the direction
normal to the flow. In general it is difficult to obtain the directions
of n and s , but in the case of a uniform stream having a velocity

U in the direction of the positive x-axis with velocity components

at any point of the disturbed stream given by (U + u, v) , where

u/U, v/U << 1 , then wriiing the velocity potential in the form

Ux + ¢(x, y) reduces (1.6) to

- M2 -
(1 - 13X + by = 0

where M, is the free stream mach number.’
This is the Prandtl-Glauert equation and by the change of variable

— 1 —
x = x(1 - Mozo)2 , ¥y =y , it becomes

Oxx Ty 0

and so can be dealt with as before.
\

Returning to the general case we note that for the boundary integral
method to be applied directly to an elliptic problem, the governing
equation needs to be linear. So consider solving system (1.1) by
iterating between (1.1a) and (1.1b). From (1.1b) p can be obtained
as a function of the velocity;__thus one form of linearization is to

take p as being a known quantity in (1.1a). Then for two suitable

functions ¢ and ¢ the divergence theorem gives



: 9 )
[ (W V. (o) - ¢ V . (pVy))de = [p{d&a—i - b 2%}as (1.7)
D C
Thus we require a solution of ¥V . (pVy) = 0 which has a logarithmic
singularity at R = 0 . A solution with this property is known as a
fundamental solution and its existence is guaranteed by the following

theorem due to Miranda [19701].

Theorem If in a region R , p is continuous and has continucus first
and second derivatives, then the equation V . (pV4) = 0 admits a

fundamental scolution in every bounded domain contained in § .

/777

In the following section various analytical technigques are considered
for obtaining an insight into the structure of the fundamental solution
for a linearized form of (1.1a). Although we show that an integral
representation for such a fundamental solution always exists, it is only
for analytically known forms of p that the integrals can be evaluated

exactly.



2 Methods For Obtaining A Fundamental Solution

2.1 Parametrix Approach

Consider the linear equation L[¢] =V . (pV¢) = 0 in two dimensions,
where p is a known function. Then its parametrix is defined as a

function Plx, v ;5 &, n) such that
P = O(log R) , p' = O(R"1) , P" = O(R-2)

and pV2P = 0 , where P' represents the first derivative of P with
respect to x or y , P" represents the second derivatives of P,
R2 = (x - £)2 + (y - n)2 and (£, n) is a fixed point. Such a function

is given by
wP(x, £) = 3p(E) log{p(E)/R} , (2:.1)
where x =(x, y) » & = (£, n) . Now suppose we define the function
S(x, n) = P(x, n) + r A(E) P(x; g)dE (2.2)
D
where D is some domain over which we are considering L[¢] = 0 . Let

L operate on P with respect to x and the operator, adjoint to L

operate on P with respect to § . Then by using the generalized

Poisson equation, it can be shown that (Garabedian [1964]) if A satisfies

CA(x) = L[P(x, n)] + f LIP(x, E)] A(E)dE , (2.3)
[
then S(x, n) is a fundamental solution of L[S] =0 . If the equation
for A(x) 1is to be solved by a successive iteration process then con-
vergence depends on ||L[P]|| <1 , where [|.]| is the Lz norm

(L, being the space of all square integrable functions in the usual way).
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If L[P] has a singularity of the form R% with o > § , then this
inequality will not hold, which will in turn mean that an iterative
solution will not converge in any sense. So a method for finding

A(x) which guarantees convergence is needed.

2.2 Vekua's Method

Vekua [1967] considered the solution of elliptic systems by
transforming them to hyperbolic systems. Following his idea, consider

the linear equation

. |
L[] = V24 + Alx, V4, + Blx, yIo + &(x, y)o =0,

>

A A
where a, b, ¢ are real analytic functions of their arguments. Make
the change of variable z = x + iy , z* = x - iy and thereby introduce

the differential operators

R I I K NI
9z 2 |9x 3y] * Bz~ % \ax T By

Then Lj3[¢] can be re-written as

Li[¢] = o % * alz, z*)¢, * blz, z*)¢_. + clz, z¥)p = 0, (2.4)
\
A { A
where alz, z*) = & {aliz + z*, %z* - z) - ibliz + z%, %-z* =21} .,
A A i
b(z, z*) = § {aliz + z*, 3z* - 2) - ibliz + z*, 5 2% - z)}
A — —_—
clz, z*) = ic (3z + z* , %Z*-z) :

Assuming that p has an analytic continuation into the complex plane,

then using the above transformation LL¢] = pV2¢ + VY . V¢ = 0 becomes

(2.5)

n
o

¢

L'D¢] = pd v * 06« ¥ 3040,
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Now seek a fundamental solution of L'[¢] in the form
S(z, z* 3 &, 6%) = -A(z, z* ; &, 6*) log R + B(z, z* ;5 §, &%)

where the singular point is &6 = § + in , &* = & - in and
R2 = (z - §)(z* - 6*) . The functions A and B are regular functions
of z, z*, 6§, 6* . The function S satisfies L'[S]1 =10 i.e.

