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Summary

A numerical algorithm for the solution of the two-
dimensional incompressible fluild flow equations in
conservation law form is described, based on the
successful one-dimensional algorithm of P. L. Roe

at RAE Bedford. The main features are the weighted
allocation of Fldx gquantities to nodes and a switching

device to reduce oscillations.
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§1 Introduction

This report describes work carried out at RAE Farnborough during a
sabbatical term (Autumn 1979) from the University of Reading. The work arose
from developments in solving the Euler equations for time-dependent compress-
ible fluid flow‘being carried out at RAE Bedford. P. Roe at Bedford had
investigated the one-dimensional Euler eqguations from a fundamental point
of view and had propcsed a novel approach to the construction of numerical
algorithms. He had also devised a switching mechanism which had been. very
successful in suppressing unwanted oscillations near discontinuities. The
resulting method had been applied successfully to test problems of various
kinds, including a problem involving two intersecting shockwaves and a

shock tube problem recently surveyed by G. Sod (1977).

To apply fhe method in more than one space-dimension a form of operator
splitting in time had been used. A program to calculate the pressure dis-
tribution over an aerofoil had been written and found to be satisfactory
although time-consuming. Another program, to calculate the flow past a

flat faced step had run into difficulties.

It seemed worthwhile to try and apply the Fundamental ideas of the
successful one-dimensional method directly in two or three dimensions. It
was hoped that the results of such an investigation would be useful in assessing
the validity of operator splitting in several dimensions using Roe's one-

dimensional method.

It is convenient to describe here the elements of the one-dimensional

method prior to generalising to two or more dimensions.



§2 The one-dimensional method

The main features of the one-dimensional algorithm may be set down
as (1) conservation on a regular grid, (2) propagation of waves in
appropriate characteristic directions and (3) second order accuracy with
freedom from spurious oscillations near discontinuities. We shall describe

here the algorithm in relation to the simple scalar, but possibly non-linear
equation

u, '+ f =0 ) (1]

mentioning at this point that the extension to a system has been success-
fully achieved taking into account the different directions in which
different types of weves travel. In particular, in the Euler equations,

for which

P pu
u = [pu f=1p +,pU2 ’
€ *+p ule + p)

in the usual notation, differenced quantities are resolved intec components

e P P
along the eigenvectors plu + c) p(u - c) pu
e + p + puc e +p - puc tpu?
4
two wave directions and the stream direction.
An alternative statement of equation (1) is
xj+1
a = — -y
3t udx = (fj+1 Fj] (2)
*3

and a time discretization of this equation gives
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— { Utk = - AE—(F - f,)] =1, , (3)
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say. The quantity Ij on the r.h.s. of (3) is the familiar one which is
used to increment values of u in many well-known algorithms. For example,
in the predictor stage of MacCormack's algorithm, it is used to increment
uj+1 if f'(u) > 0 and to increment u if F'(u) < 0 (1st order U 5

upwind differencing). The r.h.s. of (3) can also be written

£, . = F,
+
= %E‘ Uj ! j“ai (u.+1 - u,) (4)
j# " t3) ’ -
whence it can be related to the 'characteristic' speed f'(u) . (5)
The reason for assigning I to the different end-points of the interval jj

is then clear. At the corrector stage of the MacCormack algorithm and also
in other 2nd order algorithms a further distribution of the r.h.s. of (3)
(evaluated from predicted or "first stage” values) is made. Second order
accuracy results from the subtraction of guantities whose difference is

already first order.

A way of achieving a 2nd order algorithm in one step while retaining
conservation in a natural way is to assign the increment I iff (3) to the i
ends of the interval [xj, xj+1] with different weights o and B . The

weights are to be determined by imposing conditions on the method to ensure

second order accuracy. This is illustrated first on the linear scalar equation

ut + auX =0 (B6)
or
1 T3+ At
A K;f udx | = -a 2% tuj+1 - uj) = - vAu (7)
X

where v = a %5 is the CFL number (cf (3)).



To achieve 2nd order accuracy it is

algorithm provides exact solutions for the basic polynomials

U =x, U= x? The case u = 1

2

changes occur. In the cases U = x and U = X° ,

in fig 1. and the adjacent intervals 70, OA .

z 0 A a times (—vAu]UA plus B times

=

The increment is therefore

-va[uA - u.) .

o) - vB(uO -

U7

Without loss of generality we can take

In the case u = x , (B) becomes

At

-8 — +
& T (o + BJIAX
and the exact increment is -aAt (because the data is merely convected
with speed al) , giving
a+8=1
Similarly, in the case u = x2 , (B) becomes

-a %% [a(ax)2 - B(Ax]?]

and the exact increment is a2(At)2 , so that
' o - B =-v
From (10) and (12),
11 - V) B =501 +v)

a = 3(1

uD is therefore incremented by the guantity

11 - v][—v(uA = ugd] ¢ ET e VI feviyg - uz]l

giving the rule

n+1
= u, = iv(u

Ug 0 +u,) ,

5 142 =
UZJ + v [uA 2u[J 7

A

the one-step Lax-Wendroff algorithm.

is satisfied automatically,

0 to be the origin.

sufficient to ensure that the

u =1,

(-vAuJZD .

since no

consider the point O

The increment to point 0 is

(8}

(8)

(10)

(11)

(12)

(13)

(14}

(15)



We can allow the r.h.s. of (7) to increment a different pair of points.
Suppose that the increment (-vAu) 1is assigned to uj+1 and Uj+2 with
weights vy and & . A similar calculation based on the requirements of
2nd order accuracy leads to

Y = 3(3 - V) § = 3(-1 +v) , : (16)

corresponding to the upwind algorithm of Warming and Beam. Conservatiaon

is assured because all quantities -vAu (or, more generally,

. At
Ax

n+1 n At [ n _ N ]
= u 2 b f. 'F
Lu ) 8% | Imax Jmin

A difficulty with second order algorithms is the appearance of unwanted

fF_+1 N fjJ are allocated at the next time level, so that
J .

oscillations near to discontinuities., In first order algorithms the phenomena
can be avoided by building monotonicity into the scheme; monotonicity in

this sense means that monotonic data at any time level imply monotonic values
at -the next time level. However, it has been shown by Godunov that there are

no second order algorithms which preserve monotonicity.

One way of dealing with oscillations is to introduce a switching device
which operates only in non-smooth parts of the flow and leaves the algorithm
elsewhere una?Fected. The reduction in accuracy is of small significance near
discontinuities. P. Roe at Bedford has devised such a switchiné device
which is easily implemented in terms of increments and has a sound mathematical
basis. There is a formal generalisation of this device to several dimensions,

although the mathematical basis needs further work (see §5).

The ideas in the above work have straightforward generalisations to

non-linear equations and to systems of hyperbolic conservation laws.



§3. The two-dimensional method

We attempt a 2-D generalisation of the ideas in §1. Equation (6)

now becomes

U, * fx + gy =0 (20)
or, in integral form,

3 [ I . _

ot L f udq ] = J (Fx + gy)dﬂ = f (fdy - gdx) (21)

§ - 8
.C

Evaluating the r.h. integral on the guadrilateral

in fig 2., using the trapezium rule, we obtain
A
1 . > . - - _
$[0F, + F)lyg = v )+ (Fg + #) v - v+l + FR) vy = y )+ = £y, vl

-$[(g, + gg)(xg - x, )+ (g + go) (xg = xg)+leg + gg) lxp = xc)+leg * g )(x, - x5)1

"

1 [ . = . - o
Z[th ) lyg = )~ (g - Fl v, yC)]

—%[[gA - gC][xB = xDJ—(gB = gD)(xA = xC]] (22)

1

The area of the quadrilateral ABCD 1is AQ = sf(xA - xC)(yB N yD] =

(x - yC]] and (21) can therefore be written in the form

B~ Xp) Wy

. ! _' (fA—fC](yB-yD)-(fB-FD][yA-yCJ—(gA-gCJ(xB—xD)+[gB-gDJ(xA—xC) (23)
za udfl| = At

(xA—xC](yB-yD)-[xB-xD][yA-yC]

and we have carried out the time discretisation. Note that only diagonal

differences are involved.

If ABCD is a rectangle of sides A4x, Ay , this reduces to

1 LAt o L At ) i i
A[AxAy f”d?] “oafa T fo T fet ) tongBa T8 tgg gy =1, (24)



[ say. The terms in brackets on the r.h. side of (24)
Ay approximate f'(u) and g'(W) at the mid-point of the

cell.

& AXx
fig 3.

We seek now an algorithm which, for the model equation
U_t + aux + bUy =0 (25)

in the discretised form

n

1 aht bt . §
At &EZE; f udﬂ] §Z;-(UA Ug = Ug * uD] + Ay [uA Us * Ug uD)

=1 - - 1 = =
2v1(uA Up Ug + uD) + 2\)Z(u u. + u u.)

where v, = aht/Ax , v, = bAt/Ax , (28)

is 2nd order accurate, i.e. it is exact for the specimen polynomials
us=1, u=x,u=y, u=x% u=y2 u-= Xy . We suppose that the guantity
on the r.h.s. of (26) is to be assigned to the four corners A, B, C,.D of

the rectangle in fig 3., with weights o, B, v, 6.