(2pA_ + p_A) (2pA_, + p_,A)
L'[A] log R + o 2 2 _ 4 ] 2y cieZn
2 (z* - &*) 2 (z - §)

- L'[B]l =0 . (2.8)

Examining the singularities we see that since the log R singularity
is multiple-valued it cannot be removed by contributions from poles
alone and so it must be annihilated by setting L'[A] = 0 . Removal

of the other singularities is assured by setting

§*,

- *
2p/-\Z + pZA 0 when z

[}
(=23

2pAz* + pz*A =0 when =z

Setting A(S§, &* 5 6, 6*) = 1 and integrating the last two eguations

gives

1
Alz, 8*°; &8, 6%) = [p(8, 8*)/p(z, 6%)1° ,

(2.7)
ACS, z* 5 &, &6*) = [p(s, 6*)/ (8, z*]]% .
It can be noted that A is the Riemann function of L'
Now L'[A] can be re-written as
(Azp)zt + [Az*plz =0 (2.8)

and integrating with respect to z and then 2z* and integrating the

resulting equation by parts, one obtains, on using (2.7),
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Alz, z* ; &, &%) plz, z*)

§
p(s, 8*) - 3 [ Ala, z*; 6, &*) pdtc, z*)do
Z

6*
- 4 [ Alz, T ; 8§, &%) pT(z, tidt . (2.9)

z*'

Since A satisfies a Volterra integral equation, if it is solved by

a successive iteration process, then the resulting series solution will
D)

converge for all p > 0 . Choosing A( (z, z* ; 6§, 6*) =

g
(p(8, 6*)/ (z, z*))° gives, as the next iteration

1 1 1
A (2, 2 6, 8% = (p(8, 8*))F L(p(6, &*)F - (o(s, 2*))?

1 1
= (plz, 8*))% + 2(p(z, 2z*))°} / plz, z*) .

To carry out the next iteration the structure of p(8, z*) and pl(z, &*)
is needed, but this implies that p must be analytically continued into
a new space, in such a way that p(a + ib, c + id) is meaningful. This

approach will not be taken further here but it looks promising.

2.3 Bergman's Method

\
Another way in which the function A(z, z* ; 8, &*) can be obtained,

in principle, is by using a method due to Bergman [1969] which also
results in an integral representation of a solution of L'[A]l = 0. So
consider the general linear elliptic equation in the variables 2z = x + iy,

z* = x - iy , given by (2.4) and make the change of dependent variable to
. . z*
viz, z*) = ¢(z, z*) exp | f alz, 8*)ds* - n(z2)} ,
0

where n(z) is an arbitrary analytic function. Then (2.4) becomes
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V__, * D(z, z¥)V_, + F(z, z*)JVv =10 , (2.10)
zz Z
where
Z*
D(z, z*) = n'(z) + b(z, z*) - ( az(z’ §*)}ds* ,
0
Flz, z*) = —'{az(z, z*) + alz, z*) bz, z*) - clz, z*)}

Now we seek a solution of (2.10) in the form

V(z, z*) = f E(z, z*, t) £(3z(1 - t2)) —2¢ a (2.11)

7, (1 - t2)*
where 'i: is a path 1n the complex t-plane which connects the point
-1 to +1 avoiding the point t = 0, and f(z) 4is an arbitrary
analytic function, regular at the origin. The function E(z, z*, t)
is taken to be an analytic function of t for Itl <1 and of 2z, z*
in some neighbourhood of the origin in €2 . This form of operator,
(2.11), was suggested by the study of the eguation V2u +u = 0, the
details of which can be found in two of Bergman's papers [1930], [1945].
Substituting (2.11) into (2.10), and using f, = - f, (1 - t2)/2zt
we obtain, after integrating by parts, \
{t1 - tZ)EtZ*-t'lEé* + 2tz(E,, + DE_, + FE)}

+ DV, + FV = : fdt .
2zt (1 - t2)*

J: (2.12)

Thus if E satisfies

(1 - t2)E . - t*lez* + 2tz(E_, + DE, + FE) = 0, (2.13)

equation (2.11) gives a solution of (2.10). Existence and regularity
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of E(z, z*, t) have been established by Colton [1976] by considering
a solution of (2.13) in the form

*

E(z, z*, t) = 1 +
n

ne-18

z
t2nzn ( Kfzn)(z, z*}dz* . (2.14)
1 0

Substituting (2.14) into (2.13) gives the recursion formula

K2 - - 2F
s (2.15)
(2n + 1) KB o pplen) ok 4 F I K2 gz}, no2 1
0

from which it can be shown (Colton [1976]) that the series (2.14)

converges absolutely and uniformly for t, z, z* on compact subsets

of €3 .