At first sight there appear to be 6 conditions to be satisfied by
the four weights o, B, vy, 6§ . This is not the case, for two reasons. First,
the case u =1 1is satisfied automatically as in oné-dimensiont Secondly,
the function u = ay - bx 1is constant in the direction of the stream and
is therefore an exact solution: it follows that if o, B, ¥, § are such
that the algorithm is exact for u = x , then it is also exact for u =y .
Moreover, u = (ay - bx)2 1is also an exact solution, so that exactness for

2

us=xc, U=y implies exactness for u = xy. There are therefore only 3

conditions to be met by o, B, y, § and there will be one free parameter.



6.

Consider the point A and its four adjacent rectangles

(see fig 4.). The increment to u is o times the r.h.s.

A )
J _____QKF_E_ g of (28) plus three corresponding terms from the three other
I rectangles ADEF, AFGH and AHIB . We may take the origin
5 figH4. of coordinates at A . For u = x , we have from.the
rectangle ABCD a contribution - aaAt . The contribution from all four

rectangles is

- (o + B + vy + 8)aat : (27)
and the exact solution is -aAt . Hence we require that

o+ B +y +38 =1, (28)

and this condition covers the case u = y .. First order accuracy is therefore
obtained by any set of weights o, B, v, 8 , satisfying (28), in particulaer
o =1, B=1y =206 =0 or acyclic permutation of these. We obtain first order
accuracy by assigning the contribution to any corner. Note also that the
same result (28) is obtained for an arbitrary quadrilateral (see (23])) ,

so the grid does not have to be regular at this stage.

For u = x2, the r.h.s. of (26) for the rectangle ABCD reduces to
- aAt(Ax)2 while for the rectangle ADEF it reduces to aAt(Ax

The total contribution from the four rectangles in this case is

(-o + B + vy - 8)art(Ax)? o ! (29)
and the exact solution is a2At? . Hence we require also that
o+ By - 8§ = \Z (30)

Similarly, for u = y2 , the condition to be satisfied is

-a_B+Y+6=\) (31)

Solving (28), (30), (31) 1leads to a one parameter family of solutions
for o, B, v, 6. Let the free parameter be A and add a fourth equation

o0 -B+ty -8 =2 (32)



Solving the four equations (28), (30), (31), (32) for o, B, v, § gives

a = 501+ A) - dlv, +ov,)

B = 2(1 - A) - Elv, - v,)
(33)

vy o= 201+ X)) + by, +v,)

§ = 401 - A) + ilv, - v,)

Seéond order accuracy is obtained by using these weights with any choice
of . X . There‘is no reason why X should not vary from cell to cell since
the conditions (28), (30), (31} for second order accuracy are satisfied
whatever value is taken by X . It can also be shown that the same weights
are obtained if the mesh is taken to consist of parallelograms rather than

rectangles.

A diagonal bias is again apparent in (33). 1Indeed, if we take a
square mesh with Ax = Ay = h and rotate the grid through 45° to form a mesh

of diamonds by means of the transformation

D (§8)
Xx=lix e yy vediy - x
e /2
1 1
A A = —(a + b) B=—(b - a) (34)
V2 V2
(a)
Feltfvg  G=llg-%)
. /2 V2
'Flg 5. H(B)
(see fig 5.) the r.h.s. of (24) becomes
At 5 .
" [FA i FC + GB = GD] (35)

and the weights become

o = £(1 + A) - 1AAt/H
B = 1(1 - A) - iBAt/H
(36)

.
n
Fla
-~
N
+
>
—
+

IAAt/H
6§ = (1 - A) + iBAt/H

where H = h/V2 ..
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The quantity Up is incremented by a guantity
which corresponds to the 2-D Lax Wendroff scheme
(ref. 9, p. 350) together with a term depending

on X , namely

AAE
—Zﬁ[A(UI + Uy + Up Ug Uy uBJ + B(UG + Ug * ug Ug Ug - UH)] (38}

(see fig 6.) whose significance is not yet clear. The algorithm reduces

to Lax-Wendroff when A = 0 .

For a linear system of equations, the results go through with
the constants a, b, c, d, A, B, C, D becoming matrices. Moreover the
o, B, Y, 8§ are also matrices and so is the free parameter X . A natural
extension to non-linear f and g , or F and G ; is abtained by
replacing a, A etc. by the appropriate Jacobians, or their approximations

(fA N fC)/(uA = UC] etc.

The stability analysis which follows is, however, only valid for

scalar problemsl
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§4. S_tib_l lity of Eﬂ ¢ “-0D Method

The scheme given the weights (38) in the diagonally orientated
sguare mesh is precis=.y the 2-D Lax Wendroff scheme as given in e.g., ref.g,
p.362, but with the additional term (38). The amplification factor is

therefore as in ref.9 p.362 equn. 13.13 together with the additional term

-ix(cos o - cos 6]-%% (A sin o + B sin B) , (39)

where o = kyH , B = kyH . Kx and Ky being the Fourier frequencies.

We therefore have the amplification factor

g =1-1i A%{(’l + A)cos d + (1 - Xcos B}(A sin a + B sin B)

At) 2 . . 2
-2 H (A sin o + B sin B)= . (40)

The modulus squared of the amplification factor is

ge ='{1—2[u1sina + uzsin8)2}24ﬂ1 +A)cosa + (1 - A)coss}z[u1sina-+ uzsinB]2(41]

where Wy =T/ 0 Mo T TR i.e. (42)
gg = 1 + T2[4(u1sina + uzsinBJz + {1 + Ncosa + (1 - A)cosB}? - ZU (43)
where 12 = (uqsina + uzsinslz « The condition gg <1 ¥Yreal a, B

therefore reduces to the condition

’
G(a,8) = 4(u sina + u251n6)2*L11 + Mcosa+(1 - A)cosB}2-4 < 0 (44)

for all cos o, cos B between -1 and +1

Rewrite the middle term as

(1 + A2)(cos?a-+ cos2B)+2\(cosla - cos2B)+2(1 - A2)cosa cosp

(A2 - 1)(cos?0 + cos2B)+2(cos2q + cos2B)+2) (cos2o - 005281+2(1 - A2)coso cosB

4 - 2sinZ0 - 2sin?B - 2x(sin20 - sin2B) - (1 - A2)(cosa - cosB)? (45)
whence
Gla,8) = sina4u? - 2(1 + AJ]+sin23[4u% - 201 - ]

+ 8u1u2 sina sinB - (1 - A2)(cosa - cosB)2 . (46)
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Consider o =0, R =7 . Thaen for Glo, R) to be non-positive it
is necessary that
] <1 . (47)
In that case the final term in (46) is always negative. The remaining
terms constitute a guadratic form in sin «, sin B, which is non-positive if
(Buu)2 < afau? - 201 + A7) [wd - 201 - 0] . (48)

This simplifies to

2 2
. R S | (49)
1 + A 1 - A 2

and this condition, together with (47), is sufficient for G(a, B} to be
non-positive. The two conditions together are also necessary, since otherwise
G(a, B) would be positive for some small (o, B) such that the cosine term

is negligible.**

Reverting to the A, B notation, we have shown that necessary and

sufficient conditions for the stability of the method are

(AAt/H)2 | (BAt/HIZ2 1

T+ A e W (509

N

Ix] <1 (51)

The conditions to be satisfied for AAt/H and BAt/H are shown in
fig 7 . Condition (50) requires the point (AAt/H, BAt/H) to lie within an
ellipse (for fixed A), which can be shown to touch the four straight lines

AAL BAt
+ —— ——
: ot a 1 (52)
However, there is no reason why A should not vary with A and B , as

long as condition (51) is met.

Rewriting the inequality (49) as

(1 - x)uﬁ + (1 + A)ug <301 - 2%, (53)

** T am indebted to P. L. Roe for the conditions found here.
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using. (47), and rearranging, we obtain

2 . 2 - 2 2 2 -
A 2l(u1 u2] + 2111 + 2u2 150 .

For this condition to be satisfied,. A must lie between the real roots

2 - 2 w2 - y2)2 SO e S :
(ns .- w5) £ J(u1 u5)E e 4 - 2ul - 2l (54)
For the roots to be real, the expression inside the stare root has to be
positive. This is equivalent to the point (u1, uz) lying inside a diamond,

{fig 7.), since

(43 - u3)2+ 1 - 2u2 - 22

1

(2 + u2)2- 4udud + 1 - 2u? - 23 _ .

6 + 43 - D2 - whid

= W +u2 -1+ 2u,ug) (W2 4 B2 -1 - 2ugm,)

[ -ty w20 - Gy - “2)21
Assuming that this cendition is met, a variable A which satisfies

condition (54), and therefore (50) is

e y2 - 2
| A g = 5
: _ [AAt)2 BAt] 2
= | - (55)
and this leads to weights
_ AAE)2  [BAt)?
¢ *1(1 H4 _[H4
_ _BAt)2 _ [Aat)?
-4 [
2ol [q . Aat)? _ (Bat)? e
L R H |
. BAt)2  [AAt)?
o= (1 By (B

‘Nevertheless, @ choice of possible A still exists and X may still
be regarded as a free (though shackled) parameter. It is necessary -°73”

to look further for guidance as to the best cholce of X .
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§5. Switching in two dimensions

The switching device introduced by P. L. Roe in his one-dimensional
algorithm has at its base a mathematical concept called compatibility (ret.2).

This concept, which is allied to mbnotonicity, can be readily incorporated

into the one-dimensional algorithm with impressive results as regards elimination

of oscillations.

In two dimensions it is not obvious how this concept is to be generalised
and further work is required on the various possibilities. It is possible,
however, to try various empirical devices which reduce to Roe's switching
device in one dimensional flow. Thus, by applying Roe's criteria to the flux
in cells adjacent in the x-direction, a switching rule for nodes on
x-coordinate lines is immediately indicated, and similarly for the y-direction.
What is new in two dimensions is the possibility of the criteria in both
directions being satisfied simultaneously for a given cell. 1In that case

the guantity to be switched is sent diagonally across the cell.