In the case of compressible flow the transformed continuity

equation is given by (2.5), leading to

1
Viz, z*) = ¢(z, z*) (p(z, z*))* Exp(-n(z))

with

Flz, z*)

n

1 1
- p2(z, z¥)[p3(z, 2*)]__,, Dlz, z*) = n'(2) .
2z

\

By taking n(z) = 0 we get

]
o

1 1
2 - 2
p* V__, - Vlp )z

. (2.186)
zz

Z*

1 1
From (2.15) pk?) = 2(p*)__, and therefore if k4 is to be found

the value of

1 1
=2 * 2 * *
p *(z, z9)[p°(z, =z )]zztdz ’

O ~————N

is needed. Since p 1is not known analytically, explicit evaluation of
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the integral is not possible at this stage. On the other hand we can
deduce that for three different hypothetical forms of p , (2.18) has

the following fundamental solutions:

1
1) v2p2® = g => a fundamental solution of (246)is S = - log R,

1 1 X
2) V2p% = ¢2p? , (c = constant) => S = Ko[cR) ,
1 1
3) V%p? = - ¢2p% , (c = constant) => S = - YO[cR] 5

where KO(CR] and YO(CR) are the Bessel functions of tho second kind.

From the first case we aobtain the following theorem.

Theorem A necessary and sufficient condition for - p ° log R to be

1
a fundamental solution of V + (pV¢) = 0 is that VZp? =0 .

Proof. That the condition is necessary comes from substituting A log R
into the complex form of the differential equation and then assuming

1
Ap? # constant to get a contradiction. The condition is sufficient by

(2.18). ' 177/

2.4 B&cklund Transformation

In this section we consider obtaining the Riemann function of (2.18)
by firstly introducing an auxiliary equation, and then transforming both

equations into a form which is easier to handle.
We write (2.16) as

YV = VYzz* =0, (2.17a)

zz*

where v2(z, z*) = p(z, z*) . Then following an idea by Bauer [1976]

(¢

we introduce the auxiliary equation
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YWt {yyoo. - 2y v, a M = 0, (2.17b)

zz* zz*

and transform these equations into the form

(Vv - W)
z

1}

'F(Z; Z*; V: w.p Y) F]

(V +':WJZ*

1

glz, z*, V, W, v)

The integrability requirement Uzz* = Uz*z generates the relations
\Y = i(g_ + f_,) , (2.18a)
W =3(g - f_,) . (2.18b)

Writing (2.17a) as V

YV /Yzz* and differentiating once with respect

zz*
to z and once with respect to z* and using (2.18a) will produce a
form of sz* , in terms of derivatives of f and g , which can be
equated to (2.18a). A similar process is carried out with (2.17b) and
{2.18b). Then from the combinétion of these two new equations together

with (2.17) it is found that a choice of f and g which satisfies

all the necessary equations is

flz, z*, V, W, v)

"

(v + WJYZ/Y ,

glz, z*, V, W, v) v - W]YZ*/Y -

This gives the transformed equations

y(v - WJZ (v + WJY? ,

(2.19)

YW+ W= (V- Wy,

0y

Such a transformation is known as a B&cklund transformation. Suppose

we define two functions ¢ and ¢ by
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then equations (2.19) can be written as
Yé,e = VY4 2

Y, = ¢y, -

Integrating these gives

"

z
Q(z) + J ylz, t) YT(z, 1) vz, t)dT , (2.20)
§

n

olz, z*)

*

N

1

vlz, z*) g(z*] + [ olt, z*) yt[t, z*) y“1(t, z*)dt , (2.21)

é

which are formally reminiscent of Vekua's approach. Imposing the con-
dition that V(§, z*) = V(z, 6*) = 1 and that W(z, 6*) = W(S, z*) = -1
gives

*

i

oz, z*)

*

z
f Y(z, 1) YT(Z’ 1) y(z, T)dt , (2.22)
§

z
v(z, z*) = 2 + J o(t, z*) Yt(t, z*) y(t, z*)dt . (2.23)
8

Consider solving these equations by an iterative method. Choose

(0)_ (0) )

¢ 0, then ¢ = 2 and
zt
¢(1] = 2 f vy 1z, ©) YT(z, T)ldt = 2 log v(z, z*) - 2 log v(z, 6*) ,