This purely empirical rule is effective in reducing (but not eliminating)
oscillations in the test problem described in the next section. It is very
close in spirit to Roe's switching device but lacks a mathematical basis as

’

yet. However, it is a promising start in a situation which absolutely requires

switching of some sort.
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§6. A Test Problem

As a simple test problem, the problem considered recently by Dukiewicz

and Ramshaw (1879} of the translation of an L-shaped discontinuity across

a square region, was chosen.

On a grid of 18 x 19 the initial position of the discontinuity

was chosen such that the square region was 13 x 13

(see fig 8.). The time step was taken to be At = 0.2

with Ax = Ay = 0.1 and a = 1.5, b = 0.5, so that

b=0.5 Y

a=1.5 = 0.3, v, = 0.1. The algorithm ran for 20 time steps,

17 2
fig 8. giving the pesition of the disturbance after 4 seconds.
Programs were written for both the time splitting scheme and the two-
dimenional scheme described here, in each case with and without switching.
The programs which include switching are added in the Appendix. In the time
splitting scheme, Roe's switching device is included, while in the two-
dimensional scheme the empirical switching device discussed in § 1is incor-
porated. The programs were run on the DEC-10 at RAE Farnborough and effective
use was made of a contour plotting routine made available by Keith Wilson

of the Aero division.

‘
On this simple test problem the best results, free of oscillations, were

obtained from the time-splitting scheme using P. L. Roe's algorithm with

switching. Thesé results were, however, rivalled by the two-dimensional

scheme when the switching described in §5 was used and when A was manipulated

to suppress alternating instabilities (see §7). With a more refined under-

standing of these two effects it might be possible to obtain results as good

as those from time-splitting. In that case, the two-dimensional scheme,

being.closer to the physical problem, would certainly be more attractive.
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A distinction between the boundary conditions needed for the two
schemes became apparent during the programming. In the time-splitting
scheme using a one-dimensional algorithm the required transparent condition
at the boundary was never called upon whereas in the two-dimensional method
the boundary conditions were much more crucial. The simple device of
forecing the values of u to be equal at a few points in from the boundary,
for each point of the boundary, was used to simulate the transparent boundary
condition in the programs written so far. A more consistent approach is
discussed in §9 below, however, and it is hoped that this will lead to a
clearer understanding of how the results are being affected by boundary

conditions.

The test problem here is of course just about the simplest two-dimensional
problem that can be constructed, and it is, in fact, particularly well suited
to the time splitting algorithm. Many further problems will be needed before

any flrm conclusions can be drawn.
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§7. The choice of A

By definition X is the sum of the increments to the diagonally
opposite points B, D 1in a cell less the sum of those to A, C . (See
equ”. (32)). It is therefore closely connected with the phenomenon of
alternating instability which occurs widely in 2-D flow field calculations.
Such instabilities are uncontrolled by second order accurate schemes, which
are insensitive to perturbations of this kind. Indeed, in a recent paper
by Chan (1978) a parameter is defined to cope with this difficulty. This
so-called "discrepancy parameter" corresponas to the parameter A 1in the
above sections and is used to correct new values in the same way as in the

weights calculated above. An empirically estimated value of A 1is employed.

In a follow-up letter, Strauss {1978) observes that the inclusion. of
the A term causes less damping of long wavelengths than if it is omitted.
If we allow a variable X , the parameter may possibly be used to coqtrol
alternating instabilities as they arise by varying A to control the
discrepancies from cell to cell. Some success has already been obtained on

these lines with the test problem. However, as P. Roe has pointed out, the

stability analysis is only valid for fixed ) .

An alternative fate for )X 1is suggested by the breakdown of the constancy
of u = (bx - ay)K (k = 2) in the direction of the stream when a, b
vary or when the equation is non-linear. If it is no longer possible to
assert that (bx - ay) is an exact solution, a degree of freedom is lost

and A 1is no longer available as a free parameter.
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§8. The method in three dimensions

In three dimensions, a similar approach to that in 3 yields ten
conditions for second order accuracy, namely, the coﬁditions for the exact-
ness of the speciment solutions

u=1, %, v, z, x2, v%, z2, xy, yz, zx
and also yields eight unknowns, the weights o, B, ¥y, &, 8, ¢, ¥, ¥,
distributing the flux to the eight corners of an element (see fig .J}. As
before, u =1 1is satisfied exactly and so are solutions of the - form
(px + gy + rz)" with (p, g, r) perpendicular to the velocity of translation

(a, b, ¢} . There are two independent such (p, g, r)'s for both n = 1

and n = 2 so that five conditions in all are automatically satisfied. Thus
X .
[ the eight unknowns must satisfy five equations, and
I .
S :e ¥ there will be solutions with three free parameters,
dCTrpe
&
P ) A1a 12. AS s 5ay.
’
B 7
a B

The choice of the Ai (i = 1, 2, 3) is even less clear than the choice
of A in two dimensions, although it is reasonable to expect that in three
dimensions there will be three kinds of alternating instability, associated

with the three coordinate directions, which might be controlled by the Xi

{ see §7).
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§9, Boundary conditions

Further consideration has been given to boundary conditions on

rectangular walls.

Let us consider the two boundary conditions
)

c

(a) u = const. (b) i 0 (zero flux condition)
i j { In the one-dimensional case suppose that these are
g 0 Bapplied, separately, at a right hand boundary B (see fig a.)
fig as.

In case (a), in order to maintain a zero increment to Ug »
the flux from the cell OB has to be directed entirely to the point 0.
This reduces the method to first order accuracy at the node O, but the

boundary condition at B 1s in any case incompatible with the accuracy

conditions.

B \ In the case (b), a natural procedure would be to
n 1 i
74 0 ) C locate the nodes in such a way that the boundary B
fig b, B lies halfway between the last two nodes (see fig .(blJ).

Condition (b) can then be replaced by the condition that there is no flux in
the last cell, so that the left hand end 0 of that cell is incremented only

from the cell Z0 . The point C 1s never used.

One can summarise by saying that condition (a) corresponds to the
flux in the last cell being wholly given to the left end of the cell; and
that condition (b) corresponds to the "last" node (0 in fig .) receiving

no contribution from the cells to its right.

Periodic boundary conditions are readily simulated by imagining the
axis "wrapped around” a cylinder whose circumference is equal to the length

of the domain.
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Moving into two dimensions, we consider now the two boundary conditions

(a) and (b) as applied to a right hand boundary.

z’ o' \
B In case (a) the appropriate generalisation is that
the flux from the cell O0BB'0' should be given
z 0 \B  entirely to the points 0 and 0' with weights
(a) B' i

o, & satisfying the accuracy conditions in the

LY.
\ coordinate parallel to the boundary (cf (13))
\\c
\\ (ses fig .(a)). 1In case (b) it is simply that
r] o '?
\

0 and 0' receive no contributions from the cells

b
(b) like O0OCC'D' lying "across” the boundary (see fig .(b)).

Appropriate generalisations to 3-D grids are evident, and need not be
explicitly described. It 1s hoped to incorporate these ideas into the

programs of §6 as a next step.
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§10. Conclusions and Proposed Extensions

The approach introduced by P. L. Roe and its extensions considered
above constitute a novel and potentially powerful way of modelling fluid
flow problems. Although the two-dimensional extension of the one-dimensional
algorithm is at an eerly stage of development, it is sufficiently elegant
and sufficiently promising to merit a detailed investigation, both on the

mathematical and practical sides.

Further investigations required are (i) a mathematical analysis
of the existing one-dimensional algorithm and its various implementations,
(ii) the development and testing of the two-dimensional (and three-dimensional)
algorithms, both for model problems and for the full Euler equations,
(iii) the extension to higher dimensions of the successful technique for
the suppression of oscillations in one-dimension, (iv) the incorporation
of boundary conditions in a satisfactory way, and (v) the implementation

of the algorithms on irregular grids and for non-uniform time steps.
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APPENDIX

Programs for solving the test problem in §6.



TIE SPUTTING ScHelleE FoR TEesT PRoBLeEM W §6

00100 COMFDN/ B/ GLFHA « BETA y BANMA» DELTA» CFLX » CFLY
COROC A BAUNGHCLS e 09 s UTHEN (19, 19)

GOB00 DIMENSTON UINITOLY» 170y AREDACS)

00400

R

OOS00 FPARAMETERS

00400

00700 : T=0,0

D000 OT=0,2

00900 0%=1.0

01000 NY=1,0

731100 - RSN

01200 F=0.5 )

01300 CFLY=AXDT /0¥

01400 CFLY=REDT /DY

01500 SUMCFL=CFLYX+CFLY
01600 DIFCFL=CFLY~CFLX
oL700  C

01800 C WETGHTS

01900

02000 ALFHA=0, 25% (1-8UMCFL)
02100 BETA=0 25%% (1D TFCFL)
02200 GAMMA=0 25 CLESUNMCEL)
02300 DELTA=0 . 255 CL4+DTFCFL)
02400 O

OR500 INITIALISE U

02500 O '

OR700 0 1 I=1s19

02800 no o1 J=l1s19

G200 1 UINITC(Iy )=2,0

3000 00 2 I=46y19

0X100 o 2 J=gsriy

03200 2 UINIT(Ied)=1.0

03300 '

03400 C

03500 SFLIT SCHEME

0300 0 :
TQETO0 00 14 T=1s19 '
03800 DO 1l J=1s19

DIF00 UNOWCT e JY=ULNITCE 200
Q4000 11 UTHENCTy JY=UNDWCT 5.J)
54100 .