6*
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z
¢[1) 2+ 2 f v 1(t, z*) Yt(t, z*)[log y(t, z*) - log y(t, &*)1dt .
é
The last equation cannot be integrated exactly due to the presence of
y(t, 6*), but a second approximation to V = (¢ + y) is
V =1+ log y(z, z*) - log y(z, 6*)

Identifying V as the Riemann function of (2.16) gives the following

which need to be satisfied

1) y(8, z*) = y(8, &%) ,

2) Yz(z, z*) Yz*[z' z*) + y(z, z*) Yzz*(z’ z*) log{y(z, z*)/v(z, 6*)}= 0 .

If these conditions were transformed back to real variables then their

meaning would not be obvious due to the complex form of y(z, &*)

2.5 A Fundamental Solution Via An Expansion

Nl

It is evident from the methods considered so far that p+ log R
plays an important part in the fundamental solution. 1In this section

the possibility is therefore considered of obtaining a fundamental solution

Nl=

by means of a sequence of functions of which p_ log R is the leading

term.

Let the fundamental solution of LL[¢] =V - (pV4) = 0O be

- [p

N

I

S(x, y) + R%B,(x, y) + 0(rR*)] 1log R ,

A
- S(x, y) log R, [(say) .

This function will satisfy all the conditions needed to remove the

A : S
singularities of L[S] 4if L[S] = 0 . Then substituting S into the
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complex form of L[S] and examining the coefficients

the requirement that

[N

18.

of R 1leads to

— . 1
(-p (z Gl{p(BZ]Z * 2 p By}
+ (z* - G*J{p(BzJZ* + 3 02*52} + sz =0 (2.24)
-1
If 82 is taken to be p ° then the above condition reduces to
1 1
(p*)__4, = p° , which has been shown to give a fundamental solution
zz

Ni=

p KO(R) (see section 2.3). If on the other hand we take sz = (p

1

-

)

then this imposes the condition (p -

N

“Ap* , where A 1is a constant,

=1
which leads to a fundamental solution p ? KO[AR) {see section 2.3).

Either of these two conditions may not be realistic.

of the form

N

Also 1f a function

S(z, z*} = - p Exp[- (z - 8)(z* - 8*)] log R,

is considered, it leads to the condition

1
(p*)

1
Ls & (R2 - 1) p° ,

again the validity of this condition is unknown.

2.6 Transformation To The Hodograph Plane

So far we have been considering the continuity equation as a linear

equation in ¢ with p being regarded as some known function. Now

consider the non-linear equatitn which is obtained when (1.1a) and

(1.1b) are combined to give the full potential equation. Since this

equation is non-linear, direct application of the boundary integral method

is not possible, but it is possible to obtain a linear system of eqguations

if we transform the problem into the hodograph plane.

We express the

]zz*

»
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{u, v) coordinates of the hodograph plane in terms of the stream function

v(x, y) and the velocity potential ¢(x, y) by

U=, =07y vEgg = ety

i -2 0 id g t
Then provided ¢xx¢yy ¢xy 7 one ?an consider u, v as the
independent variables. Introducing the polar coordinates (g, 6) by

u=qgqecos 0, v =gsin®, from the eguation of continuity we obtain

do + ip~ldy = ge %z . (2.25)

From Bernoulli's equation we know that, for an adiabatic gas, p 1is a

function of the speed g only. Using this fact and

16
z = ( + iy e’
paz, péq wq
(2.26)
a s ie
pqze . (p¢e * 14}6]8 L
together with the compatability condition zqe = zeq gives
= gllpg)™1 ;
¢q qllpg q¢6
(2.27)

Pég= ¥y

\
These last equations are known as the hodograph equations and they are

linear whatever the form of the pressure-density relation. From Bernoulli's
equation, with ¢ denoting the local velocity of sound and M the local

mach number, we have
qpdg = - c2dp , (2.28)
i.e. qu[(pq)'qu = M2 -1

It is convenient to change from g to a new variable
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1
Alg) = - [ q l(1 - m2)%dq , (2.29)
q

to introduce a new function
1
z(A) = p~1(1 - M2)% , (2.30)
and to define
1
d(r, 8 = (z(X))* ¢*(X, B) . (2.31)

Then eliminating ¢ from (2.27) gives
b

8%, *+ 0%g = zi(z'ilkl¢* . (2.32)

Serrin [1959] indicates that for a local mach number below 0.7 1t
1

would be acceptable to approximate (2_2]M by zero, thus giving

* * =
¢AA * b8 0. (2.33)