04200 14 CONTINMUE
Q04300 . TaTH0, 5X0T
04400 Calll, XSTEFOS)
OAS00 00 12 K=1419
GAL00 T=T40T.
OA700 Call., YSTERFCL.0)
04800 TaTH0T .
04900 12 Call. XSTERP(L.O) -
05000 T=T+0T . B - T
05100 Coall, YSETERCL.0) N - o
05200 Taa T8 SRINT ’
OR300 Cal.l. XSTERF(O,8)
Q5400 WRITE(S90) '
Q5500 WHEITE(S, 91)
05400 0 FORMATCLIH SFLIT SCHEME)
05700 QL FORMATC(CZH SRILTITS) '
25300 CalLl, WRITECL&,18)
QHe00 EMI
OLEOG0 [
DE100 S

) - 52 S .
SEEeS € cewtinned .
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24300 SURRDUTINE XSTEFCDTFRAG)
G6400 P”lVU’ A/ ALFHA s BETA» GANMMA» DELTAs CFLXCFLY . o Wl ie-
Q6500 COMMON/RBAUMOWC19y 16 JUTHENC19519)
CHL00 NIMENSTON YIELD(L19) » XDIF {19 s NUDBECLD) -
08700 D104 J=1,19 '
DHRGO oo 101 I=1+18
D500 NUDGE (T)=0
27000 XOTFCTY=UNOWCTHL 2 J0 ~UNDW Ty 3D
07160 101 YIELDCI)=-DTFRACKCILYEXDIF (1Y’
07200 0o 103 I=1518
07300 UTHFNfT/J)"HTHF111y15 fﬁllHﬁ#DLITA)*Y[rLU(I)
07400 103 UTHENCI+ p;luururN([\isz+f1|Ta+uo“mm>«rtr|n<1)
D7E00 C
S7&00 C SWITCH
' C
07800 o 106 I=1-18
07900 IFCABRS(XDIF (LY ) BT ARG CXITF (1Y) e AND . CFLX . BT 40, 0 HUTIGE(T) =1
98000 TE L ARSCXOTE CTH1)) LT ARSCXOIF (L) AND CFLX LT 0 Oy NUDGECIHL)
DRLOO 106 CONTIMUE
08200 oo 108 I=1,17
08300 Ne=NUTIEE €D
OR4A00 YYeYIELDCTHL Y=Y TELDCD) L
OB500 L EQ IYUTHENCIAL r JYsUTHENCIHL v )~
08400 8 (hlle DELTAYRYY P
0R700 TEFONEQ LILUTHENCIH2 s ) =UTHENCI4+2, 0+
ORBOO 9 CALFHATDELTAY XYY 5.
ORF00 108  CONTINUE
05000 00 107 I=ls17 o KR ca B s
09100 NeHUDIGE CE4+L) - o ‘
OGR00 YY=YLELIDCL+1y~YIELD(T42) i
05300 TFONGER, =1 dUTHEN Ly J) = UIHFN(IyJ)«
09400 & (BETA+OAMMA)KYY '
G9E00 TF OB~ YUTHENCTFL » I wUTHENCT 1 o J0
094600 (ILrﬁvuﬁhMﬁ)mYY e
H8700 107 CONTINUE ‘
Q9RO 104  CONTINUE _ 0 LA g
09500 CALL UFDATE ' ' . TIPS R
BT B R e
10100 " o '
10700 C S e
12300 C ' g (e '_(_un‘l*‘iv'\-‘;a:ét{_

o
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10400 SUBESUTIHE YSTERC(DTFRAC)
L0500 FOMITH S G/ AL FHA » BETA » BAMMA DELTA CFLXyCFLY
10A4GD '

LG7G0 110N YIELDCLS) o VINIF (19) » HUTGE (L9
10800 nn 2046 I=1r19 2l e
L0900 no 201 J=1s18

11G00 NUGGEE () Y=0

11100 YOUTF ) =UROW (s JH1Y ~LINOW T JD

11250 201 YIELD(J)=-DTFRACECFLY®YDOIF G .