Although this equation only has a range of 0 < M < 0.7 , this is not
the prime difficulty; the main problem will be in transforming back

to real space, since the mapping between the (x, y) plane and the

(u, v) plane is not bijective. \

2.7 Subtracting The Flow At Infinity

In section (1.2) the application of the boundary integral method to
incompressible flow was based on the perturbation velocity potential,
thus simplifying the far field boundary integral. For the treatment of
slightly compressible flow with log R as the approximate fundamental
solution, the use of perturbation potential will also reduce the effect

of the residual field integral and hence give an advantage over the full
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velocity potential which we have been considering so far in this section.
So writing the full potential in the form Ux + $(x, y) , where U is

the free stream velocity and substituting into (1.1a) we obtain
V. (pV9) = Up s (2.34)

which differs from (1.1a) due to the térm on the right hand side. If
this equation is to be solved by a boundary integral method, there are
two main ways to set about its formulation. The first is to consider
pr as a forcing term in (2,34) and to linearize the left hand side as
described in section (1.3). Then ori the first iteration of (2.34) o
is constant and so the system to be solved is similar to that for the
full potential: but on subsequent iterations, even if the fundamental
solution is obtained, a field integral will exist due to the forcing
term. The second way to deal with (2.34) is to substitute Py from

Bernoulli's equation (for an adiabatic gas) to give

V. (pV§) + b BE;y =0, (2.35)

L($)
with
o = OZ—YMi($; - 1) ; g = pz—YM£E§

where vy is the ratio of the specific heats and M  1is the mach:number
at infinity; then we linearize (2.35) such that, after application of
the divergence theorem with an exact fundamental solution, no field

integral remains. Thus we solve (2.35) and (1.1b) by iteration, in

such a way that at every iteration of (2.35) p, o, B take on known

values.

When comparing these two approaches one has to decide whether 1t

is more desirable to find a fundamental solution of a linearized (1.1a3}
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and, after application of the divergence theorem to the linearized
(2.34), to always have a field integral, or, to seek a fundamental
solution of a more complex equation, i.e. [2.35], with a view to

removing all field integrals. 1In this second case, we combine the

linearized (2.35) with its adjoint equation for a function V¥
M) = v . (pVy) + (a¢)xx + (Bwlx s (2.38)

y

and from the divergence theorem obtain

f {YL($) - dM(Y) }dQ. =

D
. S — 9 - _ - =
f -T2 + [atF, - T - v T + 805,35
C
- (38, + 9897 Y)ds (2.37)
X X'~ 9n ’ )

where C is the integral around the body only; the contribution from
the outer boundary is zero because $- tends to zero at infinity. Let
a fundamental solution of M(p) = 0 be S(x, y) = - Alx, y) log R + B(x, y)

Then for a point & on the body the singular contribution to (2.37) is

\

T9(E) {pA + § oA}
£

To enable application of either Vekua's or Bergman's method to (2.36)

we need to transform it into normal form. Now the characteristics of

(2.36) are given by

1
dy _ B * {4p(p + o) - B2}°
dx = 2(‘) + d.) » [2-38)

but as the analytical forms of p, o, B are not known at each iteration

(2.38) cannot be integrated exactly, and it is difficult to see how to
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apply these methods. There is an alternative approach by Hadamard
[1923], which is the real variable version of the Vekua-Bergman methods,
but this requires the transformation of M(y) = 0 into an equation of
the form V2y + a(x, ylwx + b(x, y)wy +clx, yJp = 0 thch again proves
difficult. With the apparent impossibility of obtaining a fundamental
solution to (2.386) ﬁhe'second approach loses its attraction. It may
therefore be better to consider the first case, which uses a forcing

term and to try approximating the resulting field integral.

In any case, obtaining a fundamental solution is not the end of
the matter, for if a boundary integral method is to be applied to a
problem, both the fundamental solution and its normal derivative are
required on the boundary. Thus it may actually be simpler to use a
simple singular function, with a known normal derivative and then
approximate the residual field integral, rather than to work with a
very complicated accutate.fundamental solution. We explore this possi-

bility in the next section.
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3 Possible Techniques Of Solution Using A Field Integral

3.1 Introduction

From the previous section it is clear that calculating a fundamental
solution is not a simple task, and even if one could be obtained it
might well take a complicated form, which would make evaluation of the
boundary integral far %rom easy. So the gquestion arises as to what can
be done if an exact form of the fundamental solution cannot be obtained.
The main point is that a field integral is then present.following the
use of the divergence theorem. If the singular function used is
sufficiently 'close' to the exact fundamental solution, then it might
be possible to neglect the field integral, but in general this will not
be so. In this section some ideas are put forward for approximating

the field integral and their relative merits considered.