11300 Do 203 J=1:12

11400 UTHEH(IrJ)=UTHEN(IrJ)+(QLPHA+PFTA)*YIELD(J)

11500 203 UTHEN(I7J+1)wUTHEN(IyJ+1)+(GﬁMHﬁ+DELTA)*YI@LD(J)

11400 (o 5 )

11700 C SUWITCH

L1800 no Z04)=1518 %
11500 T (Al YDIF(J+1)),GTéﬁHB(YUIF(J))oﬂNUGCFLY.GT¢O.O)HUDGE(J)*1
12600 IF(ﬁIF(YDIF(J+1))eLTeﬁBS(YDIF(J))oﬁNDeCFLYaLT.0.0)NUDDE(J+1ﬁ
1210 206 CONTIMNUE

12200 A0l

12300 P NUTIEE O

12400 Yy LELDC LY Y TELINCS) .
12500 TFORGED, LIUTHEN Ty JHL 2 =UTHEN (T e JM 1) -
124600 8 (ALFHATRETAI XYY

15700 TEOMED, LI UTHENCT o 242 =UTHENCDy J+2) +
12800 9 (ALFHATRETAYXYY '

12900 208  CONTINUE

13000 Do 207 J=1ly17°

13100 Ma=MUTDIGE (J4H1)

133200 Y=Y IFLDCIEL Y Y TELD G2

13300 TEFONGED, =L D UTHENCT » JIs=UTHEN (L)~
13400 2  (OGoMMatIELTAYXYY i
13500 TENER =1 YUTHENCT ¢ JHE3=UTHEN (T J+1)+
13400 _ 9 (BAMMATTIELTAY XYY :

13700 207 CONTINUE

13800 204 CONTINUE

13700 Caoll. UPDATE

14000 ENTD

1A1L00 :

%

14200 € :
14300 C _ .
14400 SURROUTINE URDATE
14500 COMMONS B /LMD 19y 19) s UTHENCLS 9 19)
B0 A0L I=2,18 -
N0 407 J=2s18
402 UNOBCL e ) sUTHEMNC Ty J)
401 CONTINUE |
B0 403 Kslel9 . e 4
L5100 UMOM L p 13 =L THEN (22 KD
LER00 UNOW (K 1) =UTHEN R 2 2
15300 UNDW L9y K =UTHEN L8 K)
AOT UMD (R 19 sUTHEN (K, 18) .
END '
C
C
» ;

1EH200 GUERROUTTHE WRITELINMITI LIMITD
14000 COMMOMZE/UNDE CLE s 19 y UTHEN (199 19)
QSO0 J=ly L IMIT
SO0 HRITE(ﬁ?SOB)(UNUN(IPJ)VIﬂlFLIMITI)‘
505 FORMATCLH » LBFZ «4)
ENI




00100
Q0200
Q0300
D0400
OQEQ0
COa00
GO700
o800
(30900
D100
01100
1200
G300
01400
GLEGO
1400
1700
01800
01900
Q2000
02100
Q2200
QOR300
02400
COREHOO0
DIL00
Q2700
Q2860
Q2700
Q3000
NX100
GE200
Q3300
GZAQQ
OZ500
OZ400
DE700
O3R00
0ER00
04000
0A1GO
04200
Q400

00

C
G
C

G
e
G

TUe-DIMENSIONAL SCHETE FoR TEST PRoRichH

23

21
24

20

e,

TN
< -0

COMMON/ASALEHG BETA» GAMMA IELTA, CFLX» CFLY
D/ B/UNMOR 192 2590 f UTHEN(LZ219)

DIMENSTON UINIT{19s19) v AMBIACE)

COM

FARAMETERS

T=0.0
HT=0,2
X=1.0
LY=1,0
A=1.5
B==0 45
CFLE=AXDT/0X
CFLY=RB¥DTADY

INITIALLISE U

DO 1 I=1+19
nn 1 J=1519
DINITCI 2 J)=2,0
nn 2 I=46:19
0o 2 J=6s19
UINITC(IsJ)=1.0

BOX SCHEME
ne 24 I=1,19

ng 21 Js=1.19
UNOWCT o JY=UINITCT 0D

UTHEN(IyJ)wUNHM(IyJ)"1'>"”

CONT ITNUE

no @R Keel oy R0

TeT4DT

CALL ROXCL.0)
WRTTE (59 79)
WETTE (5 80)

FORMAT (7H BOXSWI)
FORMAT CLLH ROX SEHEME)
CALL WRITEC18,18)

END

-

IN §6.
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11700 A0D UNOWCT v JY=UTHEN Ty J)
11800 401 CONTINUE - o
11700 DO 408 Kels19 |t T TR I JTT Y et TR
12000 U=UTHEN 4 K) e gt
12100 UNOW (L 5 ) =U ’ e b TS et L Fadml TRl U
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12200 UNDH (35 K) =U R R R el e
12400 Us=UTHENCK 9 )
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12800 Us=UTHEN (16 7K)
12900 UTHEN (L7 5K =l
13000 UTHEN(18¢K)=U
13100 UTHEN (169 1) =l
DU THEN(K s 14)
UNOW (K ¢ 17 =U
UNDB (K 18) =U
DNOW (K ¢ 19 =1
408 CONTINUE
END
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14400 END

14700 C

14800 C :
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15000 GURROUTINE WEIGHT (AMEIA) S o ' o
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