3.2 Artificial Boundary Curves

One possibility is to solve the problem inwards from infinity by
constructing annular regions in the fluid domain and applying (1.7)

in each region.

Consider a nested series of closed .curves Cj, j=0,1, ..., 3
placed at regular intervals away from the body c® , with N nodes

on each curve. Then on Cj values of the unknowns ¢j and @g need

to be calculated. Outside CJ __the governing equation is taken as Laplace's

J
equation, i.e. incompressible flow, which on use of (1.4]), relates ¢
and Qi by N equations in 2N unknowns. The divergence theorem is

; : J J+1
applied between C and C

by a quadrature rule which uses the values of @j and ¢j+1 only. Thus

and the resulting field integral approximated
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we obtain 2N equations linking 4N unknowns. Since @ﬁ is known, we

have in all (23 + 1IN equations in (2J + 1JN unknowns.

Unless J is very small this method willl compare unfavourably with
a field method as there are twice as many unknowns at each point and the

main equations link 2N points. So this will not be followed up any

further for the moment.

3.3 Use Of An Asymptotic Form

We can reduce the number of unknowns in section 3.2 by 2N if
instead of applying Laplace's equation outside CJ we assume some

asymptotic relation between the unknowns an CJ and CJ—/I i

Alternatively the number of artificial boundary curves in section 3.2
might be reduced to just one by using an asymptotic form for the velocity
potential outside it, for example the Rayleigh—Janzén expansion (Shiffer
[1960]) which has the form ¢ = ¢0 + IVI°2°¢1 + Mi¢2 + ... o« It is knaown
that this breaks down near the body but it could be used to give the

boundary condition on a sufficiently far removed curve.

Whilst this method may be acceptable for simple oﬁjects, it is not
so easy to implement in the case of arbitrary shaped bodies, since
obtaining even the first few terms of the Rayleigh-Janzen expansion

becomes a major task.

3.4 Approximation By Finite Differences Or Finite Elements

If the boundary integral formula is used for the whole domain between

the body c® and an outer artificial boundary CJ ,  then an approximation
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to the field.integral using field point values of the potential is

needed. So consider the field integral

f ¢LLSTde - (3.1)
D

where S is a singular function, D is the whole fluid domain and
L is an elliptic operator. As in section 3.2 this can be approximated

by a two-dimensional quadrature rule

te~1=
ner~-1G

i ¢ij L[Sij]wiwj 3 (3.2)

i=1
where the field points lie on J closed curves extending away from
the body and each curve has N elements, in such a way that a regular
grid is formed around the body. The coefficients Wy s wj are weight

functions appropriate to the quadrature rule used.

The field point values ¢ij may then be calculated in terms of
boundary values by use of finite difference' or finite element approxi-
mations to the field equation L[¢] = 0O : the outer boundary values
will need to be given by one of the asymptotic forms described in section

\
3.3.

To make this method as eFFiciént as possible we consider only one
or two curves around the body i.e. J =1, 2 . Then since the field
integral is to be approximated only near the body, a singular function
which causes it to be dominant there is needed. Once the field integral
has been approximated in terms of the unknown values of ¢ on the body,
the system can be solved iteratively in such a way that the approximation

to the field integral uses the values of ¢ from the previous iteration.



This gives the iterative process in the form
o™ (b + Feat™ My, (3.3)

where K is the boundary matrix, ' b the boundary vector and F the
approximation to the field integral. By this means a matrix decomposition
at every iteration is avoided. An example of the method is considered in

section 4.
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4 Preliminary Numerical Experiment

4.1 Introduction

In this section we describe two numerical experiments to check the
feasibility of the ideas put forward in the previous section. First
we consider solving an equation which has a known fundamental solution,
by means of an integral equation in which we use a singular function
significantly different from it and then approximate the field integral
as described in section 3.4. Results can then be compared to those
obtained using the known fundamental solution. Iﬁ the second experiment
various approximations to the fundamental solution are compared, with

the field integral completely ignored.

4,2 Numerical Experiment Using A Field Integral

In this part we consider a moving ellipse in a statiohary incom-
pressible fluid. Let ¢ be the perturbation velocity potential which
satisfies Laplace's equation. Apply (1.2) to ¢ and a function S ,
where S has a logarithmic singularity at R = 0 but which is not equal
to - log R, i.e. it is distinct from the fundamental solution. Then

it is desirable to choose S such that the value of

f ¢v2sdq ,

D
is only significant near the bédy. We take S = KO(R] , the modified
Bessel function of the second kind which has exponential decay as R
tends to infinity. Let the ellipse have a ratio of semi-major axis
to semi-minor axis of 10 : 1 with a non-dimensionalized semi-major

axis of length 2 . So for a fixed point £ on the body, with
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R = Ix = gl and X traversing around the ellipse the values of KO[R)
and - log R will be significantly different over much of the boundary.
We then have two distinct integral equations, one which uses a fundamental

solution and one which uses the modified Bessel function

i.e.
T = I {log R %%-— ¢ g% log R}ds ’ (4.1)
c
_ il - ¢ .
T = f {05 K R1 = K (R) 2 ds} + [ oK (R (4.2)
c D

the boundary condition on the body is given by the values V¢ . n =

V(Ux) . n , where U 1is the free stream velocity that would be imposed
if the ellipse were at rest in a moving fluid - we take its value as
unity. The solution of (4.1) has already been considered in section 1.2
and we have only to consider (4.2). The body is discretised as for (4.1),
to give

o f 2 ¢ (R)ds -
(]
C

I o~ 2

=
-
1t
ne-12=2

J an h|
1 . j=1 C.
J : J

p (M) [ K (R)ds + J oK (R)AR
0O 0
J D

i=1, eeoan N, (4.3)

The sums can be evaluated by the methods used in section 1.2, except

for the singular element. There we re-write KO(R) as
KOERJ = [KO(R] + log R] - log R,

whose first term is then regular and equal to zero at R = 0, eand the

logarithmic singularity term can be evaluated as before.

Following the method outlined in section 3.4 we solve Laplace's

W Finmite Aifferences. (Consider the problem in
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elliptic coordinates (g, n) , with the body lying on & = a =

constant = 0.1 . Let the finite difference grid be given by the curves
E=a+hj, 3=0,1 +e.,J and n=27i/N =1k, i =1, 2, ..., N,
where h and k are the step sizes. Then the finite difference equation

is

1[4 i 1 10 4-1 i i+ _
F§[<1>j_1 20, + <1>j+1} * F’Z[‘I’j 20, + 0] ] =0 (4.4)

where @? is the value of & at (a+jh,ik) . For the boundary condition
on & = a + h]J we use an asymptotic relation connecting @ on
E=a+h] and & = a + h(J - 1) . To obtain this relation we note

that the perturbation velocity potential past a circle behaves like 1/r

¢

away from the body, thus

0 P g | . (4.5)
o

r=ah r=h

So for bodies which have a conformal mapping onto a circle a similar relation

exlsts and in the case of our ellipse

N A | "
g=a+hl] E=a+h(J-1)

\
This leads to a system for which the values of ¢ between & = a + h

and &£ =a + h(J - 1) can be obtained in terms of the values on & = a ,

Finally we approximate the field integral by a two-dimensional

trapezium rule giving
ww, =& V,, , (4.7)

where V, is the area of field element ij (see figure 2). Since the

iJj

two-dimensional trapezium rule uses values of @KO(R) at the four corners
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of the element, when evaluating it over a field element which has R = 0
at one of its corners the field element is combined with the adjacent
element which shares the point R = 0 (see figure 3). As a first
approximation the two-dimensional trapezium rule was used to approxi-

mate the integral over the combined field element.

I+ J and N are taken too large then the finite difference mesh
will have a considerable number of points and solution of the difference
equation will then become a major part of the work. Thus the advantage
of the boundary integral method will be eroded. So an exercise in ecanomy
was carried out in which we took J =2 , N =8, 16, 32 and calculated
the approximations to the field integral in each case. Then we also
considered the possibility of using the values of the field integral in
the N = 8 case to generate solutions in the N = 16, 32 case without
having to re-work the field integral. To do this we took the functions
obtained for the field integral, in terms of the unknown ¢'s , and
interpolated them around the body by assuming an angular variation in
their value. Thus we obtained the results given in tables 1, 2 and 3.

\
By the symmetry of the problem only the quadrant 0 <n < 1 1is

considered. Table 1 shows the percentage error from the true potential
obtained from the boundary integral method applied to (4.1). Table 2
shows the percentage error obtained with (4.2), where we have approximated

the field integral for each N T Lastly table 3 shows the results when

.we use N = 8 and interpolate the value of the field integral around

the body. The oscillatory errors in Table 2 are due to the approximation of the
field integral. Since the results were obtained by subdividing the field
elements in the n coordinate direction only, we would not expect any increase
in accuracy of the finite difference approximation to ¢ in the strip. Also
the trapezium rule procedure for approximating the field integral over the
combined element is too crude when the mesh is refined. 0On the other hand, by

using interpolation with %%g}%%%h (table 3), the oscillations are condiserably

reduced.
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4,3 Numerical Experiment Neglecting The Field Integral

Here we consider applying the boundary integral method to compress-
ible flow past a circle at a free stream mach number of 0.39, where the
variables are scaled such that both the free stream velocity and the
density are unity at infinity. The problem will be solved by iterating
between (1.4a) and (1.1b} in such a way that the function p in (1.1a)
will take the values from the previous iteration of the velocity potential,
thus lipearizing (1.1a) such that use can be made of (1.7). The density
is initially taken as one everywhere. Since a fundamental solution of
(1.1a) has not been found, when the full velocity potential 2 and a
singular function S are applied to (1.7) a field integral remains. In

this section we look at the consequences of neglecting this field integral.
Let the singular function be of the form
S(x, y] = - Alx, y] 10g R,

where A is a regular function. Then after applying (1.7) we get

A A A
7 (pAd) ‘ = f A log R %% - ¢ 3= (A log R)}pds
E C

\
A A
- f {6V . (oVA log R) - A log R V . (pVv¢)}da .

Eec, (4.8)

Differentiating Bernoulli's equation with respect to the body normal

gives

R
N
o5
o
i
!
=
N
<
o>
<
vl
Jle->

’ (4.9)
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and since we have no flow through the body the normal derivative of

" :
¢ 1s zero so that

P .g., (4.10)
n

This also holds when using the perturbation potential since in either

case we are using the seme density distribution.

As suggested by Vekua's approach the choice of A = p

M=

was taken
and compared with A = 1 . These forms of A are of particular interest
because if the true fundamental solution had the form - A log R with

A a function of pojly%hen for the full potential éll the boundary

integrals would be evaluated exactly. This is due to the special geometry

of the circle and the fact that 1log R has as a complex conjugate function

an angle. Also with A = Alp) there will be no difficulty in applying
the boundary conditions. Thus by using this form of function in (4.3)

we are sure that any difference which occurs in the results of the full
potential compared with the true ones are from the neglect of the field

integral.

The following three cases have been considered

_1
1) the full potential and A =p * ,

2) the perturbation potential and A

]
PN
-

N

3) the perturbation potential and A

{}
©

For the full potential with A = 1 we did not obtain convergence of
the solution, indicating the importance of the field integral in that

case.

Taking n to be the angle measured from the forward stagnation

point, figure 4 shuws ihe lovael wech ndinbess obtained in tho atovo three
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cases, plus the exact incompressible solution and the compressible
solution obtained by Williams [1979] using a finite element method,
for which the maximum error is at n = im and is around 0.5%. The

figure shows that for mach numbers up to 0.5 case 3 gives the best result,

whereas nearer im case 2 approximates the solution better.



NPT S —

+ 35,

5 Conclusion

When considering the solution of compressible fluid flow problems
by a boundary integral method it has been seen that obtaining an accurate
form for the fundamental solution is not a simple task. Whilst it has
been observed in section 4.2 that by using a singular function distinct
from the fundamental solution reasonable accuracy may be achieved by
approximation of the field integral, it is seen from section 4.3 that
for the boundary integral method to reach its full potential the funda-
mental solution needs to be obtained. The most promising means for
getting an accurate representation of a fundamental solution of the
linearized equation (1.1a) comes from Vekua's work, which can give a
series solution for the function for any analytically assumed form for
p . Transformation to the hodograph plane on the other hand produces

equations for which simple fundamental solutions can be found over a

large range, but transformation bpack to real space is always a problem.

This is a preliminary study mainly aimed at setting out the alternative

approaches that might be pursued. Thus any conclusions must be regarded

as very tentative at this stage.
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TABLE 1.
n N =8 N = 16 N = 32
0 +40,56 +11.21 +2.33
n/8 _— | -1.73 -0.19
n/4 - 4.09 -0.53 -0.10
3r/8 " _— | -0.40 -0.08

Percentage Error In Potential Obtained From Using

The Exact Fundamental Solution Compared With

True Solution For N Elements.

TABLE 2.
n “ N =8 N = 16 N = 32
0 +34.50 +27.23 +25.96
/8 e +°3.18 + 8,98
n/4 - 2.14 - 1.92 +11.93
37/8 P + 0.93 -12.30

Percentage Error In Potential Obtained From Using

The Bessel Function As The Singular Function

And The Calculated Values Of The Field Iptegral.

TABLE 3.
n N =8 N = 16 N = 32
0 +25.54 +10.08 +6.51
/8 — | - a.52 +2.38
/4 -24.51 - 7.09 -1.16
31/8 _— | -10.39 -4.,43

Percentage Error In Potential Obtained From Using

The Bessel Function As Ihe Singular runction And

The Interpolated Values Of The Field Integral.

37.
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